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The digitalization of agriculture is rapidly changing the way farmers do business.
With the integration of advanced technology, farmers are now able to increase
efficiency, productivity, and precision in their operations. Digitalization allows for
real-time monitoring and management of crops, leading to improved yields and
reduced waste. This paper presents a review of some of the use cases that
digitalization has made an impact in the automation of open-field and closed-
field cultivations by means of collecting data about soils, crop growth, and
microclimate, or by contributing to more accurate decisions about water
usage and fertilizer application. The objective was to address some of the
most recent technological advances that are leading to increased efficiency
and sustainability of crop production, reduction in the use of inputs and
environmental impacts, and releasing manual workforces from repetitive field
tasks. The short discussions included at the end of each case study attempt to
highlight the limitations and technological challenges toward successful
implementations, as well as to introduce alternative solutions and methods
that are rapidly evolving to offer a vast array of benefits for farmers by
influencing cost-saving measures. This review concludes that despite the
many benefits of digitalization, there are still a number of challenges that
need to be overcome, including high costs, reliability, and scalability. Most of
the available setups that are currently used for this purpose have been custom
designed for specific tasks and are still too expensive to be implemented on
commercial scales, while others are still in their early stages of development,
making them not reliable or scalable for widespread acceptance and adoption by
farmers. By providing a comprehensive understanding of the current state of
digitalization in agriculture and its impact on sustainable crop production and
food security, this review provides insights for policy-makers, industry
stakeholders, and researchers working in this field.
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1 Introduction

Digital Agriculture (DA) deals with the practice of advanced
technological solutions such as sensors, robotics, and data analysis
for improving the ecological and economic viability of agricultural
operations, and simultaneously elevating crop output and quality.
Conventional farming methods have faced significant challenges in
the past three decades to respond to the increasing demand for food,
rising labor costs, reducing carbon footprint, and climate change
(Abbas et al., 2022a; Abbas et al., 2022b; Elahi et al., 2022; Elahi et al.,
2024). On the other hand, improving long-term efficiency and
maintaining the viability of crop production requires adaptations
of digital technologies to reduce input costs and increase profit
margins. Digitalization of agriculture benefits from a wide range of
automation software and hardware platforms to contribute to
replacing tedious manual operations with continuous automated
processes with the ultimate objective of securing food production for
the increasing world population. In modern farms, multiple ground-
based sensors combined with maps and drone-generated images, as
well as artificial intelligence (AI) and prediction models are
delivering detailed agronomic data on crop conditions to support
farmers with short-term and long-term decision-making. With the
advances in wireless communication and high-performance data
processing hardware, the farms of the future are expected to be
entirely connected (Figure 1). In this regard, digital agriculture is
offering significant potential for innovative solutions toward
automation and robotics, which in return frees human force
from fieldwork, providing farmers with time to focus on
developing scientific cultivation methods and agribusiness. In
addition, the demands for the use of robots in agriculture to
eliminate repetitive and dull tasks have introduced an exciting
high-tech market that is constantly gaining attention from
startup companies and investors. Some of the technology and
methods involved in these practices, such as Geographic
Information System (GIS), yield monitoring platforms, and
variable-rate applications have been studied and covered in
numerous published materials under the title of Precision
Agriculture (PA) (Cisternas et al., 2020; Pathak et al., 2019).
However, their impact on the entire agri-food value chain, as
well as the relatively newer concepts such as the Internet-of-
Things (IoT), mobile apps, robotics, Artificial Intelligence (AI),
Unmanned Aerial Vehicles (UAV), big data analysis, digital
twins, and Blockchain fall under the umbrella of digital
agriculture (Fielke et al., 2020).

Digital agriculture is being practiced in many regions, either on
commercial scales or in pilot plants. The fundamentals for DA
however began to shape after 2010, with the popularity of some of
the core technologies such as low-power wide area network
(LPWAN) for IoT applications (Klaina et al., 2022), open-source
software for robotics (Mier et al., 2023), and machine learning tools
for data processing (Sharma et al., 2020; Sharma et al., 2021), which
redefined the existing concepts of precision agriculture and smart
farming. In the past 10 years, low-resolution satellite-based maps
have been frequently replaced with affordable UAVs that are
equipped with sophisticated sensors for generating high-spatial
and temporal resolution maps that can better support site-
specific applications such as early disease detection and variable
rate sprayers. In addition to the improvement in the hardware, DA is

taking advantage of the advances in data processing and data
management tools, deep learning, and cloud-based computing
resources. A review of the published literature in the last decade
shows that DA has employed a wide range of available technology to
enable automation and create added value for sustainable food
production. The inputs and outputs of DA have evolved based
on data streams, reliable data-sharing services, and flexible data
analysis tools that lead toward optimum automation processes and
decision-makings. From an agronomic point of view, the
digitalization of agriculture has widely supported farmers and
researchers with solutions for a better understanding of different
crop varieties and species that are more resistant to specific climate
conditions or can be adapted to different soil conditions. For
example, automated classification of seeds and plants was nearly
impossible before the existence of software and high-performance
computers to accomplish massive computations and to recommend
which genome is suitable for breeding. In some cases such as plant
health assessment or early disease detection, it is required to
compare and categorize samples according to their colors, leaf
morphology, shapes, or invisible symptoms using Support Vector
Machine (SVM) classifiers or wavelet analysis methods. Digital
agriculture is a growing research field that offers a wide variety
of techniques to eliminate uncertainties involved with farming and
food production.

The objective of this review is to present some of the use cases of
digital technologies in agriculture and their impact on sustainable
crop production and food security. The primary focus of each
section of this review is to assess the benefits and challenges of
digitalization in agriculture and how it can be leveraged to enhance
the efficiency and productivity of crop production. The sections of
the paper are organized to highlight and examine some of the core
technological solutions in this field, including variable rate
application, computer vision, UAV imagery, agricultural robotics,
wireless sensing, and IoT monitoring. In the last section, the use of
5G network, Digital Twins, and Blockchain are covered as future
scenarios. The objective is to provide a comprehensive
understanding of the current state of digitalization in agriculture,
its potential to address the challenges faced by the industry, and the
role it can play in ensuring food security for the future.

