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Introduction: In response to China’s ambitious dual-carbon goals, this study
investigates the spatial correlation and influencing factors of carbon emission
intensity within the Guangdong-Hong Kong-Macao Great Bay Area (GBA), a
region pivotal for the nation’s energy conservation and emission reduction
efforts. Through a comprehensive analysis encompassing the period from
2000 to 2020, this research aims to delineate the spatial dynamics of carbon
emissions and identify actionable insights for regional low-carbon development.

Methods:Utilizing an integratedmethodology comprising spatial autocorrelation
analysis, Social Network Analysis (SNA), and the Quadratic Assignment Procedure
(QAP), the study analyzes carbon emission data alongside socio-economic
variables. These methodologies allow for a nuanced exploration of the spatial
correlation structure and the determination of factors influencing carbon
emission intensity across the GBA.

Results: Findings reveal a cyclical fluctuation in the spatial network of carbon
emissions from 2000 to 2020, characterized by varying degrees of cohesion
among cities, indicating significant opportunities for spatial optimization. A “core-
periphery” pattern emerges, with economically robust cities such as Hong Kong
and Macao at the core, and less developed cities like Huizhou and Jiangmen on
the periphery. Cities like Guangzhou and Shenzhen play crucial mediator roles.
The QAP analysis further identifies six major influencing factors: geographic
spatial proximity, economic development level, urbanization rate, industrial
configuration, level of technological innovation, and environmental protection
efforts, with the latter four having amarkedly positive impact on spatial relevance.

Discussion: The study’s insights underscore the importance of understanding the
spatial dynamics of carbon emissions and the role of socioeconomic factors in
shaping these patterns. For policymakers and stakeholders in the GBA, these
findings highlight the necessity of targeted intervention strategies that consider
both the unique position of cities within the spatial network and the broader
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socio-economic context. This approach can significantly contribute to achieving
China’s dual-carbon objectives, promoting energy conservation, and facilitating
the transition to a low-carbon economy.
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1 Introduction

The International Energy Agency (IEA) reports that in 2022,
the worldwide emissions of carbon dioxide related to energy
surged by 0.9% from the previous year, resulting in an added
321 million tonnes of carbon dioxide. This increase pushed the
total emissions to approximately 36.8 billion tonnes, marking an
unprecedented peak (IEA, 2023). Notably, the rise in CO2

emissions in North America and Asia (excluding China)
surpassed the escalation observed in Europe and China. Urban
areas, being hubs of human activity and habitation, play a critical
role in energy consumption and the release of carbon dioxide
(Zhou et al., 2018; Wang et al., 2020; Yu and Zhang, 2021). The
swift pace of urbanization has led to significant energy needs and
related emission challenges, thereby posing a substantial threat to
efforts against global climate change and the pursuit of
environmental sustainability (Franco et al., 2017). More than
70% of global CO2 emissions and two-thirds of the world’s energy
use are attributed to urban centers (IEA, 2008). These urban
agglomeration, which are the focal points of regional economic
growth and population density, are instrumental in combating
climate change and advancing low-carbon initiatives (Jia et al.,
2018; Zhao et al., 2020; Wang and Xin, 2022). They achieve this
by centralizing resources, enhancing energy management
efficiency, and nurturing the growth of eco-friendly
technologies and innovations. Additionally, carbon emissions
are a widely perceived cause of global warming (Fang et al.,
2011), a pressing environmental challenge that the entire planet
faces (Wu et al., 2021).The international community broadly
agrees on the necessity to slow down global warming by
managing carbon dioxide emissions (Luo et al., 2023). In this
context, the GBA, encircling a bay, stands out with its urban
centers that are known for their sophisticated service industries,
status as vital global financial centers, and extensive
transportation networks. The GBA benefits from the collective
impact of urban clustering, engaging in diverse innovative efforts
including technology, institutional frameworks, industry, and
finance. This strategic positioning strengthens the GBA’s role
as a significant player in worldwide economic advancement.
Recognized for its crucial contribution to the transition
towards a sustainable energy model and mitigating the swift
changes brought by climate change, the importance of the
GBA is increasingly acknowledged (Geng et al., 2022).
Therefore, it is essential to intensify efforts in utilizing the
leadership potential of urban conglomerations in reducing
CO2 emissions. In line with this, China has put forward the
“Dual Carbon Plan,” which sets the ambitious objectives to
“strive to achieve peak carbon emissions by 2030 and carbon
neutrality before 2060” (Jia et al., 2022). Concurrently, China is

executing various regional spatial development strategies,
progressively strengthening the spatial correlations and
fostering more complex and far-reaching relationships among
cities in these urban agglomeration. This approach is evolving
into a complex, multi-threaded network structure.

The GBA, a critical element of China’s current national
economic advancement strategy, was first emphasized in the 13th
Five-Year Plan (2016–2020) in 2016. This initiative represents an
evolution of earlier regional development efforts, notably the Pearl
River Delta and the Pan-Pearl River Delta (Weng et al., 2020). The
GBA comprises a cluster of “9 + 2”cities, consisting of nine cities in
Guangdong Province (namely Guangzhou, Shenzhen, Zhuhai,
Dongguan, Huizhou, Zhongshan, Foshan, Zhaoqing, and
Jiangmen from the Pearl River Delta) and the two Special
Administrative Regions of Hong Kong and Macao. In a bid to
foster low-carbon, sustainable urban development in the Bay Area,
local authorities have enacted a range of policies tailored to the
unique characteristics of each city. These cities each have specific
development objectives as part of the overarching GBA plan
(Xinhua Finance Agency, 2018). Since its establishment, the GBA
has exhibited considerable economic clout. Spanning an area of
56,000 square kilometers, it covers less than 1% of China’s
total landmass.

In 2022, the GDP of the GBA surpassed 13 trillion CNY,
contributing to 10.79% of China’s total GDP. This is a significant
achievement considering that the GBA’s population of
86.2904 million only constitutes 6.95% of the national total
(NBS, 2022). According to the “World Bay Area Development
Index Report (2022),” the GBA’s growth trend suggests that by
2026, its GDP might exceed that of the Tokyo Bay Area,
positioning it at the forefront of the world’s four major bay
areas (Chen and Fan, 2022). The GBA holds a critical strategic
role in China’s broader developmental agenda. Its aim is to
amplify the overall strength significantly and foster deeper and
more expansive cooperation among Guangdong, Hong Kong,
and Macau, thereby boosting the region’s developmental
dynamics. Presently, the GBA is leading in low-carbon
development, with many of its cities transitioning from
industrial to service-oriented economies (Zhou et al., 2018).
The Greater Bay Area’s planning strategy not only focuses on
economic and social advancement but also prioritizes
environmental enhancement and living condition
improvements in the face of urbanization. The GBA plays a
crucial role in advocating for global low-carbon, sustainable, and
coordinated development. Currently, research on the GBA
largely concentrates on regional planning, economic growth,
and ecological safety, while less attention is given to the
design of carbon emissions and urban carbon emission
patterns (Hui et al., 2020; Gao et al., 2022; Jia et al., 2022).
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To address the existing knowledge gap, this paper employs the
“Gravity Model & Social Network Analysis” approach to study the
spatial network of carbon emissions among 11 prefecture-level cities
in the GBA. The timeframe from 2000 to 2020 has been chosen as
the observational interval for this network. This analysis quantifies
the statistical attributes of the GBA’s carbon emission spatial
network. Utilizing social network analysis, the study delves into
the spatial correlations and structural features of carbon emissions.
The QAP regression analysis is applied to explore the interrelations
in this network. Moreover, the research analyzes characteristics and
formation mechanism of carbon emissions, laying a groundwork for
the development of harmonized carbon emission strategies
in the GBA.

The structure of the paper is as follows: Section 2 introduces the
relevant literature review. Section 3 describes the research area and
sources of data. Section 4 discusses the Materials and Methods.
Section 5 presents the findings and discussions. Finally, Section 6
offers the conclusion and targeted recommendations.

