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The growing atmospheric mercury (Hg) emissions in China have raised ongoing
concerns regarding contamination in marine fish. To better understand the
pollution patterns and associated risks, we examined methylmercury (MeHg)
content in demersal and pelagic fish from four commonly found families in three
geographically distinct bays along the Chinese coast. We identified significant
spatial variations in MeHg levels within the same fish family across regions.
Specifically, fish collected from the Beibu Gulf in the South China Sea
consistently exhibited significantly higher MeHg levels compared to those
from the Laizhou Bay in the Northeast and/or Haizhou Bay in the East of
China. In contrast, MeHg levels in fish collected from Haizhou Bay
consistently remained the lowest. Within each region, we observed
significantly higher MeHg concentrations in demersal species compared to
pelagic species. This trend was particularly evident in fish species including
bartail flathead (Platycephalus indicus), small-scale tongue sole (Cynoglossus
microlepis) and greater lizardfish (Saurida tumbil) from the Beibu Gulf (0.50, 0.21,
and 0.18 mg/kg dw, respectively), as well as bartail flathead and slender lizardfish
(Saurida elongata) from Laizhou Bay (0.09 and 0.12 mg/kg dw, respectively). By
comparison, MeHg content in silver pomfret (Pampus argenteus) from all three
regions consistently remained relatively lower than in other species. Using target
hazardous quotient (THQ) calculations, we estimated potential health risks in
local populations associated with the consumption of the studied fish species.
Our results showed a lack of apparent health risks to local residents, as all THQ
values obtained from the three regions fell within the safe limits (0.02–0.94).
However, it remains important to conduct additional assessments and
spatiotemporal monitoring that encompass a broader range of species and
regions.
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1 Introduction

Mercury (Hg) is a ubiquitous and hazardous environmental
contaminant, well recognized for its wide-ranging impact on
ecosystems and human health (Clarkson, 1997; Boening, 2000).
Various forms of Hg originating from human activities or natural
geological processes can be introduced into the environment
(Hammond, 1971), and undergo the methylation process and
transformed into methylmercury (MeHg) (Weber, 1993; Regnell
andWatras, 2019). Coastal marine sediments, rich in organic matter
and microorganisms that support methylation, play a vital role in
shaping methylmercury (MeHg) budgets within coastal regions and
the marine food web (Hammerschmidt and Fitzgerald, 2004;
Hollweg et al., 2009).

The formation and bioaccumulation of MeHg in the marine
environment are influenced by a multitude of factors, such as
sediment physicochemical property, organic carbon, bacterial
activity, and plankton biomass, resulting in significant
spatial heterogeneity (Chen et al., 2008; Zhang Y. et al.,
2020). Therefore, assessing Hg levels across geographically
distinct regions is essential for obtaining a comprehensive
overview of distribution and accumulation patterns, and the
better understand of environmental and ecological
influences (Clayden et al., 2014; Barbosa et al., 2022; Médieu
et al., 2022). However, inter-comparison between existing
studies can be problematic due to differences in sample
processing method and instrumental analysis (Chen
et al., 2008).

National and international legislation efforts have been
undertaken to address and mitigate Hg contamination,
including the Minamata Convention (Kessler, 2013). However,
MeHg remains a significant concern due to ongoing risks such as
neurological damage and metabolic disruption associated with
the consumption of marine fish in human populations from
regions in the United States (Tollefson and Cordle, 1986; Liu
et al., 2018), the European Union (Llull et al., 2017), as well as
China and other regions (Cao et al., 2020; Basu et al., 2023).
Furthermore, increased atmospheric Hg inputs from coal
combustion in China (Wu et al., 2016) have been linked to
elevated tuna Hg levels compared to other Pacific regions
(Médieu et al., 2022).

In this study, we investigated MeHg concentrations in
common fish species of the same family or suborder collected
from three distinct coast bays in China: the Beibu Gulf
(subtropical), Haizhou Bay (temperate), and Laizhou Bay
(temperate). We examined regional differences in MeHg levels
of the same species or close-related species within the same family,
as well as across different species within each region. Given that all
three studied bays were situated at urbanized regions, we
hypothesized that regional differences in fish MeHg content
may exist due primarily to different methylation rate across
subtropical and temperate waters. Furthermore, species-specific
differences in MeHg content were also expected, particularly
between demersal and pelagic species, since coastal sediments
are major sites for Hg methylation. We also evaluated the
potential factors influencing these variations and assessed
human health risks related to the consumption of these fish
species for the local populations.