2 Transition from precision agriculture
to digital agriculture

The integration of automation and control systems alongside
data processing software, web-based applications, and mobile
tools has significantly influenced farming practices over the past
three decades, largely aiming to enhance efficiency in land and
resource utilization. Prior to 2010, farmers relied on technologies
such as the Global Positioning System (GPS) (Shamshiri et al.,
2013; Shamshiri and Ismail, 2013), ground-based sensing
platforms, satellite maps, and local sensing devices like data
loggers to monitor fields and identify deficiencies. However,
the introduction of more compact technological solutions,
such as autonomous drones, LiDAR sensors, high-resolution
cameras, small-scale robots, and long-range wireless
transmitters, has led to a shift in precision agriculture and
smart farming methods towards digitization. These
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advancements have played a crucial role in fostering economic
growth and promoting sustainability in food production. In its
workflow, precision agriculture utilizes data from different
resources, such as satellite images, in-situ sensors, and mobile
sensing platforms, to identify deficiencies and enhance crop yield
through improved resource management, including the
application of variable rate technology (Shamshiri et al.,
2018a). In contrast, digital agriculture encompasses a broader
spectrum of technological innovations aimed at the ongoing
monitoring, assessment, and management of soil conditions,
water resources, and fluctuations in weather patterns across
farmlands (Balasundram et al., 2023). These solutions are
geared towards boosting field productivity while
simultaneously minimizing operational expenses (Basso and
Antle, 2020; Sparrow and Howard, 2021), mitigating climate
change, and ensuring food security (Balasundram et al., 2023).
Example cases include leveraging satellites and high-resolution
UAV imagery to monitor crop water levels and quality,
assessment of soil moisture and salinity, generating NDVI and
yield maps, conducting health assessments for early disease
detection, and identifying crop stress. In terms of automation,
the integration of wireless sensors and IoT devices has facilitated
the implementation of smart irrigation systems, management of
water loss, and continuous assessment of soil nutrient levels in
remote regions. Additionally, DA offers a diverse array of
software applications accessible via smartphones and tablets.
These tools empower farmers to benefit from live monitoring
of field variabilities (Shamshiri and Weltzien, 2021), implement

remote automation (Ahamed et al., 2023), and employ systematic
management techniques.

3 Digitalization in farming data
collection, analysis, and sharing

3.1 UAV-based remote sensing for
estimation of plant’s height and leaf
area index

Fixed-wing and multi-rotor drones that are equipped with high-
resolution imaging sensors provide farmers with more accurate
datasets when compared to satellite-based images. UAV-based
remote sensing platforms are mainly used to monitor soil
properties and crop stress, creating valuable information for
developing decision support systems in pest control applications,
smart fertilization, and irrigation management (Lajoie-OMalley
et al., 2020). Although satellite images can also provide
information about the existing of such variability in the fields in
a shorter period of time, however the quality of their images depends
on a cloud-free view, which limits their applications at any time and
location. In addition, they do not offer a flexible and affordable
platform for experimenting with multiple sensors. On the other
hand, UAVs offer higher spatial and temporal resolution data which
makes them a versatile remote sensing platform in different season
and growth stages for supporting a wide variety of applications such
as plant phenotyping (Shamshiri et al., 2018c; Comba et al., 2020),

FIGURE 1
A conceptual view of data-sharing in connected farms for the implementation of digital agriculture.
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Leaf Area Density (LAD) estimation (Garcerá et al., 2021; Bates
et al., 2021), determination of Leaf Chlorophyll Content (LCC)
(Vergara-Díaz et al., 2016), and plant breeding (GuoW. et al., 2021).
A conceptual illustration of a UAV-based image acquisition system
with different sensors that are used in digital agriculture for
estimation of crop parameters along with other in situ sensors
and manual measurements is shown in Figure 2.

Utilizing UAV imagery to estimate the height and density of
plant canopies offers valuable insights into the growth status of field
plants. This method can be outlined in three main steps as (i)
generating a digital surface model (DSM), (ii) creating a digital
terrain model (DTM), and (iii) determining plant height by
subtracting the DTM from the DSM. This approach holds
particular significance in crop management decisions reliant on
site-specific canopy characterization. The information generated
through this method find applications across various domains of
DA and PA, including leaf area index evaluation (Comba et al.,
2020), precision crop protection (Garcerá et al., 2021), site-specific
irrigation (Jiménez-Brenes et al., 2017), nutrient management
(Tee et al., 2023), yield prediction (Gené-Mola et al., 2020),
autonomous navigation (Pathak et al., 2019; Fielke et al., 2020),
and early disease detection (Jurado et al., 2020). Moreover, detailed
and reliable canopy information aids farmers in making timely and

site-specific management decisions, underscoring the potential of
3D point cloud datasets for economic and environmental
conservation strategies. Leaf area index estimation is crucial for
enhancing crop growth models and addressing field uncertainties
such as terrain erosion (Rodrigo-Comino, 2018), soil organic carbon
problems (Chen et al., 2021), and climate change impacts
(Balasundram et al., 2023). Collecting LAI data traditionally
involves manual measurements using in-field portable
instruments (Mourad et al., 2020) such as LI-3000C (LI-COR
Biosciences GmbH, Homburg, Germany) or AccuPAR LP-80
(Metergroup, Pullman, WA, United States). However, UAVs
equipped with high-resolution imaging sensors, LiDAR, multi-
spectral, and hyperspectral cameras (Zhang et al., 2009; Hardin
and Jensen, 2011; Wallace et al., 2012; Knoth et al., 2013; Shahbazi
et al., 2014;Whitehead et al., 2014; Linchant et al., 2015) have proven
successful in estimating LAI for various crops, including maize (Han
et al., 2018), berries (Herrero-Huerta et al., 2015), almonds (Torres-
Sánchez et al., 2018), olives (Jiménez-Brenes et al., 2017), grapes
(Mathews and Jensen, 2013), apples (Hobart et al., 2020), and pears
(Guo Y. et al., 2021). UAV remote sensing also shows promise in
estimating LAI and canopy coverage ratio at the plant and canopy levels
(Lei et al., 2019), essential components for estimating evapotranspiration,
surface energy, and water balance (Mourad et al., 2020).