2 Literature review

2.1 Spatial correlation of carbon emissions

In early studies focusing on the spatial correlation attributes of
carbon emissions, numerous academics analyzed the spatial network
properties of carbon emissions through the lens of spatial analysis
and spatial econometrics. They identified significant spatial
autocorrelation (Sun et al., 2020; Lin et al., 2021; Chen et al.,
2023) and spatial non-uniformity (Chen et al., 2021) in carbon
emission networks. Presently, researchers frequently employ spatial
autocorrelation tests (Lv et al., 2022; Zeng et al., 2022) and stochastic
frontier analysis (Ondrich and Ruggiero, 2001), forming dynamic
spatial Durbin models (Li and Li, 2020; Song et al., 2020)to conclude
significant spatial autocorrelation in the inter-provincial carbon
emissions in China. Academics also utilize spatial econometric
approaches such as ESDA, LMDI, and spatial convergence
models to investigate the spatial distribution trends of China’s
carbon emissions (Cheng et al., 2014; Zhu et al., 2021; Cui et al.,
2022; Liu et al., 2022; Zhao et al., 2022; Duman et al., 2023). Based on
the approaches of earlier studies, it is a standard practice to start with
spatial statistical analysis, typically using Moran’s I, a spatial
autocorrelation metric, to assess whether carbon emissions
demonstrate positive, negative, or random spatial correlations.

Shaojian Wang et al. evaluated the spatiotemporal changes
and influencing elements of carbon dioxide emissions using
dynamic distribution and panel data methodologies. Their
discoveries highlighted significant regional imbalances and
self-enhancing clustering traits of CO2 emissions, with
regional differences progressively reducing and spatial
clustering augmenting (Wang and Liu, 2017). Haider
Mahmood et al., 2020 applying the Environmental Kuznets
Curve (EKC) theory in spatial econometric models,
demonstrated the spatial reliance of carbon emissions on non-
agricultural income, trade, energy use, and FDI in North Africa.
Kaifang Shi et al., 2019 explored the spatiotemporal changes and
impacting factors of CO2 emissions at various administrative
layers in China, analyzing nighttime light images and

socioeconomic data through spatial autocorrelation and spatial
economic models. Tiangui Lv and his group used the STIRPAT
model and the Spatial Durbin Model (SDM) to assess the effect of
diverse driving forces on carbon emissions. Their study indicated
that carbon emissions exhibit a fluctuating growth pattern and
have a significant positive spatial correlation (Lv et al., 2022).

Currently, numerous studies have focused on carbon dioxide
emissions in national scale. Junsong Jia et al., 2023 conducted a
comprehensive analysis of CO2 emissions from various sectors and
stages in China since 1980, employing the extended logarithmic
mean Divisia index to decompose CO2 emissions across multiple
industries and stages. In their research on the low-carbon
development of China’s tourism industry, Junsong Jia et al., 2023
introduced a novel framework for analyzing the sustainability of
carbon reduction in the Chinese tourism sector under the guidance
of the United Nations Sustainable Development Goals. This study
also utilized social network analysis and the logarithmic mean
Divisia index. As many researchers typically consider China as a
unified subject of study, it’s crucial not to overlook that the Greater
Bay Area, being one of the most economically vibrant and open
regions, significantly influences China’s carbon emission trends,
meriting targeted research.

And a small number of researchers have used social network
analysis models to study differences in carbon emissions between
provinces in China. From the perspective of social network analysis,
Hanzhi Huang et al. explored the evolution of the spatial network
structure of land use carbon emissions and carbon balance zoning in
Jiangxi Province. Utilizing social network analysis (SNA) methods,
they provided feasible suggestions for low-carbon development and
collaborative carbon reduction in developing regions (Huang et al.,
2024). Yuling Sun et al., 2022 studied the spatiotemporal evolution
characteristics of direct carbon emissions in China’s residential
consumption sector using Social Network Analysis (SNA) and
Geographically Weighted Regression (GWR) methods. They also
proposed policy recommendations for regional energy transition.
The application of Social Network Analysis (SNA) models in carbon
emissions research primarily focuses on exploring the socio-
economic driving factors of carbon emissions, identifying key
sources of carbon emissions and their diffusion paths, and
assessing the social network impact of carbon reduction policies.
By constructing network relationships between socio-economic
activities, energy consumption, and carbon emissions, researchers
can reveal the interdependencies and mechanisms of influence
among different economic entities, providing theoretical basis
and practical guidance for formulating more precise and effective
carbon reduction strategies.

In advanced research stages, experts realized that the spatial
network of carbon emissions forms a complex system that
intertwines with societal interactions. Concurrently, the SNA
gained recognition for its effectiveness in mapping complex social
connections. In this period, SNA became a popular tool among
researchers to explore both national and regional carbon emission
spatial networks (Bai et al., 2020; He et al., 2020; Shao and Wang,
2021; Feng et al., 2023). These studies revealed a significant spatial
correlation and spillover effects in the national and inter-regional
networks of carbon emissions.

Feng Wang et al. conducted a detailed analysis of the spatial
correlation of carbon emissions among Chinese provinces from
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2008 to 2014. They constructed and analyzed the network’s structure
and dynamics utilizing SNA and the QAP. Their research
highlighted the roles of energy usage, economic status, and
geographic positioning in the spatial correlation of carbon
emissions (Wang et al., 2018). Jia Dong and Cunbin Li adopted
an enhanced gravity model along with SNA to delve into the spatial
correlations and interactive dynamics of carbon emissions in and
between city agglomeration (Dong and Li, 2022) Tengfei Huo et al.
employed SNA and QAP to probe the critical regions and crucial
connections in the building carbon emission network, analyzing the
effects of geographical closeness, economic growth, energy
concentration, and industrial makeup on the spatial correlations
of carbon emissions (Huo et al., 2022).

Social network analysis has been widely used in the study of urban
agglomeration. Chuanglin Fang et al. used a Web Crawler to gather
500,000 sets of Weibo data from 13 cities within the Beijing urban
agglomeration. They developed a quantitative evaluation index system
and model for the spatial network strength of the Beijing city cluster,
utilizing three standards and nine indicators (Fang et al., 2020). Yubo
Zhao et al., 2021 improved upon the traditional spatial gravity model by
incorporating considerations of urban core functional strength and
populationmovement trends, focusing on enhancements to city quality,
the gravitation coefficient, and city distance. Based on this refined
model, they analyzed the network structures of the Jingjinji Urban
agglomeration and Yangtze River Delta urban agglomeration. Chang
Gan et al., 2021 employed a tourism economic gravity model and Social
NetworkAnalysis (SNA) to investigate the characteristics of the tourism
economic spatial network structure within the Yangtze River Delta
urban agglomeration.

The predominant academic community frequently utilize social
network analysis to analyze the attributes of China’s carbon emission
spatial networks. Researches reveal that these networks not only possess
robust correlation but also demonstrate a year-over-year increase.
Nevertheless, the academic focus has predominantly been at the
provincial scale, with lesser attention given to the urban dimension
and inadequate exploration into the inherent and generative
mechanisms behind the variations in the spatial correlation
networks of carbon emissions. This oversight presents a critical gap
in understanding the dynamics of carbon emissions at a more granular
level, where urban agglomeration play a pivotal role in both the
generation and reduction of carbon footprints. Recognizing this,
some scholars advocate for a shift towards a more nuanced analysis
that incorporates the urban scale structure, arguing that cities
agglomeration are not only significant contributors to national
carbon emissions but also key arenas for implementing carbon
reduction strategies. This urban-focused approach could reveal
unique patterns of carbon emission and mitigation strategies that
are not apparent at broader geographical scales.