2 Materials and methods

2.1 Study area and sampling

Fish samples were collected during fishery surveys
conducted in the offshore area along the Chinese coast to
facilitate regional comparisons of MeHg content in common
fish species. We selected three specific coastal bays which are
geographically distinct regions with vital ecological and
economic significance but also face challenges related to
pollution due to human activities (Laizhou Bay, Haizhou
Bay, and the Beibu Gulf; Figure 1). Fish were collected using
trawls in September and October of 2021 following the Animal
Research and Ethics Committee of the Ocean University of
China guidelines. The sampling period coincides with the rainy
season in all three regions due to their location within the East
Asian Monsoon system. All samples were immediately
placed on ice until returned to the laboratory for further
processing. In the laboratory, biological parameters including
body length and weight were first measured and recorded, we
then used acid-rinsed dissection tools to collect muscle samples
from the center of the fish body after removing the skin.
Samples were stored in polypropylene centrifuge tubes and
kept at −20°C until further analyses. This study focused on
identical or closely related species found in the three bays,
totalling 96 fish from four families or suborders,
i.e., Cynoglossidae, Platycephalidae, Stromateoidei, and
Synodontidae. The species, sample size, weight and length are
listed in Table 1.

2.2 Methylmercury analysis

Fish muscle samples were freeze-dried and homogenized
using a tissue-homogenizer. Approximately 0.10–0.15 g of
dried tissue sample were accurately weighed using an
analytical balance (Sartorius, Germany), and placed into
50 mL polypropylene centrifuge tubes. Samples were digested
using 20 mL of 30% nitric acid solution at 60°C overnight. After
digestion, the samples were mixed with 10 mL ultrapure water
and centrifugated, and a 200 μL of the supernatant was
subsequently collected and transferred into a 50 mL pre-rinsed
tube. This fractionation was adjusted to a pH of 6 using
potassium hydroxide and sodium acetate solution. Finally, the
mixture was added with ultrapure water and 50 μL of a
derivatization reagent [NaB(C2H5)4], and left aside for 2 h at
room temperature before instrumental analysis. The MeHg
content was determined by using gas chromatography-cold
vapor atomic fluorescence spectrometry (GC-CVAFS)
(Polytech Instrumental Co., Ltd., Beijing, China). The
analytical quality control was verified by the analysis of
procedure blanks and a reference material, i.e., P43123B (fish
powder, Guangzhou Puen Scientific Instrument Co., Ltd.). The
average recovery of the reference material (85% ± 10%; n = 13)
and the blank content (1.2 ± 1.0 ng; n = 13) were all within the
acceptable range. All samples were detected at levels above the
detection limit (0.06 pg). All concentrations are expressed in
mg/kg dw (dry weight).
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2.3 Data analysis

In the present study, all statistical analyses and plotting of the results
were performed using R 4.2.0 (R Core Team, 2022). The distribution of
MeHg concentrations were checked using Shapiro-Wilk test and
Levene’s test, and the values were log-transformed for the analysis of
variance (ANOVA; Base R). Tukey’s HSD test (package “stats”) was

used for post hoc comparisons in order to assess potential differences in
MeHg concentrations of the same fish family among different regions,
as well as among different species within the same region. Additionally,
the relationship between fish physical parameters (weight and length)
and MeHg content across different species and regions were identified
using linear mixed effect regression analysis (package “lme4”; Bates
et al., 2014) with species and sampling region as random effects.

FIGURE 1
Sampling locations.

TABLE 1 Species, sample size (n), weight, and length of sampled fish species from the Beibu Gulf, Haizhou Bay, and Laizhou Bay.