FIGURE 2
UAV-based remote sensing with different sensors and mapping software for digital agriculture (Li et al., 2021).
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Several studies have demonstrated the effectiveness of UAV-
based LAI estimation methods across different crop types and
environmental conditions. For instance, Córcoles et al. (Córcoles
et al., 2013) employed a UAV-based automated infrared imaging
system to estimate LAI for onion crops, showing a linear
correlation between canopy cover and LAI. Lendzioch et al.
(Lendzioch et al., 2019) successfully estimated winter LAI and
snow depth in a spruce forest using UAV-based imagery, while Sha
et al. (Sha et al., 2018) compared UAV-based LAI estimation with
field measurements for grassland pastures in China, revealing
inconsistencies in near-infrared spectrum measurements.
Additionally, Roosjen et al. (Roosjen et al., 2018) estimated LAI
and leaf chlorophyll content of potatoes using UAV imagery,
noting the impact of multi-angular angles and zenith angle on
LAI estimation accuracy. Figure 3 provides a schematic overview of

the key steps involved in estimating plant height and LAI using
UAV imagery.

3.2 UAV-based hyperspectral imaging for
crop disease management

Identifying plant diseases using RGB images or visual inspection
is often only feasible once visible symptoms manifest, often too late
for effective intervention by farmers. For instance, Ganoderma
disease, a significant threat to oil palm plantations, typically
presents noticeable symptoms like foliar chlorosis, frond
breakage, decayed tissues at the palm base, and fruiting body
production at an advanced stage. This disease, causing both basal
and upper stem rot, remains a severe issue in Southeast Asia, leading

FIGURE 3
Schematic illustration of the three main steps involved in estimation of canopy height and LAI from UAV images (Li et al., 2022).

FIGURE 4
Feasibility of using autonomous UAV-based hyperspectral imaging for the detection of Ganoderma Boninense disease in oil palms, showing (A)
scanning the palm, (B) hyperspectral data collected at different wavelenghts, and (C) sample of one image generated at a specific wavelength (Shamshiri
et al., 2018c).
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to stand loss, reduced yields, and the need for premature replanting.
Young palms exhibiting symptoms may perish within 6–24 months,
while mature palms can survive up to 3 years, although basal stem
rot can destroy up to 80% of the total standing palms. Studies suggest
a strong correlation between oil palm yields and nutrient levels.
Hyperspectral analysis of images in agriculture offers promising
opportunities for early Ganoderma disease detection in oil palms,
with preliminary data indicating distinct spectral characteristics of
infected leaves. Developing a rapid and effective field-level detection
and mapping method for Ganoderma would aid growers in disease
management and potentially enhance financial outcomes.

The methodology outlined in Figure 4 proposes a customizable
solution, adaptable and scalable with various multi-spectral and
hyperspectral cameras for disease detection. The procedure involves
systematic steps involving (i) analyzing disease spectral
characteristics in controlled lab settings, (ii) developing a
classification method to differentiate the disease from other
stresses and similar diseases, (iii) exploring the use of low-cost
spectral radiometers for rapid screening, (iv) creating an
instrumented platform for hyperspectral image collection and
georeferencing on farms, and (v) conducting field trials to assess
hyperspectral imagery effectiveness in diverse conditions. Adapting
a UAV remote sensing platform for early disease detection entails
addressing key questions: (i) the disease’s detectability at different
infection stages, (ii) unique spectral characteristics of Ganoderma
reflectance data, (iii) optimal statistical or mathematical methods for
analyzing Ganoderma spectral data, and (iv) the effectiveness of low-
cost multiband radiometers in aiding scouting crews to identify
suspiciously infected trees.

3.3 Computer vision and line scanning for
plant phenotyping

Computer vision is a rapidly growing field within digital
agriculture that aims to automate the process of phenotyping,
which is the measurement and analysis of the physical
characteristics of plants. This technology uses cameras and image
processing algorithms to capture and analyze data on plant growth,
development, and health. One of the main advantages of using
computer vision for phenotyping is that it allows for the rapid and
efficient collection of large amounts of data. Traditional methods of
phenotyping, such as manual measurement and visual inspection,
can be time-consuming and labor-intensive. With computer vision,
data can be collected at a much faster rate, allowing for more
frequent and detailed monitoring of plant growth and
development. In addition, computer vision can provide more
accurate and consistent data than traditional methods. Human
error and subjectivity can affect the accuracy and consistency of
manual measurements and visual inspections. Computer vision
algorithms, on the other hand, are able to provide a more
objective and consistent assessment of plant characteristics,
providing a cutting-edge solution to analyze plant stress and
disease identification. This is done by capturing images of the
plant and then using image processing algorithms to analyze the
images for signs of stress or infection. Various studies have
highlighted the contributions of computer vision to improving
yields and reducing costs. The technology has been also used to

automate the process of seedling counting and selection, using image
processing algorithms to accurately count and identify seedlings,
which can help to improve the efficiency and accuracy of seedling
selection. The following sub-sections provide summary reports on
some of the projects in digital agriculture that incorporated
computer vision.

Hyperspectral imaging and line scanning are two advanced non-
destructive and non-invasive techniques that are being used in
digital agriculture to collect data on the crop, even during the
growing season and without affecting crop yields, with the
objective of improving crop monitoring and management.
Hyperspectral imaging captures images of crop plants and leaves
using a wide range of wavelengths of light, from the visible to the
infrared, and uses these images to identify different plant species,
detect signs of stress or disease, or measure the amount of moisture,
chlorophyll, and other important plant characteristics. This
technology can provide farmers with detailed information about
the health and growth of their crops, and provide knowledge-based
decisions about irrigation, fertilization, and pest control. In recent
years, hyperspectral imaging has gathered a large amount of interest
in the field of non-destructive techniques. Originally developed for
remote sensing applications, hyperspectral imaging is now being
widely used in a multitude of fields including the food and
agricultural sector. In the food industry, the commonly used
standard methods are destructive and invasive in nature. Thus,
they are not only time-consuming but also resource and energy
intensive.With varying quality parameters across different products,
the food industry continuously seeks in/on-line processing
techniques that meet the quality demands as well as provide
rapid, accurate, and reliable results. This approach combines the
salient features of machine vision and near-infrared spectroscopy
(Yu et al., 2020). Through the spectral and spatial information
obtained from hyperspectral imaging, detailed information on the
product has now become possible. Of the different acquisition
techniques, line scanning is one of the most commonly used
methods within the food industry (Ma et al., 2019). A typical
hyperspectral imaging line scanner is shown in Figure 5.