2.2 Influencing factors of spatial correlation
of carbon emission

Academics frequently employ analytical frameworks such as the
STIRPAT model, the EKC hypothesis, and the threshold panel
model to appraise the factors influencing the geographic
distribution of carbon emissions, as noted in references (Zhang
and Tan, 2016; Yang et al., 2021). Research focused on the spatial

spillover and determinants of carbon emissions (Sun et al., 2016;
Wang et al., 2019; Wang et al., 2024) suggests that the QAP is an
effective tool for assessing the underlying causes of regional
disparities in carbon emissions. These studies highlight that
variables such as geographical location, economic status, urban
development level, population size, and the nature of industrial
activities significantly influence these spatial differences in
carbon emissions.

In their research, Wei et al., 2021 devised an enhanced model for
estimating carbon emissions, incorporating data on nighttime lighting,
land usage, and population statistics. Their analysis of 356 cities across
mainland China revealed significant regional patterns in carbon
emissions. Larger cities demonstrated a “W"-shaped distribution,
whereas smaller cities followed a power-law trend, as detailed in
reference. Xingping Zhang and Xiaomei Cheng employed the
Dynamic Panel Autoregressive Distributed Lag Model (ARDL) to
evaluate the connections between economic progression, energy
utilization, and carbon emissions. Their results pointed to a
unidirectional cause-and-effect link between GDP and energy use, and
between energy use and carbon emissions. Conversely, they found no
evidence of a causal link from carbon emissions and energy use to
economic advancement. This suggests that increases in carbon emissions
and energy consumption are not drivers of economic growth, as indicated
in reference (Zhang and Cheng, 2009). Wei-Zheng Wang et al., 2021
applied the Dynamic ARDL in their detailed analysis of the varied and
complex long-term equilibrium relationships, short-term dynamics,
influencing mechanisms, and delayed effects linking urbanization to
three aspects of carbon emissions: per capita carbon emissions, total
carbon emissions, and carbon emission intensity. Their findings suggest
that in developed countries, urbanization tends to reduce carbon
emissions. In China’s context, there is an inverse relationship between
the rate of urbanization and carbon emissions. The concentrated energy
use in urban areas can lead to energy conservation and a decrease in
emissions. Qin Zhu and Xizhe Peng also utilized the Dynamic ARDL to
explore how population size, demographic structure, and consumption
levels impact carbon emissions. They concluded that shifts in
consumption patterns and population structure are primary
influencers of carbon emissions (Zhu and Peng, 2012). Biying Dong
et al., 2020 employed a combination of the STIRPAT decomposition
model, Tapio decoupling index, and grey relational analysis for a
thorough analysis of the interplay between carbon emissions and
economic growth in China’s six key industrial sectors: agriculture,
industry, construction, transportation, retail and accommodation, and
other industries. Their analysis indicates a negative correlation between
the proportion of value added in the agriculture, industry, and
transportation sectors and carbon emissions. Conversely, the
proportion of value added in construction, retail, and accommodation
sectors exhibits a positive correlation with carbon emissions.

According to the STIRPAT model and the EKC hypothesis,
research indicates a negative correlation between economic
agglomeration and carbon emissions. This implies that a rise in
economic concentration might lead to a decrease in carbon
emissions. There appears a “U”-shaped relationship observed
between income levels and carbon emission intensity. Regions
with lower income tend to prioritize economic growth over
environmental concerns, and as income gaps grow, government
priorities regarding environmental conservation may shift. In
summary, many scholars concur that factors such as geographical
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location, economic, population, and industrial structures play a
crucial role in influencing urban carbon dioxide emissions. These
elements are particularly significant in terms of the spatial variations
in carbon emissions.

3 Study area and materials

3.1 Study area

The GBA in China, one of the world’s four major bay areas
(National Development and Reform Commission et al., 2015),
comprises nine cities in the Pearl River Delta—Guangzhou,
Shenzhen, Zhuhai, Foshan, Huizhou, Dongguan, Zhongshan,
Jiangmen, Zhaoqing—and two special administrative regions,
Hong Kong and Macao (Figure 1). This urban agglomeration,
highly urbanized and economically vibrant, is noted for its
openness and economic dynamism. The topography of the
Greater Bay Area features higher elevations in the north and
lower ones in the south, with plains predominantly in the center.
It enjoys a stable average annual temperature of around 22°C and
receives an annual rainfall of approximately 1930 mm. The
economic and industrial interactions among these cities have
been strengthening, thanks to their initial development
advantages and increasingly interconnected networks. This study
focuses on five specific years—2000, 2005, 2010, 2015, and 2020—to

appraise the evolution and contributing factors of the spatial
correlation network of carbon emission intensity in this region.

3.2 Data sources

The population and economic statistics presented in this paper
are extracted from the statistical offices of various district (county)
administrations, the city’s annual statistical yearbooks
(2000–2020), and the National Economic and Social
Development Statistical Bulletin. For this research, the carbon
emissions data are sourced from the China Emission Accounts and
Datasets (CEADs), while the carbon emissions figures for Hong
Kong and Macau are collected from the Hong Kong
Environmental Protection Department and the Macau
Environmental Protection Bureau (DSPA), respectively. To
ensure consistency in the data, this study utilizes district
(county) level divisions as they were in 2010 for statistical analysis.

4 Materials and methods

4.1 Spatial autocorrelation

In analyzing the changes over time and the dynamic shifts in the
intensity of urban carbon emissions, researchers typically employ global

FIGURE 1
Cities of and around GBA.
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and local spatial autocorrelation methods for spatial correlation
assessment. Global spatial autocorrelation is utilized to assess the
similarities and differences (both positive and negative spatial
correlations) among neighboring areas across a broader region
(Boots and Tiefelsdorf, 2000). The method is outlined as follows:

globalMoran′s I � ∑n
i�1 ∑n

j�1 Wij xi − �x( ) xj − �x( )
S2∑n

i�1 ∑n
j�1 Wij

(1)

In the formula, xi represents the carbon emission intensity of a
city, �x and S2 are the mean and variance of carbon emission intensity
respectively, and wij is the spatial weight matrix, indicating the
spatial adjacency between the ith and jth cities. The global Moran′s I
value ranges from [−1, 1]. A result approaching 1 implies that
regions with similar carbon emission intensities are geographically
grouped together; a value nearing −1 indicates that areas with
differing carbon emission intensities are geographically grouped;
and a value around 0 suggests a random distribution of carbon
emission intensities, or an absence of spatial autocorrelation.

Global spatial autocorrelation is insufficient to capture the unique
spatial characteristics of local urban carbon emission intensity. This gap
is resolved by local spatial autocorrelation testing. In this area, many
scholars opt for the local Moran’s I index to analyze these phenomena,
which evaluates the spatial correlation among cities from a detailed
perspective. The formula is as follows:

localMoran′s I � xi − �x( )∑n
j�1 Wij xi − �x( )
S2

(2)

The local Moran′s I value range is [−1,1]. A positive value
indicates spatial clustering of either high-high (H-H) or low-low
(L-L) (indicating similarity in the area) in urban carbon emission
intensity. Conversely, a negative value points to spatial clustering of
either high-low (H-L) or low-high (L-H) (indicating dissimilarity in
the area) in urban carbon emission intensity.