Region Species Scientific name Feeding habits n Weight (g) Length (mm)

Beibu Gulf Bartail flathead Platycephalus indicus Demersal 4 295 ± 17.8 247 ± 27.5

Small-scale tongue sole Cynoglossus microlepis Demersal 11 273 ± 41.7 131 ± 64.3

Greater lizardfish Saurida tumbil Demersal 6 217 ± 19.8 52.8 ± 3.04

Brushtooth lizardfish Saurida undosquamis Demersal 8 206 ± 54.6 32.4 ± 8.83

Silver pomfret Pampus argenteus Pelagic 3 97.1 ± 7.56 43.4 ± 5.87

Pacific rudderfish Psenopsis anomala Pelagic 7 116 ± 13.1 63.5 ± 26.6

Haizhou Bay Red tongue sole Cynoglossus joyneri Demersal 11 161 ± 16.9 22.1 ± 6.14

Slender lizardfish Saurida elongata Demersal 4 146 ± 8.54 20.9 ± 4.40

Silver pomfret Pampus argenteus Pelagic 4 154 ± 4.79 74.0 ± 6.67

Laizhou Bay Bartail flathead Platycephalus indicus Demersal 10 106 ± 27.6 26.4 ± 2.37

Chinese tongue sole Cynoglossus semilaevis Demersal 10 103 ± 29.8 26.7 ± 2.16

Slender lizardfish Saurida elongata Demersal 8 111 ± 19.6 24.5 ± 1.17

Silver pomfret Pampus argenteus Pelagic 10 64.0 ± 11.7 14.9 ± 0.98
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Additionally, regional comparison was performed using weight-
adjusted MeHg content, i.e., observed MeHg of each species within
a region normalized by the average weight of the same species within
that region (Braaten et al., 2017).

We further assessed the human health risks associated with
consumption of the studied fish species using the Target Hazard
Quotient (THQ) (EPA, 1989) based on the equation below:

THQ � EF × ED × IR × C
RfD × BW × AT

× 10−3

where EF is exposure frequency (365 days/year); ED is total exposure
duration (4 and 72 years for children and adults, respectively) (Yu
et al., 2020); IR is ingestion rate of marine fish in China’s coastal
populations (18 and 49 g/day for children and adults, respectively)
(Wang et al., 2020); C is MeHg concentration in edible portion of the
fish (mg/kg on a wet weight basis employing a conversion factor of 0.8;
Li et al., 2023); RfD is oral reference dose for MeHg (1 × 10−4 mg/kg/
day); BW is average body weight of an adult (25 and 65 kg for children
and adults, respectively); and AT is average exposure time for non-
carcinogens (EF × ED). THQ < 1.0 indicates no health risks, while
THQ > 1.0 suggests potential risks from fish consumption.

3 Results and discussion

3.1 Regional differences in fish
MeHg content

We observed notable variations in MeHg content among the
examined fish species in various regions, with fish from the Beibu

Gulf consistently exhibiting relatively high levels, while those from
Haizhou Bay were consistently low (Figure 2). Specifically, significantly
higher concentrations ofMeHgwere found in the demersal species, the
small-scale tongue sole from the Beibu Gulf (0.21 mg/g) compared to
the other two tongue sole species from Haizhou Bay and Laizhou Bay
(both 0.04 mg/kg; P < 0.001). Similarly, significantly higher MeHg
content was found between two Stromateoidei species, both pelagic
(silver pomfret and Pacific rudderfish, 0.07 and 0.03 mg/kg,
respectively) and two Synodontidae species, both demersal (greater
lizardfish and brushtooth lizardfish, 0.18 and 0.14 mg/kg, respectively)
from the Beibu Gulf compared to those from Haizhou Bay (silver
pomfret, and slender lizardfish, 0.01 and 0.03 mg/kg, respectively; all
P≤ 0.034). Concentrations ofMeHg in silver pomfret (0.04mg/kg) and
slender lizardfish (0.11 mg/kg) from Laizhou Bay were also
significantly higher than Haizhou Bay (P < 0.001 and P = 0.046,
respectively). Additionally, in bartail flathead, MeHg was significantly
higher in those collected from the Beibu Gulf than Laizhou Bay
(0.50 and 0.09 mg/kg, respectively; P < 0.001).

In general, the observed concentrations are consistent with those
reported in fish collected along the coast of China. For instance,
concentrations of MeHg in muscle of bartail flathead and slender
lizardfish collected in Laizhou Bay were 0.07 and 0.10 mg/kg dw,
respectively, in line with the present findings, whereas those reported
for silver pomfret (0.10 mg/kg) was relatively higher compared to the
present study (Cao et al., 2020). Such differences may be due to
variations in trophic levels within the local food web in conjunction
with different contamination profiles between the sediment and water
bodies, and warrant in-depth investigation. Nevertheless, muscle
MeHg content in silver pomfrets collected from multiple coastal
cities of southeastern China was 0.05 mg/kg dw (Zhang et al.,