Line scanning is a technique that captures images of crops by
scanning a line of light across the field. This allows farmers to rapidly
and efficiently collect detailed information about the crop canopy,
including the height, width, and density of the plants. This
information can be used to optimize planting density and
monitor crop growth. Moreover, line scanning allows for
continuous scanning of the product line-by-line, thus acquiring
extensive spectral information on the product. This technique is
being applied to predict moisture content and the distribution
within fruits and vegetables such as apples, and purple-speckled
cocoyam (Crichton et al., 2018; Ndisya et al., 2021). In addition,
moisture content hyperspectral imaging has also shown the ability to
predict several quality parameters such as total phenols and
antioxidants properties in cocoa beans (Caporaso et al., 2018),
chromaticity in apples’ slices (Crichton et al., 2017), and total
carotenoids content in carrots (Md Saleh et al., 2022). Crichton
et al., 2017 also implemented HSI to classify the freshness in beef.
The results from this investigation present successful classification
between the different storage conditions (i.e., fresh, matured, fresh-
frozen thawed and matured-frozen thawed) through the varying
color changes among the beef slices. With the view of moving
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towards in-line monitoring using hyperspectral imaging, Sturm
et al., 2020 (Sturm et al., 2020) integrated a Vis-NIR camera
within a pilot-scale hop dryer to investigate the dynamic changes
within the hop cones. The study shows a proof of concept of
integration of method within semi-industrial scale drying systems
to the dynamic changes occurring within the product. In
conjunction with this study (Sturm et al., 2020; von Gersdorff
et al., 2021; Shrestha et al., 2020), also compared hyperspectral
imaging and standard laboratory methods to assess its applicability
for continuous monitoring. Through the application of methods
comparison, these studies proved the feasibility of hyperspectral
imaging for replacing standard laboratory methods and thus paving
the way for real-time monitoring and quality assessment within the
product. It should be noted that hyperspectral imaging and line
scanning can be integrated with other technologies such as drones
and robots, enabling farmers to scan large areas in a short time and
collect a large amount of data, which can be used to optimize
crop yields.

3.4 Wireless sensors and IoT monitoring

Implementation of digital agriculture requires wireless
communication between sensors and controllers for remote
monitoring and sending warning messages in open-field and
closed-field farming via a flexible and modular automation
solution that is compact in size, cost-effective, and easy to install
and maintain. Studies show that smart irrigation and fertilization
management systems (Giannoccaro et al., 2020; Lin et al., 2020) are
capable of maintaining optimum level of pH and nutrient contents
for plants with minimum inputs. The success of such an
optimization relies on the integration and adaptation of the
sensors and controllers with wireless communication and the IoT
concepts for incorporating real-time data transfer and live
monitoring. Wireless sensor network (WSN) was adopted in
agriculture in the early 2000s, and has served as the backbone of
IoT-driven automation systems, comprising various sensor nodes,
repeaters, and receivers interconnected and meshed across fields to
sustain DA. This network aids in comprehending the interplay
among soil, crop, and weather, thereby enhancing productivity
and profitability. In a wireless monitoring setup, data storage
occurs locally on the receiver node, limiting accessibility.

Conversely, in IoT-based monitoring systems, data from the
receiver node are uploaded to a cloud web server, enabling access
from any internet-connected client device (Shamshiri and Weltzien,
2021; Shamshiri and Hameed, 2021). In large-scale farming
operations, data gathered from multiple wireless sensors are
integrated into conventional decision support systems, AI
algorithms, or crop growth models via internet connections and
cloud-based streaming platforms, aiming to optimize production
efficiency and financial returns. An example of such application is
the works of (Sanjeevi et al., 2020; Popescu et al., 2020) that
involved a scalable and collaborative UAV-WSN architecture for
IoT monitoring and controlling in remote areas. IoT devices have
been shown to be effective solutions to improve agricultural
resource management and contribute to the sustainability of
production. Farmers need mobile applications offering real-
time data monitoring and dynamic decision support systems
that leverage wireless automation and control. This technology
significantly reduces wiring costs and maintenance efforts,
especially in remote agricultural regions. However, studies
have highlighted challenges in radio wave propagation inside
dense plant populations (Shamshiri and Hameed, 2021), and
therefore necessitating the use of low-powered long-range
wireless communication protocols. In large-scale farming
operations, factors like sensor node quantity, repeater
placement, power usage, operating frequencies, and
transmitter-receiver distances require careful consideration for
seamless data collection.

In recent years, LoRa technology has emerged as a solution,
enabling long-range communication between sensor nodes and
receivers for field parameter monitoring. LoRaWAN, its
networking protocol layer, is a leading LPWAN technology
renowned for ultra-long-range wireless data transmission with
minimal power consumption, ideal for digital agriculture
applications (Shamshiri and Weltzien, 2021). LoRa bridges the
gap between power efficiency and transmission range in remote
areas lacking mobile coverage, utilizing reserved ISM radio bands
like 433 MHz (Asia), 868 MHz (Europe), and 915 MHz (Australia
and North America). Depending on network architecture and
repeater node density, LoRa can cover distances of 2–10 km in
rural areas, extendable to 100 km with repeaters. Figure 6 illustrates
the primary components of this technology, comprising a smart
sender node, communication module, and IoT platform.

FIGURE 5
Principle of hyperspectral imaging using line scanning method.
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This setup allows live data viewing and sharing with unlimited
users and applications from any location. The design or selection of
compact sender nodes (Figure 6B) with efficient battery
management and durability in harsh indoor environments is
crucial. These sensing modules typically feature a programmable
microcontroller interfaced with diverse sensor probes, onboard
memory storage, a LoRa module (e.g., SX1276 or E220-900M22S
LoRa breakout board), and battery management units with solar
charging circuits. For control actuator nodes (e.g., smart fertigation
or model-predictive microclimate control), sensor data is received
by a LoRa controller node via peer-to-peer communication or first
transmitted to secure cloud-based applications using a LoRaWAN
gateway before reaching IoT-based controllers. The architecture
presented in Figure 6C encompasses multiple hardware and
software layers connected either via wires or wirelessly through
standard communication protocols like WiFi and CANBUS.
Previous studies have highlighted numerous successful
applications of this technology for real-time monitoring and
control in both closed-field and open-field crop production,
particularly in remote areas lacking mobile network coverage.
These applications have been extensively discussed in (Shamshiri
andWeltzien, 2021; Shamshiri and Hameed, 2021; Singh et al., 2020;
Shamshiri et al., 2020). It should be noted that while LoRa is the
main physical layer of the LoRaWAN network, but the LoRaWAN
protocol can also use other physical layer protocols such as GFSK in
specific bands. In addition, LoRa can be used as the physical layer for
other networking technologies. LoRaWAN topology is star, or star-
to-star, which is capable of increasing communication range and
maintaining low battery consumption. This is demonstrated in
Figure 7 where each sensor node can transmits data to multiple
gateways, and the network sends messages to a central server by