4.2 Gravity model

The gravity model is extensively employed in the fields of
economics and finance to analyze spatial interactions. As noted
in the literature, the gravity model is especially effective for
comprehensive data sets, allowing for a thorough consideration
of both economic and geographic elements (Khadaroo and
Seetanah, 2008; Golovko and Sahin, 2021). Therefore, this study
integrates variables such as carbon emission intensity into the
gravity model to enhance its applicability. This modified gravity
model effectively quantifies the “carbon emission gravity” between
cities, with its specific formula presented below:

yij � kij

������
PiEiGi

3
√ ������

PjEjGj
3
√
D2

ij

kij � Eij

Ei + Ej
, Dij � dij

gi − gj
(3)

In the formula, i and j represent cities, while Pi, Ei, Gi andgi

respectively represent the city’s end-of-year total population,
CO2 emission intensity, GDP, and per capita GDP. yij, kij, Dij and
dij represent the carbon emission relationship between cities i and j, the
carbon emission coefficient, the combined economic and geographical
distance, and the shortest distance between the governments of cities i

and j, respectively. The gravity matrix in this formula effectively
demonstrates how carbon emissions are interconnected among
cities. In contrast to numerical matrices, relational matrices offer a
more insightful representation of the regional carbon emission spatial
correlation network’s characteristics. For this reason, the average of each
row in the matrix is selected as a baseline value. Entries exceeding this
baseline are labeled “1,” signifying a correlation in carbon emissions
between the corresponding cities. Conversely, entries below this baseline
are labeled “0,” indicating no such correlation, thus forming a spatial
correlation matrix for carbon emission intensity.

4.3 Social network analysis

Social network analysis, also known as structural analysis, employs
both graph theory and mathematical modeling to explore relationships
between social actors or the flow of various tangible and intangible
elements such as information and resources through these relationships
(Tabassum et al., 2018).This methodology’s most significant
accomplishment is the accurate quantification of relationships
between nodes, which might otherwise appear elusive. By integrating
points and lines, it systematically structures the social network, bridging
macro (social) and micro (individual) levels. This approach facilitates
visual analysis, grounding both theoretical and empirical research in
social sciences.

4.3.1 Permission to reuse and copyright
Graph Density is commonly used to measure the completeness

of all relationships in a network. This term refers to the level of
connection among different nodes in the network. In simple terms, a
network with higher density typically has a more significant effect on
the participants in it. To calculate network density, one divides the
total existing relationships by the maximal possible number of
relationships. The value of network density lies between [0, 1]. In
a scenario where the network is fully interconnected, i.e., a complete
network, the Graph Density (GD) is 1. Conversely, when the
network has no connections, the GD is 0.

Graph Hierarchy serves as a effective tool to measure the levels
of hierarchy in a network. The calculation of Graph Hierarchy (GH)
is based on the following formula:

GH � 1 − V

max V( ) (4)

Wherein V represents the number of symmetrically reachable
pairs of points in the network. A larger GH value typically signifies a
more hierarchical network structure. A network with a higher
hierarchy is characterized by more distinctly defined and
structured stratification in its spatial correlation network.

Graph Efficiency is a measure of the presence of redundant
connections in a known network. The formula to determine Graph
Efficiency (GE) is:

GE � 1 − M

max M( ) (5)

Wherein M represents the redundant lines in the network. In a
symmetric adjacency matrix of size N, the minimum number of
apparent lines it contains is (N-1).
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4.3.2 Individual network characteristic index
Degree Centrality is defined by the number of direct connections

to a node. Its calculation is given by the following formula:

C � ∑n
i�1 Cmax − Ci( )

max ∑n
i�1 Cmax − Ci( )[ ] (6)

Closeness Centrality is determined by the cumulative distances
from a given node to all other nodes in the network. The smaller this
cumulative distance, the shorter the overall path from this specific
node to the others, signifying its proximity to all other nodes. The
method to compute this is as follows:

C x( ) � 1
∑y d y, x( ) (7)

Betweenness Centrality is identified by the count of the shortest
paths traversing a particular node. An increased count indicates a
higher level of betweenness centrality for the node, reflecting its role
as an intermediary. The process for its calculation is expressed
as follows:

Ci � ∑n

j
∑n

k
bjk i( ), j ≠ k ≠ i, j< k (8)

4.3.3 Clustering network characteristic index
Analyzing the clustering structural characteristics in spatial

correlation networks involves using spatial clustering. This
approach helps to illustrate the network’s internal
configuration along with the roles and statuses of its
constituents. A key method in this context is block modeling
(Tabassum et al., 2018). This method focuses on the analysis of
social roles and statuses. Here, a status represents a group of
actors sharing similar social behaviors, connections, or
interactions. Utilizing Wasserman’s approach for categorizing
roles and statuses into blocks, the criteria for dividing blocks are
listed in Table 1: 1) Net Beneficiary Block, where members gain
more spillovers relative to their interactions with other blocks,
implying that “benefits” outweigh “spillovers”; 2) Net Spillover
Block, where members experience significantly fewer spillovers
compared to those they distribute to other blocks, indicating a
higher prevalence of “spillovers” over “benefits”; 3) Bidirectional
Spillover Block, marked by a higher frequency of spillover
interactions among its members and with external blocks; 4)
Intermediary Block, acting as a connector among various blocks.
Members of this block engage in limited internal interactions but
maintain extensive external connections, involving both
dispensing and receiving spillovers from outside the block.

Wherein: gk indicates the number of members in a plate, g
indicates the total number of members in the network
(Network size = 11).

4.4 QAP analysis

The QAP regression analysis is a method that utilizes
permutations of matrix data to compare the similarity between
two square matrices. It employs a non-parametric test for the
coefficients, which is predicated on the correlation coefficient
connecting the two matrices (Simpson, 2001). A significant
feature of QAP, setting it apart from conventional statistical
methods, is the dependency of values in the matrix. This
attribute notably reduces errors that might be introduced by
relationship data in the findings. The fundamental version of the
prevalent QAP regression model is described as follows:

Y � f X1, X2/Xn( ) (9)

Where: Y is the explained variable; X is the explanatory variable.
This study focuses on the spatial spillover and determinants of

carbon emissions. Factors such as a city’s geographical position,
economic growth, urbanization rate, industrial composition,
technological innovation level, and environmental protection efforts
play a critical role in shaping the spatial correlation of a city’s overall
carbon dioxide emissions. This paper, therefore, opts for corresponding
evaluative indicators: 1) Geographical spatial proximity (D), exemplified
by a matrix formed on the geographic distance between cities; 2)
Economic development level (E), indicated by per capita GDP; 3)
Urbanization level (U), denoted by the ratio of urban population to
total population; 4) Industrial structure (P), shown by the share of
secondary industry GDP in regional GDP; 5) Technological innovation
level (T), represented by the count of three types of patents (as classified
by the National Bureau of Statistics, comprising utility model patents,
design patents, and invention patents); 6) Environmental protection
intensity (R), illustrated by the per unit GDP carbon emissions of cities.
Thus, the comprehensive evaluative indicators chosen in this study are
the spatial correlation matrix Y, geographical spatial proximity D, per
capitaGDP (E), urbanization level (U), proportion of secondary industry
in GDP (P), number of approved patents (T), and per unit GDP carbon
emissions (R). Considering the varied units of each indicator, this paper
standardizes these indicators to mitigate the influence of dimensioned
data on the results, establishing the following model:

Y � f D, E, U, P, T, R( ) (10)

5 Results

5.1 Spatial-temporal evolution of carbon
emission intensity in GBA

During the period of study from 2000 to 2020, the temporal
changes in urban carbon emission intensity in the GBA can be

TABLE 1 Block model plate division.

The proportional relationship in the location The ratio of the position received

≈ 0 >0

≥ (gk − 1)/(g − 1) Bidirectional overflow Net benefit

< (gk − 1)/(g − 1) Net spillover Broker
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categorized into three stages, with the years 2003 and
2013 serving as critical moments (Figure 2). Between 2000 and
2003, the average carbon emission intensity in the GBA witnessed
a decline from 1.83 tonnes per ten thousand CNY to 1.63 tonnes
per ten thousand CNY, marking an annual average decrease of
3.78%. Following a minor uptick in 2003, there was a marked
reduction in overall carbon emission intensity from 2003 to 2013.
This period saw a decrease from 1.63 tonnes per ten thousand
CNY in 2003 to 0.72 tonnes per ten thousand CNY in 2013,
accompanied by an annual average reduction rate of 7.85%. This
stage was influenced by the global economic crisis, during which
governments at various levels executed extensive industrial
revival strategies. The period was characterized by a rapid
expansion of traditional high-pollution, high-emission
manufacturing sectors and widespread, intensive energy
utilization, leading to a modest decrease in carbon emission
intensity. Concurrently, cities in the GBA actively engaged
with the national ecological civilization strategy, advocating
for and implementing policies aimed at reducing emissions
and promoting decarbonization. Post-2013, the carbon
emission intensity in cities across the GBA continued to
decline steadily. While this decrease was less pronounced than
in the previous period, it still represented a consistent
downward trend.