FIGURE 2
Spatial differences in fishmusclemethylmercury (MeHg) content across different families collected from three coastal bays (BeibuGulf, Laizhou Bay,
and Haizhou Bay) in China. The two species from the suborder Stromateoidei are pelagic, while the remaining species are all demersal. Regional
comparison for the Platycephalidae family was only conducted between Beibu Gulf and Laizhou Bay, as no available samples were obtained for the
Haizhou Bay. Asterisks indicate significant differences (*P < 0.05, **P < 0.01, ***P < 0.001) between sampling regions.
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2020). Pacific rudderfish from the Beibu Gulf also exhibited
comparable muscle MeHg levels in those previously reported
(0.04 ± 0.01 mg/kg dw) (Zhu et al., 2013) and the present study
(0.03 ± 0.01 mg/kg dw). Additionally, the current MeHg levels in sole
and flathead from the Beibu Gulf appear to be similar to MeHg levels
found inmuscle of flatfish and common sole (Solea solea), which were
approximately 0.39 and 0.44 (mg/kg dw) from the Baltic Sea and
France’s Atlantic Coast, respectively (Polak-Juszczak, 2017; Mille
et al., 2021). However, the highest levels detected in the species of
the present study were considerably lower than those reported for
muscle content in common sole from theWesternMediterranean Sea,
which were approximately 4.75 (mg/kg dw) (Llull et al., 2017). In fact,
it has been shown that the Mediterranean waters exhibit a notable
capacity for methylation and serve as a source for the nearby North
Atlantic Ocean (Cossa et al., 2022).

The relatively higher MeHg concentrations in fish from the Beibu
Gulf observed here compared to the other coastal bays may be
associated with potentially stronger atmospheric Hg emission owing
to biomass burning activities in the Indochina Peninsula (Sheu et al.,
2013). Long-range atmospheric transport through the Asian
Northeastern Monsoons in autumn may also contribute to elevated

atmospheric Hg levels and its subsequent deposition in the northern
South China Sea (Liu et al., 2016; Yuan et al., 2023). Furthermore, high
precipitation rates, enhanced primary production andmicrobial activity
could also have facilitated the speciation and bioaccumulation of MeHg
(Kim et al., 2017; Zhang et al., 2020) in the subtropical Beibu Gulf
compared to the other two temperate bays. Indeed, a systematic
evaluation of Hg in Chinese coastal sediments has also
demonstrated more elevated levels of Hg in sediments from the
south coast than those from the east coast of China (Meng et al.,
2019). In conjunction, MeHg production could also increase with
decreasing latitude, which was primarily influenced by the elevated
annual temperature (Dai et al., 2021).

It has been commonly found thatMeHg contents correlate with fish
size (Andersen and Depledge, 1997; Baeyens et al., 2003; Kehrig et al.,
2008). The present study observed a significantly positive association
between fish body weight and MeHg concentration, fish collected from
the Beibu Gulf also appeared to be relatively heavier in comparison with
those from the other regions (Figure 3). Nevertheless, except for bartail
flathead (weight-adjusted MeHg: 0.27 and 0.14 mg/kg for Beibu Gulf
and Laizhou Bay, respectively; P = 0.08), all regional differences in
MeHg content detected here remained significant after adjusting body

FIGURE 3
Regression between body weight andmethylmercury (MeHg) concentrations in common fish species collected from three coastal bays (Beibu Gulf,
Laizhou Bay, and Haizhou Bay) in China. The regression equation for fixed effect weight is: Log (MeHg) = 0.007*Weight − 4.026.
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weight (P range: 0.017 to < 0.001). These results further highlight
significant regional disparities and emphasize the need for continued
monitoring and assessment to investigate the sources and pathways of
MeHg. Moreover, future studies should incorporate fish species of the
same sizes and a larger sample size to further assess regional differences
fully controlling the size-effect. In addition, within each species, there
was a significant positive correlation between body weight and MeHg
concentrations for bartail flathead (collected in Laizhou Bay and Beibu
Gulf), and a significant negative correlation for silver pomfret (collected
in all three bays), whereas no association was found for slender
lizardfish (collected in Haizhou Bay and Laizhou Bay;
Supplementary Figure S1). These findings suggest that the weight-
MeHg concentration relationship as well as the fish size effect may be
species- and region-specific, and warrants in-depth revaluation.
Additionally, further investigations into the occurrence and
distribution of MeHg in the sediment environment of these coastal
regions are desired to better assess the baseline contamination pattern of
these respective environment and provide further insight into the
transfer mechanisms of Hg along the food chain.