means of these gateways. Sensor data that are successfully forwarded
to the web-server are checked for redundancy and security. The
LoRaWAN gateway typically comprises three primary components:
a concentrator board linked to an antenna, a Raspberry Pi onboard
computer facilitating connections between the concentrator and the
LoRaWAN backend, and custom-written C++ codes managing the
entire process. This gateway utilizes the existing LAN or WiFi
network within the farm office to establish a connection with the
web server. For deployment in farming applications, all devices must
be waterproof, housed in IP68-rated cases, and equipped with
appropriate connectors. The LoRa sensor node depicted in
Figure 7 can be connected to various plug-and-sense probes,
including the DS1820 for soil temperature sensing, BlueDot
BME280 + TSL2591 for microclimate and light condition
monitoring, ADP-LWS2020 for leaf wetness, and SKU capacitive
sensor for soil moisture measurement.

3.5 LoRa connectivity for wireless
monitoring of field machine index

By tracking of agricultural machinery using LoRa GPS tracker it
is possible to determine their timeliness in large scale operations.
This is of interest for growers from a management perspective,
providing them with an overview of the efficient time that the
machine has spent on the field, and the number of hours that has
been spent on stops and row-end turning. For this purpose,
information such as time, latitude, and longitude from standard
NMEAGPS strings are stored and transmitted using one or multiple
LoRaWAN GPS tracker modules. The messages are received by one
or more LoRaWAN gateways that can be located up to 10 km or

FIGURE 6
Main components of an IoT monitoring system in agriculture using LoRa transmitters showing (A) data flow from the sensor node to the cloud, (B)
elements of the smart sensor node with LoRa and CANBUS communication for in-field measurements, and (C) back-end software for storing sensor
measurements in the database. (Source: Adaptive AgroTech) (Shamshiri and Hameed, 2021).
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more from the machine. The gateways might benefit from
preprocessing software before uploading the data to a cloud-
based mobile management app, for live monitoring of the total
operation time, total stops and row-end turning time (ineffective
operation time), total covered area, and average travel speed. An
overview of the steps involved in data collection and processing
of this approach together with sample results are shown in
Figure 8. The outputs of the software is directly used to
calculate field efficiency and machine index (Shamshiri et al.,
2013). One of the main difficulties in processing raw GPS data is

that they usually contain empty lines or broken strings. The
application software that was used to produce results
demonstrated in Figure 8 has built-in features that can detect
different interruptions and outliers before processing the data via
a simple user interface. For offline data processing, the entire
calculation is carried out via three simple steps: “Open data”,
“extract data”, and “process data”. As a result, the software
generates an output table in Excel containing detailed
information about the operation time and location of the
machine in the field.

FIGURE 7
Schematic demonstration of remote monitoring and control in digital agriculture using LoRaWAN technology. (Source: Adaptive AgroTech).

FIGURE 8
Overview of a tracking software for determining field machine index of agricultural machinery (Shamshiri et al., 2013).
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3.6 Hybrid data loggers for IoT-based
monitoring of microclimate parameters

Conventional data loggers that have been integrated with
wireless modules and IoT patches have demonstrated to be a
promising solution for improving the reliability of data
collection for digital agriculture applications. These redundant
devices minimize the disruptive effect of outdoor environment on
field monitoring. A multi-channel hybrid data logger, illustrated in
Figure 9A, features an IP66 enclosure, WiFi and LoRa antennas, an
external power supply, and aviation plug connectors specifically
designed for seamless integration with various sensor probes in
both closed-field and open-field crop production systems. Each
node is equipped with two separate circuit boards: one for
transmitting sensor and GPS data via LoRa 868 MHz
(Figure 9B) and another for LoRa/WiFi communication and
data storage on an SD card (Figure 9C). This design facilitates
the addition of new sensing capabilities to existing wireless
networks and allows for easy replacement of defective sensor
probes, minimizing network maintenance costs. The three
connectivity boards demonstrated in Figure 9 include all
necessary electronics and sockets for connecting typical sensors
used in wireless monitoring of the indoor environment. These
sensors include the BME280 (for air temperature, humidity, and
atmospheric pressure), DS18B20 (for soil temperature), LDR
Photoresistor (for light sensing), SX239 (for soil moisture), and
NEO-7 GNSS modules. To ensure robust and efficient processing,

the sensor node utilizes powerful ESP32 and Atmega328P
microcontrollers integrated with customized codes for high
efficiency and ultra-low power consumption. For example, the
logger board shown in Figure 9C supports Bluetooth and WiFi
communication and can save data on an onboard SD card via SPI
data transfer. This board can also be interfaced with other
microcontrollers using the onboard CANBUS modules. All
sensor boards have been optimized for low-power consumption
(deep sleep mode) and utilize MOSFET transistors in switch mode
for sensor probes and memory cards in a way that when the board
wakes up from a deep sleep mode, its controller triggers the
MOSFET transistor to activate all power lines. The sensor node
has a DS1337 IC for real-time logging clock and can access dates
and times from an available world clock server in the presence of a
WiFi network. The final log file is saved on a cloud server or the
onboard SD card with GPS and time stamps and may include
hundreds or thousands of data lines, depending on the data
collection frequency and growing season. Several sensor nodes
has been deployed and tested successfully in multiple farming
applications and has measured, recorded, and transferred data
without interruptions.

The hybrid data logger system presented in Figure 9C is used
for dynamic assessment of controlled environments, particularly
regarding microclimate parameters and soil temperature (ST) set-
points prior to cultivation. Understanding the reference values for
air temperature, relative humidity (RH), vapor pressure deficit
(VPD), and ST across various growth stages of fodder production

FIGURE 9
Components of a hybrid data logger including (A) an IP66 enclosure with an LCD, (B) amulti-channel sensor controller with Ethernet ports, and (C) a
LoRa/WiFi wireless connectivity board with an onboard clock and a memory card, (D, E) desktop software for downloading and monitoring sensor data
from data logger and cloud storage (Shamshiri and Weltzien, 2021).