Additionally, from the perspective of urban carbon emission
intensity (Figure 3), regions such as Hong Kong, Macau,
Shenzhen, and Guangzhou have consistently exhibited lower
carbon emission intensities. This trend can be attributed to
these cities’ progressive economic structures, which emphasize
service and high-tech industries known for lower carbon

emissions compared to traditional manufacturing and heavy
industries. Additionally, these economically advanced cities
feature higher efficiency in energy utilization, favoring the
use of cleaner energy sources and implementing energy-
saving practices. In contrast, cities such as Zhongshan,
Jiangmen, and Huizhou, which display higher carbon
emission intensities, tend to be economically less developed
and have industrial sectors that are predominantly occupied by
industrial industries.

To enhance the understanding of the spatial progression trends
in urban carbon emission intensity, we employed Arc GIS
10.7 software. This facilitated the spatial representation of urban
carbon emission intensity for critical years such as 2000, 2005, 2010,
2015, and 2020 (Figure 4). Observing from a spatial standpoint, a
majority of cities in the GBA (Guangdong-Hong Kong-Macao
Greater Bay Area) witnessed varying extents of reduction in
carbon emission intensity over the duration of this study. In
2000, cities exhibiting higher levels of carbon emission intensity
were predominantly situated in the central region, notably
Zhongshan. By 2005, regions with higher carbon emission
intensity were primarily found on the western side, including
Zhaoqing and Jiangmen, as well as on the eastern side, including
Huizhou. In 2010, the zones of high carbon emission intensity
mirrored those observed in 2005. However, by 2015, Zhaoqing
experienced a decline in carbon emission intensity, leaving
Jiangmen and Huizhou as the only areas with increased levels of
carbon emission intensity. In 2020, the regions with increased
carbon emission intensity remained consistent with those
identified in 2015. Overall, throughout the study period, there
was a progressive year-on-year decrease in carbon emission

FIGURE 2
Average carbon emission intensity in GBA 2000 to 2020.

Frontiers in Environmental Science frontiersin.org08

Wei and Zheng 10.3389/fenvs.2024.1380831

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1380831


intensity across cities in the GBA, with a significant reduction
observed in the western regions.

5.2 Spatial correlation test of urban carbon
emission intensity

The global Moran’s I values for urban carbon emission
intensity in the GBA from 2000 to 2020 are detailed in the
Table 2. Throughout the duration of the study, the global
Moran’s I figures were below 0 in eight of those years, while
in the other years, the values exceeded 0. However, these did not
meet the threshold for statistical significance at the 0.01 level,
suggesting an absence of spatial correlation in urban carbon
emission intensity. Cities with high (or low) carbon emission
intensity emission intensities may exhibit a random spatial
distribution, which could be either clustered or dispersed.
Simultaneously, considering that most Z-values surpass 0.5,
the existence of local spatial correlations is a possibility.
Moreover, the time-based difference of global Moran’s I, as
depicted in the figure, demonstrates an “N” shaped fluctuation
pattern. This pattern suggests that the spatial correlation of urban
carbon emission intensity in the GBA is experiencing a gradual
weakening, interspersed with fluctuations (Figure 5).

The analysis of local spatial autocorrelation for urban carbon
emissions in the GBA for the years 2000, 2005, 2010, 2015, and
2020 yielded the following results (Figure 6). In 2000, the cities of
Foshan, Zhuhai, Zhaoqing, and Huizhou were characterized by “H-
H” clustering patterns, while Zhongshan, Dongguan, and Huizhou
demonstrated “H-L” clustering patterns. By 2005, Zhuhai,
Zhongshan, Jiangmen, and Zhaoqing transitioned to “H-H”

clustering. This pattern persisted into 2010, with the addition of
Macau, Guangzhou, and Foshan exhibiting “L-H” clustering. In

2015, Zhuhai, Zhongshan, and Zhaoqing continued to demonstrate
“H-H” clustering. By 2020, the “H-H” clustering was prominent in
Zhaoqing, Zhongshan, and Jiangmen.

5.3 Analysis of the overall structure of the
carbon emission spatial network in GBA

Figure 7 in the study illustrates the adjacency matrix (~yij)11×11,
which was processed using the UCINET6 software. This processing
resulted in the creation of a carbon emission spatial network diagram
for the GBA. An observation of these spatial correlation network
diagrams over the years 2000, 2005, 2010, 2015, and 2020 reveals a
significant finding: the absence of isolated nodes in the social network.
This absence suggests there generally exists a spatial network association
among the 11 prefecture-level cities in GBA.

The overall characteristic indicators of the GBA’s carbon
emission spatial correlation network were also analyzed using
UCINET6 software, as depicted in the figure. This analysis
indicates an enhancement in network connectivity and an
improvement in network stability over the studied period.

First, the network of carbon emission associations in the GBA
has presented overall improvement in connectivity. Between
2000 and 2020, the number of network connections varied from
49 to 54, and the network’s density increased from 0.445 to 0.491.
This can be described as a trend of “rise-rise-fall-fall,” yet both
metrics indicate an upward trend. This suggests that the inter-city
interactions regarding carbon emissions have become more intense.
Nevertheless, the average number of connections, standing at 55, is
significantly lower than the potential maximum of 110 (calculated as
11*10), indicating that the spatial correlation of carbon emissions is
not at a high level and has considerable room for spatial
optimization. The fluctuation in these metrics, particularly the

FIGURE 3
Carbon emission intensity of cities in GBA, 2000 to 2020.
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slight decrease from 2010 to 2020, can be attributed to rapid
advancements in infrastructure and technology, which expanded
the range of carbon emission factors. In addition, the deepening
development in the Greater Bay Area prompted some exchanges of
factors to move beyond provincial boundaries, with certain
industries relocating to Hunan, Jiangxi, and other regions. This
shift led to a downward trend in the indicators. Second, the stability
of the carbon emission spatial correlation network in the GBA has
also seen an improvement. Throughout the analyzed years, the
degree of network connectivity consistently remained at one,

signifying a tight and stable connection in carbon emissions
among the cities, marked by significant reception and spillover
effects. Third, there has been a decline in the network hierarchy
level, from 0.331 in 2005 to 0.182 in 2010, and aminor decrease from
0.339 in 2015 to 0.335 in 2020. This change reflects a loosening in the
hierarchical structure of the spatial correlation network and an
increase in stability. The network efficiency experienced
fluctuations, moving from 0.489 in 2000 to 0.4 in 2020, which
points to a growth in internal connections, i.e., increased city
interactions.

FIGURE 4
Spatial distribution pattern of urban carbon emission intensity in GBA.
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5.4 Individual structure analysis of carbon
emission space in GBA

Utilizing UCINET6 software, the specific indicators reflecting
the structural characteristics of the GBA’s carbon emission spatial
correlation network were determined (Figure 8). This network
exhibits a “core-periphery” structure, with prominent cities such

as Guangzhou, Shenzhen, Hong Kong, and Macau forming the core,
while other cities are positioned on the periphery. In the era
following the pandemic, the significance of other cities in the Bay
Area in this network has been increasingly significant. Figure 9
shows the detailed results and Table 3 shows the degree centrality
results, Closeness centrality results and Betweenness centrality
results for different years.

FIGURE 5
2000 to 2020 global Moran’s I.