3.2 Species-specific variation in
MeHg content

In the present study, we found significant differences across
species within each population. Overall, the MeHg content in
demersal fish including sole, flathead, and lizardfish showed
relatively high concentrations. By comparison, pelagic fish
including silver pomfret and Pacific rudderfish had relatively low
MeHg concentrations (Figure 4). In the Beibu Gulf, MeHg levels in
Pacific rudderfish were significantly lower compared to bartail
flathead, small-scale tongue sole and brushtooth lizardfish

(P < 0.001, P < 0.001, and P = 0.029, respectively). In Haizhou
Bay, MeHg concentrations in silver pomfret was significantly lower
than red tongue sole (P < 0.001). In Laizhou Bay, MeHg content in
bartail flathead and slender lizard fish was significantly higher than
Chinese tongue sole and/or silver pomfret (all P ≤ 0.049).

Coastal and estuarine sediments are recognized for their ability to
produce MeHg at elevated levels, primarily because of the specific
biogeochemical conditions present, such as the abundance of organic
matter and sulfate (Chen et al., 2008). Subsequently, MeHg enters the
food web through uptake by benthic invertebrate macrofauna, and
eventually becomes incorporated into fish tissues from the ingestion
of contaminated prey (Mason and Lawrence, 1999; Hammerschmidt
and Fitzgerald, 2006). Likewise, various previous study have found
considerable species-dependent variability showing demersal species
had higher MeHg than pelagic ones (Storelli et al., 2003; Anual et al.,
2018; Romero-Romero et al., 2022).

3.3 Human health risks of fish MeHg
contamination across different regions

Considering that the fish species examined in this study also
serve as important commercial resources for human consumption, it
becomes imperative to further assess the potential health risks posed
to humans regarding their MeHg content, particularly among the
demersal species. In this study, the THQ calculations for various
species in different regions indicated no apparent health risks
associated with consuming the studied species for either children
or adults in the Beibu Gulf, Haizhou Bay, and Laizhou Bay
populations (Table 2). Nevertheless, it’s worth noting that the
THQ values for both children and adults were notably elevated
in the case of bartail flathead from the Beibu Gulf (close to 1.0). This

FIGURE 4
Species differences in the muscle methylmercury (MeHg) content of common fish collected from three coastal bays (Beibu Gulf, Laizhou Bay, and
Haizhou Bay) in China. Both P. argenteus and P. anomala are pelagic, while the remaining species are all demersal. Asterisks indicate significant
differences (*P < 0.05, **P < 0.01, ***P < 0.001) between species of the same region.
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aligns with the significantly higher MeHg concentrations observed
in this fish from the Beibu Gulf compared to other species and other
regions. Therefore, further monitoring and assessment
are warranted.

Consistently, multiple prior studies have shown that Hg levels in
aquatic products from the Beibu Gulf and various other regions
along the Chinese coast are within safe limits, posing no apparent
health risks (Gu et al., 2018; Zhao et al., 2018; Liu et al., 2019; Qin
et al., 2021; Li et al., 2023). On the other hand, certain trace metals,
notably arsenic (As), have been found to have elevated THQ values
and potential health risks associated with the consumption of
specific aquatic products from the Beibu Gulf (Wang et al., 2018;
Yang et al., 2021). In the Laizhou Bay, in addition to Hg in predatory
fish species (Cao et al., 2020), studies have indicated potential health
risks associated with both As and cadmium (Cd) contamination in
marine aquatic products (Jiao et al., 2021; Liu et al., 2022). Moreover,
in the adjacent waters of the Beibu Gulf within Guangdong province,
research has shown that As and Hg pose significantly higher health
risk compared to other trace metals (Wang et al., 2023).
Consequently, while the observed MeHg levels in fishes from the
studied coastal areas are generally safe, continued monitoring of this
and other contaminants in a suite of abiotic and biotic
compartments is still necessary. Additionally, further studies are
needed to understand the mechanisms underlying the varying
methylation rates of inorganic Hg across coastal regions, as well
as the uptake and accumulation in fish residing in different habitats.
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