Frontiers in Environmental Science frontiersin.org10

Shamshiri et al. 10.3389/fenvs.2024.1375193

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1375193


(Ahamed et al., 2023), allows for real-time visualization of
collected data on a mobile app, offering insights into deviations
from ideal conditions. This approach is vital for decision-making
in large-scale productions, where a controlled environment model
is initially constructed and tested. To facilitate the monitoring and
download of data from multiple sensors and cloud storage, the two
desktop software applications shown in Figures 9D, E were
developed. These applications can interface with sensor
controllers via multiple serial COM ports, allowing users to
execute commands and configure custom settings. Additionally,
the software enables users to download log files containing sensor
performance data (e.g., battery status, clock status, and historical
parameters) and upload stored data to a cloud server. Users can
also assign labels to each node for simultaneous reading and
writing of log files from multiple devices, storing the data on
local memory cards. These applications were created using the C#
programming language and Microsoft.Net Core technology,
ensuring compatibility with Microsoft Windows, Apple macOS,
and Linux operating systems. It should be noted that Microsoft.Net
Core is free, open-source software supporting various
programming languages such as C#, C++, and VB.NET. These
features offer a cost-effective and adaptable solution for future
enhancements of the Port Logger and the IoT monitoring software.
To optimize performance, both applications utilize multi-
threading technology to execute parallel routines, enabling
simultaneous listening to multiple ports and channels, and
concurrent execution of multiple tasks. Each thread defines a
unique flow of control, automatically setting different execution
paths for complex and time-consuming parallel operations.

The workflow of an IoT-based monitoring system that has been
realized by means of distributed nodes and modular hardware in a
digital agriculture project for berry orchards (Shamshiri and Weltzien,
2021) is shown in Figure 10. In this scheme, each platform is custom-
designed for specific applications in open-field cultivations based on a
powerful microcontroller (32-bit, dual-core, 240 MHz) with LoRa
modulation at 868 MHz. The nodes’ controllers were installed on
long wood supports at an average height of 2 m from ground to
overcome the issues with signal connectivity near high-density bushes
and plants. For large-scale farms, the number of the sensor nodes,
locations of the repeaters, power consumption, operating frequencies,
and the distance between transmitters and receivers should be
considered for continuous data collection. The set of hardware that
is used in IoT-based automation of farming processes includes
controllers that collect data from sensor probes (or send command
signals to control actuators), connectivity nodes (ex., LoRaWAN),
gateways, and protocol servers. Some of the radio protocols that are
most widely used in IoT applications include WiFi, BLE, LoRaWAN,
SigFox, NB-IoT, and LTE. It is sometimes necessary to have protocol
conversion in the network. Various studies have discussed the
limitations of radio wave propagation in the presence of high-
density plants (Shamshiri and Hameed, 2021; Rezvani et al., 2020)
and therefore suggested redundant nodes with onboard memory to
ensure data transmission. Experimenting with different combinations
of hardware and software setup in real farming conditions have shown
that a typical challenge with IoT deployment is that most of the
gateways use single-board computers with ARM processors, while
many software applications are designed for x86 processors, causing
compatibility issues and strange behaviors. Other challenges include

FIGURE 10
Workflow of an IoT-based distribution automation system with solar-powered modular hardware for farms located in remote, hard-to-
access areas.
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battery failures due to low or high air temperature, solar-panel failure
due to lightning, high winds, and birds droppings, and sensor probes
failure due to corrosion.

Figure 11 presents plots generated from a dataset obtained using
the hybrid data logger system in an Agricube prototype model, which
includes an electrical heater and thermoelectric cooling device (utilizing
Peltier elements and fans) to manipulate the environment. The
experiment aimed to investigate heat exchange between air and soil
bed, hypothesizing a potential linear correlation between air and soil
temperature during substantial environmental temperature
fluctuations. Further details of this experiment can be found in
Shamshiri et al. (2021) (Shrestha et al., 2020). The proposed data
acquisition system, along with sensor probes and modular battery
packs, was deployed inside the cube for a 7-day period. Data were
collected at 10-minute intervals and stored on a private cloud viaWiFi
connection for IoT monitoring. Simultaneously, the same data were
logged on an onboard SD card and could be retrieved using a standard
USB port as needed. The plots displayed in Figure 11 validate the
reliability and resilience of the low-cost data logger system in operating
on battery power under varying temperatures, crucial for long-term
evaluations of controlled environment crop production systems,
particularly in remote regions. This monitoring system offers
seamless integration into modular shipping containers, ensuring
efficient and precise operations for controlled environment fodder
production facilities.

3.7 AI-based data analysis for identification
of plants and weeds

Traditional methods of plant disease identification, such as
visual inspections and manual measurements, are time-
consuming and labor-intensive. Plant disease symptoms, weed
plants, or pest insects are normally tiny constituents in a plant
canopy and are usually hard to detect with conventional remote

sensing applications specially in the early stages of the outbreak or
growth of the pest. The plant disease yellow rust (Puccinia striiformis
West. F. sp. tritici), for example, develops small but distinctive
features as symptoms that resemble long and narrow yellow to
orange stripes. They usually occur on the plant leaves between the
veins and consist of Urediniospores pustules with a dimension of
0.4–0.7 mm accompanied by chlorosis and necrosis (Chen et al.,
2015). An expert that assesses crop diseases in the field can easily
distinguish yellow rust from other crop diseases and score its severity
at that location. This is possible because the visual symptoms of most
diseases have unique features that are quite different from each other.
This is true for many weed plants and other pests as well. A
monitoring system for crop protection that can exploit this
information in a timely, site-specific and selective manner would
help to improve control strategies for crop protection and reduce
pesticides by applying measures more precisely and sustainably in the
field. However, those systems would be in dire need of very high-
resolution data about the crop canopy. The unique and decisive
features cannot be found at the canopy or field scale but rather at
the plant or leaf scale. Thus, even drones operating at altitudes
20–100 m typically used for photogrammetric orthophoto
production cannot resolve the features accurately enough to detect
and distinguish pests in the field successfully. It is therefore required to
have a closer canopy view, not more than 2 m away, which is the area
where proximal sensing is operating and sensor systems are installed
on platforms that are very close or even in contact with the object of
interest (Adamchuk et al., 2018; Viscarra Rossel et al., 2010). In
proximal sensing, even low-cost imaging systems, such as RGB
cameras, would deliver highly detailed data that includes vital
information for crop protection. The problem, however, is the
sheer amount of unstructured image data that needs to be
evaluated to extract the important crop information.