TABLE 2 Global Moran’s I for urban carbon emission intensity in GBA.

Year Moran’s I Z value p-value Year Moran’s I Z value p-value

2000 −0.003 0.463 0.322 2011 0.022 0.577 0.282

2001 0.010 0.519 0.302 2012 0.043 0.678 0.249

2002 0.025 0.589 0.278 2013 0.057 0.745 0.228

2003 0.019 0.561 0.287 2014 0.039 0.658 0.255

2004 0.021 0.572 0.284 2015 0.041 0.667 0.252

2005 0.005 0.498 0.309 2016 0.039 0.659 0.255

2006 −0.012 0.418 0.338 2017 0.025 0.589 0.278

2007 −0.017 0.395 0.346 2018 −0.003 0.455 0.325

2008 −0.022 0.370 0.356 2019 −0.003 0.455 0.325

2009 −0.011 0.421 0.337 2020 −0.021 0.373 0.354

2010 0.001 0.479 0.316

Frontiers in Environmental Science frontiersin.org11

Wei and Zheng 10.3389/fenvs.2024.1380831

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1380831


5.4.1 Degree centrality result
A comprehensive analysis between 2000 and 2020 demonstrates

that in the GBA’s carbon emission spatial correlation network, Hong
Kong and Macau have consistently maintained a high level of
centrality. This is followed by Guangzhou, Shenzhen, Zhuhai,
and Zhaoqing. Over time, Foshan and Jiangmen have
demonstrated a trend towards the network’s center, whereas
Dongguan, Huizhou, and Zhongshan have remained on the
periphery. The mean degree of centrality for the years 2000,
2005, 2010, 2015, and 2020 were recorded as 53.33, 64.44, 64.44,
64.44, and 63.33, respectively. Cities such as Hong Kong, Macau,
Guangzhou, Shenzhen, and Zhuhai, strategically located at the Bay
Area’s geometric center and featuring robust economies, have

fostered rapid shifts in industrial structures through their
superior platform, informational, and technological advantages.
This explains why their centrality is typically above the average
in most years. Cities such as Jiangmen and Zhaoqing, which have
actively pursued green and low-carbon initiatives through
collaborative efforts between government and enterprises, have
registered over 300 green and low-carbon achievements in the
past 5 years. These cities are emerging as examples of green
development, with their centrality surpassing the average in
certain years. Conversely, Dongguan, Foshan, Huizhou, and
Zhongshan, with a centrality below the average in most years, are
situated in peripheral roles in the GBA’s carbon emission spatial
correlation network.

FIGURE 6
Local Moran’s I results.
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5.4.2 Closeness centrality result
A comprehensive analysis between 2000 and 2020 reveals that

cities exhibiting a closeness centrality generally above the average
include Hong Kong, Macau, Guangzhou, Shenzhen, Zhuhai, and
Zhaoqing. In contrast, those falling below the average are
Zhongshan, Jiangmen, Huizhou, Foshan, and Dongguan.
Geographical factors, which inherently restrict closeness
centrality, only permit it to display structural variations over
time. The average closeness centrality for the years 2000, 2005,
2010, 2015, and 2020 were recorded at 68.78, 74.32, 74.24, 73.67, and
74.05, respectively. Cities such as Hong Kong, Macau, Guangzhou,
Shenzhen, and Zhuhai are adept at rapidly integrating population
inflows from other cities or exporting technology and capital
through shorter routes. This capability fosters carbon emission
connections, positioning them as “central actors” in the spatial
correlation network. Zhaoqing, through the export of labor and
land resources and the import of low-carbon technology and
investments, also forms carbon emission relationship with other

cities in the Bay Area, thus reflecting its higher closeness centrality.
Cities such as Zhongshan, Jiangmen, Huizhou, Foshan, and
Dongguan, with their lower closeness centrality, are influenced
predominantly by their economic status, geographical location,
and urban role, serving as “peripheral actors” in the network.

5.4.3 Betweenness centrality result
The comprehensive analysis between 2000 and 2020 also

indicates that the betweenness centrality in the Bay Area
generally maintains high levels, whereas regions outside the
Bay Area demonstrate high betweenness centrality in specific
years. The average betweenness centrality values for 2000, 2005,
2010, 2015, and 2020 are 2.36, 2.45, 2.56, 2.65, and 2.95,
respectively. Cities such as Hong Kong, Macau, Guangzhou,
Shenzhen, and Zhuhai have consistently exhibited high
betweenness centrality over these years, signifying their
significant role in influencing the carbon emissions of other
cities in the spatial correlation network. Hong Kong and

FIGURE 7
Carbon emission intensity spatial correlation network Network topology.
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Macau notably contribute to the low-carbon green evolution of
mainland cities, while Guangzhou, Shenzhen, and Zhuhai, due to
their strategic geographic positions, serve as critical centers for
information, talent, and low-carbon decision-making. These
cities hold a commanding influence in the carbon emission
spatial correlation network. Zhaoqing displays higher than
average betweenness centrality in certain years. Conversely,
Zhongshan, Jiangmen, Huizhou, Foshan, and Dongguan
consistently demonstrate lower levels, thus occupying a
“dominant” role in the spatial correlation network.

5.5 Spatial group structure of carbon
emission in GBA

Utilizing the CONCOR block model analysis in the
UCINET6 software, applying a depth of 2 and a concentration
threshold of 0.2 for evaluation, and considering the previously
mentioned divisions, we identify four blocks, as outlined in Table 4

according to the data in Table 4, the spatial correlations among these
blocks are more pronounced than those in each individual block.
Moreover, Hong Kong and Macau exhibit a predominant pattern of
more inbound relationships compared to outbound ones, in contrast to
other mainland cities where outbound relationships surpass inbound
ones. This trend can be attributed to the configuration of blocks in the
spatial correlation network, which is shaped by variables such as
geographical location and economic factors. The regions of Hong
Kong and Macau, characterized by their economic advancement,
efficient transportation systems, and earlier development, attract a
significant influx of elements from other cities.

Analyzing data from selected years: In the year 2000, the Hong
Kong and Macau region emerged as a significant beneficiary area,
while cities such as Jiangmen and Zhaoqing were net spillover
blocks. Central cities in the Bay Area, including Guangzhou,
Shenzhen, and Zhuhai, functioned as intermediary zones. This
indicates that carbon emission factors were predominantly
clustered in Hong Kong, Macau, and their neighboring cities
during this period. Moving to 2005, Hong Kong and Macau
continued to be the main recipient region, with an increasing
number of mainland cities contributing elements. Guangzhou,
Shenzhen, and Zhuhai sustained their roles as intermediary
zones, witnessing a steady rise in the magnitude and frequency of
element exchanges. By 2010, the role of Hong Kong and Macau
remained consistent, with Zhongshan and Dongguan emerging as
net spillover blocks, and cities such as Foshan, Zhaoqing, Jiangmen,
and Huizhou transitioning into intermediary roles. In 2015,
Guangzhou, Shenzhen, and Foshan evolved into bidirectional
spillover blocks; Hong Kong and Macau continued as the
primary beneficiary region. Zhaoqing, Jiangmen, Huizhou, and
Zhongshan transformed into intermediary areas, and Dongguan
became a net spillover block. In 2020, Guangzhou, Shenzhen,

FIGURE 8
Spatial correlation network overall characteristics.

TABLE 3 Overall index of spatial correlation network of carbon emissions in
GBA in 2000, 2005, 2010, and 2020.

Year 2000 2005 2010 2015 2020

Graph Density 0.445 0.509 0.536 0.518 0.491

Graph Relationship
number

49 56 59 57 54

Graph Hierarchy 0 0.331 0.182 0.339 0.335

Graph Efficiency 0.489 0.378 0.386 0.395 0.4

Graph correlation degree 1 1 1 1 1

Frontiers in Environmental Science frontiersin.org14

Wei and Zheng 10.3389/fenvs.2024.1380831

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1380831


Zhuhai, and Foshan joined as net spillover blocks, with Hong Kong
and Macau steadfast as the central beneficiary region. Zhaoqing,
Jiangmen, Huizhou, and Zhongshan persisted as intermediary
zones, and Dongguan remained a net spillover block. The yearly
shifts in these blocks reveal that Hong Kong and Macau consistently

benefit the most. Nonetheless, the overall trend of the carbon
emission spatial correlation network is gravitating towards
mainland cities such as Guangzhou and Shenzhen, influenced
variably by external factors such as economic conditions
and policies.

FIGURE 9
2000, 2005, 2010, 2015, and 2020 centrality results.
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TABLE 4 Spatial correlation of carbon emission intensity in GBA.

Years Plates Cities Spillover
relationship

Reception relation Expected internal
relationship (%)

Actual internal
relations (%)

In-
plate

Off-
plate

In-
plate

Off-
plate

2000 Section 1 (Broker Section) Guangzhou, Zhuhai, Shenzhen 0 17 0 14 20 0

Sector 2 (Net beneficiary
Section)

Macao, Hong Kong 0 6 0 18 10 0

Section 3 (Broker Section) Zhongshan, Huizhou, Dongguan,
Foshan

0 16 0 13 30 0

Plate 4 (Net overflow Section) Zhaoqing, Jiangmen 0 10 0 4 10 0

2005 Section 1 (Broker Section) Guangzhou, Zhuhai, Shenzhen 0 15 0 16 20 0

Sector 2 (Net beneficiary
Section)

Macao Hong Kong 0 9 0 18 10 0

Section 3 (Broker Section) Zhongshan Dongguan Foshan 0 17 0 2 20 0

Plate 4 (Net overflow Section) Huizhou Zhaoqing Jiangmen 0 15 0 0 20 0

2010 Section 1 (Broker Section) Guangzhou Zhuhai, Foshan Shenzhen 0 20 0 18 30 0

Sector 2 (Net beneficiary
Section)

Macao Hong Kong 1 9 1 18 10 10

Section 3 (Broker Section) Zhongshan Dongguan 0 11 0 2 10 0

Plate 4 (Net overflow Section) Huizhou Zhaoqing Jiangmen 0 18 0 20 20 0

2015 Section 1 (Broker Section) Guangzhou Foshan Shenzhen 1 16 1 8 20 5.89

Sector 2 (Net beneficiary
Section)

Zhuhai Macao Hongkong 4 12 4 21 20 25

Section 3 (Broker Section) Huizhou, Zhaoqing Jiangmen
Zhongshan

1 18 1 22 30 5.26

Plate 4 (Net overflow Section) Dongguan 0 5 0 0 0 0

2020 Section 1 (Broker Section) Guangzhou Zhuhai Foshan Shenzhen 0 24 0 12 30 0

Sector 2 (Net beneficiary
Section)

Macao Hong Kong 0 7 0 18 10 0

Section 3 (Broker Section) Huizhou Zhaoqing Jiangmen
Zhongshan

0 18 0 23 30 0

Plate 4 (Net overflow Section) Dongguan 0 5 0 0 0 0
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Evaluating the changes during the specified years, we see
significant shifts. In 2005, relative to the year 2000, the cities of
Zhongshan, Dongguan, Foshan, and Huizhou evolved into
spillover blocks. This change contrasts with the stability
observed in other cities’ blocks, which predominantly reflects an
amplified flow of elements from the mainland cities in the Bay Area
towards Hong Kong and Macau. This phenomenon can be
attributed to the advanced economic state of Hong Kong and
Macau. These areas exert a powerful attraction, drawing in the
internal exchange elements of the Bay Area. This, in turn, leads to a
decrease in the number of interlock relationships. Guangzhou,
Shenzhen, and Zhuhai, recognized as the Bay Area’s central nodes
for politics, economy, and technology, function as critical
connections to Hong Kong and Macau. They consistently play a
crucial intermediary role in this block. Concurrently, the
secondary cities in the Bay Area, such as Zhongshan,
Dongguan, Foshan, Huizhou, Zhaoqing, and Jiangmen,
experience a significant inflow of related elements into the
Hong Kong and Macau area. This surge is facilitated by the
expanding spatial correlation network between Hong Kong,
Macau, and the mainland, a phenomenon augmented under the
Matthew effect. Upon comparing the years 2010 and 2005, we
observe a bolstered hub function of the mainland cities in the Bay
Area. This enhancement is a critical factor in the transition of

Huizhou, Zhaoqing, and Jiangmen from net spillover blocks to
intermediary blocks. Additionally, Foshan’s proximity to
Guangzhou facilitated its transformation into an intermediary
block. Fast forwarding to 2015, the Hong Kong and Macau area
sustained its role in receiving elements from mainland cities.
During this period, Zhuhai capitalized on its geographical
position to become a net beneficiary block, witnessing an influx
of elements in the carbon emission spatial correlation network.
Cities such as Guangzhou, Shenzhen, and Foshan further solidified
their central hub roles in the Bay Area. This consolidation also
included Huizhou, Zhaoqing, Jiangmen, and Zhongshan in the
intermediary block, all contributing to a clustering effect in the
network, spurred by rapid and sustained economic and social
growth. Dongguan emerged as the sole city primarily exporting
elements. By 2020, the dynamics changed significantly due to the
influence by the pandemic. The Hong Kong and Macau area
reverted to being the sole net beneficiary blocks. Cities such as
Guangzhou, Shenzhen, Foshan, and Zhuhai experienced a
considerable outflow of elements, becoming net spillover blocks.
This outflow was characterized by activities such as technology
diffusion, industrial transfer, and investment. Meanwhile,
Huizhou, Zhaoqing, Jiangmen, and Zhongshan persisted as
intermediary blocks, with Dongguan continuing its role as a net
spillover block.

TABLE 5 QAP correlation analysis results from 2000 to 2020.

2000 2005 2010 2015 2020

Correlation
coefficient

p-
value

Correlation
coefficient

p-
value

Correlation
coefficient

p-
value

Correlation
coefficient

p-value Correlation
coefficient

p-
value

D −0.01 0.54 0.09 0.26 0.12 0.21 0.08 0.31 0.05 0.37

E 0.63 0.00 0.76 0.00 0.77 0.00 0.73 0.00 0.73 0.00

U 0.46 0.09 0.69 0.03 0.47 0.00 0.29 0.00 0.35 0.09

P 0.21 0.05 0.24 0.05 0.25 0.04 0.29 0.03 0.32 0.07

T −0.12 0.17 −0.02 0.54 0.03 0.41 0.04 0.42 0.07 0.33

R 0.32 0.01 0.59 0.00 0.59 0.00 0.55 0.00 0.56 0.00

TABLE 6 QAP regression analysis results from 2000 to 2020.

Year D E U P T R

2000 standardized regression coefficient −0.02 0.63 −0.05 0.21 −0.09 0.05

significance probability 0.39 0 0.34 0.03 0.12 0.32

2005 standardized regression coefficient −0.02 0.5 0.26 0.24 −0.03 0.11

significance probability 0.36 0 0 0.04 0.34 0.11

2010 standardized regression coefficient 0.05 0.6 0.13 0.25 0.05 0.21

significance probability 0.23 0 0.05 0.04 0.24 0.01

2015 standardized regression coefficient 0.05 0.61 0.06 0.29 −0.05 0.14

significance probability 0.23 0 0.26 0.03 0.26 0.11

2020 standardized regression coefficient −0.01 0.57 0.17 0.07 0.01 0.22

significance probability 0.46 0 0.03 0.3 0.45 0.03
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5.6 Factors influencing the spatial
correlation of carbon emissions in GBA

5.6.1 QAP correlation analysis
The information presented in Table 5 reveals that the four

categories of differential factors—which include the level of
economic development, urbanization rate, industrial composition,
and intensity of environmental conservation—all successfully
passed the significance test at the 10% level. This finding implies
that these four elements are significantly interconnected with the
spatial correlation pattern of carbon emission intensity in the
Greater Bay Area. Among these, the level of economic
development stands out as particularly crucial, signifying its
dominant role in influencing this pattern. However, the
coefficients related to geographical spatial proximity and
differences in technological innovation did not exhibit significant
results, suggesting that the effect of these two factor categories is not
significantly noticeable.