With the advent of more sophisticated neural network
architectures including hundreds of layers and millions of
adaptable weights and the possibility of training them with the

FIGURE 11
Testing connectivity and robustness of an IoT data logger in evaluating an experimental Agricube with large temperature gradients.
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currently available computing infrastructure, specialized deep
learning models for image classification and image object
detection (Convolution neural networks) became practically
available (He et al., 2016). Deep learning is a type of machine
learning that uses neural networks to analyze data and make
predictions. With deep learning, the neural network can learn
from thousands of images of different plant species, allowing for
accurate and efficient identification. The main advantage of this
technique is its ability to identify and classify plants based on subtle
differences in their characteristics. This can be particularly useful for
identifying different varieties or cultivars of the same species. Deep
learning is a powerful tool for digital agriculture in solving object
detection problems as an alternative to traditional vision methods in
which feature descriptors (such as a scale-invariant feature
transform (SIFT)) are used for recognizing objects. In the SIFT
approach, all hand-crafted key features are used to form a definition
for an interested object class from a set of reference images and these
definitions are searched in new images to detect objects (OMahony
et al., 2020). The major drawback of these feature descriptors is that
they require a priori expert knowledge, time-consuming hand-
tuning and poor reproducibility (Lu and Young, 2020). On the
other hand, the deep learning method uses a series of hidden layers
to discover the most descriptive and salient features of an object class
on a given dataset of images, annotated with interested classes of
objects, during model training. A typical deep convolutional neural
network (CNN) architecture such as the one shown in Figure 12
consists of a multilayer stack of simple modules that learn to map a
fixed-size input (an image of dimensions 224 × 224 × 3) to a fixed-
size output (probability for each of predicted classes 1 × 1 × 60).
Within a convolutional layer, a collection of adaptable filters (or
kernels) traverses the width and height of the input volume,
generating feature maps through the dot product computation
between the filters and the input region where they overlap. The
outcomes of this locally weighted summation subsequently undergo
a non-linear transformation, often employing functions like the

rectified linear unit (ReLU). The Pooling layer facilitates feature map
down-sampling by consolidating semantically similar features.
Finally, a fully connected layer is employed to flatten the
preceding layer volume into a feature vector, followed by the
application of a regression function such as Softmax to normalize
the feature vector into a probability distribution representing
predicted classes (OMahony et al., 2020; LeCun et al., 2015).
Initial findings suggest significant promise in utilizing this
approach for grasslands monitoring, offering advantages over
conventional monitoring techniques (Basavegowda et al., 2022).

3.8 Deep learning for detection of
yellow rust

Today, convolutional neural networks outperform humans in
the accuracy of detecting the information of interest in images
(Zhou et al., 2021). One important leap forward with CNNs is
that the filters that recognize interesting features for the model
are now trained within the network itself and not
deterministically chosen such as for example in the case of the
bag of visual words classifiers (Pflanz et al., 2018). This makes
CNNs much more versatile and adaptable for automatic image
evaluation. In Schirrmann et al. (2021) (Schirrmann et al., 2021),
a deep learning model was trained to detect yellow rust from very
high-resolution RGB images at different stages of the disease
outbreak. A deep residual neural network (ResNet-18) was used
as deep learning architecture. ResNets are CNNs that include
shortcut connections in the network architecture based on
residual functions that enable skipping specific layers in the
network, which increases the training performance of the
deeper layers (He et al., 2016). Input for training and for
testing included thousands of images taken at 2 m in nadir
perspective from an RGB camera. Image acquisition was
performed unselectively to mimic sensor data collection from

FIGURE 12
A deep-CNN architecture used in identifying indicator plant species from grasslands.
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a moving platform. For supervised training, snippets of images
with and without yellow rust symptoms were used, which had
been annotated earlier by experts on the screen. Although images
could resolve sub-leaf features easily, there were cases in which
even an expert was unable to identify the symptoms of stripe rust
conclusively. Reasons were manifold and included occlusion of
symptoms by other leaves, contrast issues, or highly similar

features to yellow rust such as symptoms due to sunburn,
water deficits, or damages caused by feeding. For example, the
cereal leaf beetle produced symptoms on the leaves with a
remarkable resemblance to yellow rust because they feed
between the leaf veins. One distinguishing feature of the
damages is their rough edges, whereas stripe rust symptoms
show a smoother transition from invested to healthy leaf areas

FIGURE 13
Winter wheat canopy with and without yellow rust (YR) symptoms (A). Deep learning architecture used for classifying yellow rust symptoms in the
images (B). Receiver operating characteristics (ROC) curves for the classification of images taken at different days after inoculation (DAI) (Schirrmann
et al., 2021).
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(Figure 13). Thus, it is not an easy task for the model to decide if
yellow rust infection occurs, especially at the early infection stages.

The trained ResNet model showed high accuracy for estimating the
yellow rust symptoms after the disease has spread into the canopy to
about 2%–4%, which was after 40 days of inoculation (DAI). During
this time, symptoms showed the orange uredospore pustules aligned
along stripes on the leaves. For these images, the model had a high area
under the curve in the corresponding ROC plot (Figure 13) and the
estimation accuracy was greater than 80%. With drone imagery from
20 m above the canopy, the disease spreading was still not recognizable
because no apparent disease loci had developed. One week before,
however, when symptoms were sparser and underdeveloped,
estimation accuracy was worse with an overall accuracy of about
57%. These first symptoms were mostly chlorotic patches with a
stripe-like appearance on the leaves that occurred randomly in the
lower leaf layers and only in a few areas of the infected plots. These first
symptoms were quite hard to detect by the model.