5.6.2 QAP regression analysis
An analysis of regression was performed focusing on the

elements that shape the structure of the spatial correlation
network for carbon emission intensity during the years 2000,
2005, 2010, 2015, and 2020. The results, as depicted in Table 6,
reveal that the adjusted R2 values, determined after conducting
10,000 random permutations, are 40%, 64%, 64.2%, 54.3%, and
56.5% respectively. Importantly, each of these values cleared the
1% significance test threshold. This finding indicates that the six
categories of differential factors—which consist of geographical
spatial proximity, level of economic development, urbanization
rate, industrial composition, the degree of technological
innovation, and intensity of environmental
conservation—collectively account for approximately 50% of the
spatial correlation pattern. As indicated by Table 5, the coefficient
concerning the difference in the level of economic development is
positive and notably significant. This implies that an increased
discrepancy in economic development levels among regions tends
to result in a more closely-knit spatial correlation network of
carbon emission intensity. This phenomenon typically occurs as
regions with more advanced economic development often have
more stringent environmental regulations. Therefore, this leads to
a “carbon transfer” towards regions with comparatively lower
levels of economic development, thereby establishing carbon
connections between the two regions. The coefficient
representing the difference in environmental conservation
intensity is notably positive, with its peak significance occurring
in 2010. This suggests that during that year, a larger gap in
environmental conservation efforts between regions
corresponded to a stronger spatial correlation in carbon
emission intensity. The varying degrees of environmental
regulation pressure across regions could prompt some
businesses to move to areas with less stringent environmental
policies, an action more favorable for their operation. Additionally,
the coefficient linked to differences in industrial structure is
positive, demonstrating significant importance up to the year
2015. This indicates that a greater difference in industrial
structure between regions is associated with a tighter spatial
correlation in carbon emission intensity. Such a difference in

industrial structure tends to enhance the exchange of economic
elements, thereby fostering economic interactions and mutual
attraction among regions. In addition, the coefficient related to
differences in urbanization levels was most significant in 2005 and
is positively correlated. This implies that in 2005, regions with
larger differences in urbanization levels were more likely to have a
stronger spatial correlation in terms of carbon emission intensity.
The variances in urbanization levels, which often lead to
population movements, also progressively intensify the carbon
emission association between cities.

6 Conclusion and discussion

From the year 2000–2020, the overall spatial network depicting
carbon emissions in the GBA exhibited a trend of periodic fluctuations.
The average number of connections and the network density stood at
55 and 0.5, respectively. This suggests a rather loose structural network
among the cities, coupled with a considerable opportunity for spatial
optimization. This fluctuation is influenced by city policies and socio-
economic developmental stages. A network connectivity value of
1 implies a significant degree of inter-city correlation. The reducing
trend in network hierarchy signals a declining reliance on certain central
cities, thereby bolstering the overall network’s stability. This also reveals
the carbon emission dynamics of the Bay Area in a comprehensive
manner. Network efficiency, which decreased from 0.489 to 0.4,
indicates a shift towards less rigid hierarchical structures and more
robust interactions, and it reflects a positive development trend in the
carbon emission marketplace.

The individual network structure indicators and the block model
analysis highlight a prominent “core-periphery” pattern in the
carbon emission spatial network. Economically advanced cities
such as Hong Kong, Macau, Guangzhou, and Shenzhen form the
network’s core, whereas less developed cities such as Huizhou and
Jiangmen are situated on the periphery. In addition, central cities
such as Guangzhou and Shenzhen maintain extensive spatial
correlations with other cities and function as intermediary hubs.
As the economy and society develop further, the roles and statuses of
mainland cities in the Bay Area are on the rise. Even cities with lesser
economic development, such as Zhaoqing, are managing to attract a
significant inflow of elements in the network, thanks to the
collaborative efforts of governments and enterprises.

The analysis derived from the QAP method reveals that six
categories of differential factors—proximity in terms of geography,
levels of economic advancement, urban development, the makeup of
industries, innovation in technology, and the vigor of environmental
conservation efforts—collectively account for roughly half of the
patterns observed in spatial correlations. Notably, variances in
economic and urban development, industry composition, and the
vigor of environmental conservation efforts have a significant and
positive effect on these spatial correlations.

It is crucial for planners to understand the complex network and
spatial correlations of carbon emissions, and to pioneer collaborative
strategies for reducing emissions across regions. This involves, on one
side, leveraging macroeconomic controls and market dynamics to foster
conditions conducive to interregional collaboration and spatially
optimized carbon reduction. On the other side, it necessitates a focus
on the interconnected spatial effect of carbon emissions. This would
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involve a shift towards a strategy that is driven by both “quantity and
structure,” shifting reduction policies from “local” to “holistic” and from
“point” to “area.” The GBA must continuously optimize and enhance
the structure of its spatial network relating to carbon emission intensity.
This involves setting region-specific objectives and boosting the spatial
distribution efficiency of resources aimed at low-carbon initiatives.
Significantly, central cities must utilize their roles as critical
“intermediaries” and “bridges” in the network of carbon emission
spatial correlations. By harnessing their influential position, these
core cities can lead and inspire surrounding cities in their carbon
reduction efforts, thereby fostering a coordinated approach to energy
conservation and emission reduction. It is essential to consider the block
structure traits of the carbon emission spatial network to tailor region-
specific reduction policies. Moreover, cities should leverage their unique
resource endowments and environmental capacities to encourage the
strategic movement and effective clustering of various elements, thereby
achieving a spatially nuanced management of low-carbon resources. In
addition, cities should capitalize on the positive effect of economic
growth, urban development, industrial composition, and environmental
protection in shaping these spatial correlation ties. This involves focusing
on the exchange of resources and the mobility of technical expertise
between cities, particularly those with significant differences in their
economic and industrial landscapes. Such an approach will promote a
coordinated progression in carbon reduction initiatives.

This research contributes significantly to the understanding of the
spatial network structure and the factors influencing carbon emission
intensity in the Guangdong-Hong Kong-Macao Greater Bay Area
(GBA). Utilizing spatial autocorrelation analysis, Social Network
Analysis (SNA), and Quadratic Assignment Procedure (QAP)
methodologies, the study explores the spatial correlation structure
and identifies critical factors impacting carbon emission intensity
across this economically vibrant region. These insights are
instrumental for cities within the GBA to delineate their specific
roles in emission reduction and to set targets for low-carbon
development. Furthermore, the findings assist in formulating more
equitable and focused coordinated emission reduction strategies for
urban agglomeration.However, there are still some shortcomings in this
study. However, there are still some deficiencies in this paper. 1) By
offering a comprehensive analysis of the spatial and social network
characteristics of carbon emissions within the GBA, this research
significantly enriches the existing body of knowledge, providing
valuable guidance for policymakers, urban planners, and
stakeholders in their efforts to achieve sustainable urban
development and meet China’s ambitious dual-carbon objectives. 2)
Whether these carbon emission strategies are universally applicable to
other regions requires further discussion and validation. 3) Future

research could incorporate a variety of analytical methods, including
machine learning algorithms, to identify complex patterns of carbon
emissions or to predict future trends in carbon emission intensity. This
would provide valuable support for potential carbon reduction
strategies. This paper has already demonstrated the feasibility and
scientific validity of the theoretical approach using data available up
to 2020. Future work could further refine this approach by utilizing data
from after 2020.
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