3.9 Optimized deep learning model for
weed detection

Weed detection is one of the most important aspects of digital
agriculture that has received significant attention in recent years,
with the goal of applying computer vision and machine learning
algorithms to analyze images of crops in real time for rapid
identification and removal of weeds. Some companies have
developed sensor-based weed detection systems, which use a
combination of sensors, such as cameras, infrared, and LiDAR, to
detect weeds. These systems can be mounted on UAVs, field robots,
tractors, or other ground vehicles to scan a field while the vehicle is
in motion. In addition, some studies have reported on the
development of weed detection systems that can scan a large area
in a short time and are trained to recognize specific weeds by
analyzing large amounts of image data in order to improve the
accuracy and efficiency of weed classification based on their
characteristics. An example includes the work of de Camargo
et al. (2021) (de Camargo et al., 2021), in which the optimization
of a ResNet-18 model for the classification of weed and crop plants
in UAV imagery was considered. This study is part of a larger project
that aims to develop an intelligent real-time monitoring and
mapping system for the detection of weed distribution in cereal
crops. The idea is to capture low-altitude imagery from UAVs with
sufficient details to differentiate individual weed plants and evaluate
the images directly on the drone using optimized onboard AI image
recognition during flying. The planned system will not only
differentiate between crop plants and weeds but will also enable
the identification of learned plant species in a cultivated area. Based
on this, better application maps for site-specific and selective
herbicide management can be derived, which increases
environmental and consumer protection. In the referenced study,
the prediction pipeline of the ResNet-18 model underwent
optimization to eliminate redundant computations within a
classification model applied to overlapping tiles in a larger input
image, such as a full camera image captured from the UAV, as
described in Figure 14.

Convolution and max pooling layers, along with residual blocks,
span a broader spatial dimension due to the enlarged input size

resulting from the full camera image. To circumvent redundant
pooling operations across overlapping tiles, a custom cumulative
local average pooling layer was integrated into the network.
Annotated tiles of the UAV images were used for training the
ResNet model, which depicted weed, wheat, or soil background.
The optimized model was implemented on an NVIDIA Jetson AGX
Xavier embedded system with TensorRT (NVIDIA CORPORATE,
Santa Clara, CA, United States). In 16-bit mode, a full-image
evaluation with the optimized model was about 2.2 frames per
second. No memory issues occurred during training and testing.
Using images from a test field, the image classifier had an overall
accuracy of 94%. Even in more challenging parts of the images where
plants overlapped, the model quite accurately identified the weed
species. Both exemplary research studies show that combining low-
cost imaging technologies, e.g., RGB imaging, with artificial
intelligence enables the extraction of more specific field
information for crop protection. This would allow autonomous
monitoring of crops using imaging platforms in near proximity
to the plants, e.g., with low-flying drones or tractors passing through
the field because the images can be evaluated by specialized deep
learning models automatically while the sensor platform operates
over the field.

4 Digitalization in automation and
remote operation

4.1 Internet of robotic things for robot
teleoperation

The integration of robotics and wireless connectivity that are
integrated with virtual reality, digital twin concepts, and IoT
platforms, is often denoted as the Internet of Robotic Things
(IoRT) (Vermesan et al., 2020) and has emerged in the last few
years for collaborative control and teleoperation (Su, 2020) to
optimize the use of autonomous agricultural machinery in
unstructured farms. The main justifications for the deployment
of IoRT infrastructure in agriculture can be summarized as (i) to
provide real-time monitoring and control of the robot’s states and
functionality (i.e., location, orientation, speed, distance to obstacles,
and battery status), (ii) to feed these data to simulation models,
digital shadows, and cloud-based decision support systems, and (iii)
to send instant responses to the robot for assisting the autonomous
navigation. An effective IoRT-based solution should incorporate the
use of long-range wireless communication, simulation environment,
and web-based applications to constantly monitor the robot in the
field, and transmit human-in-the-loop control commands for robot
teleoperation. A conceptual illustration of the proposed IoRT
solution using a local LoRa network for exchanging messages
between the actual mobile robot in the field and the digital
shadow of that robot inside a virtual environment is shown in
Figure 15. This approach assists the navigation of the robot in
complex situations without the need for high-end network
infrastructure.

An overview of the message exchange between the actual robot
and its digital shadow is presented in Figure 15. The input of the
digital shadow inside the simulation is a new target position (x, y),
and the outputs are a ROS topic called SimIrus, and a CSV file that
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FIGURE 14
An intelligent online mapping system for monitoring and mapping weed plants with UAVs in crop fields based on optimized deep learning models
that can be implemented in embedded systems for fast, automatic image evaluation (de Camargo et al., 2021).

FIGURE 15
Overview of the IoRT concept for exchanging float32 messages with a field robot and assisting autonomous navigation in complex situations using
LoRa transceivers without the need for high-end network infrastructure, highlighting the architecture of the LoRa connectivity for exchanging messages
between the actual robot and its digital shadow.
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includes the corresponding latitude and longitude coordinates of the
simulated robot. The LoRa transceiver board that was interfaced
with the digital shadow of the robot using ROS serial subscribes to
this SimIrus topic and extracts the latitude and longitude
coordinates. This node also receives LoRa messages that include
the current position of the actual robot. When the digital shadow
receives a new target position, it autonomously drives to this
position using the Pure-Pursuit controller. The current positions
of the digital shadow (xc, yc) are then translated to real-world
coordinates (lat, long) every 50 milliseconds to generate a path.
This path is first visualized and validated on Google Maps using a
custom-designed web GUI (front end). The key waypoints of this
path are sent as LoRa messages to the actual robot in the field via the
LoRa transmitter connected to the simulation software and multiple
repeater nodes placed in different locations in the field to ensure
reliable connectivity. As the actual robot receives the latitude and
longitude coordinates of the path, they are published as ROS
messages so the path-tracking controller software of the actual
robot can subscribe to this message and perform autonomous
navigation. At the same time, the new position of the actual
robot is also transmitted as a LoRa message to the digital shadow
(that is running inside the simulation environment) and is used to
update the scene when the software switch shown in Figure 15
is activated.

4.2 Digital automation in variable rate
applications

In precision agriculture, variable rate applications such as
spraying or fertilizing were either realized by means of
georeferenced prescription maps that were usually generated
based on satellite remote sensing techniques, or by using on-the-
go sensors. To this aim, tractors and other large machinery were
required, and the availability of accurate GPS signals was crucial for
the success of the operation. In digital agriculture however, drones
(Shamshiri et al., 2018c) and swarms of small-scale robots that
benefit from sensor fusion can operate in GPS denial environments
and can deliver more precise VR applications by targeting individual
plants (Shamshiri et al., 2018a). This is possible due to the
availability of low-cost sensors, high-performance
microcontrollers, and onboard computers that can process big
data, support complex models, and simulate parallel decision-
making scenarios for converting precise data into actions, which
in return provides farmers with local-specific information on-the-
go. Figure 16 showcases a novel design of a variable rate liquid
fertilizer applicator, featuring a distinctive flow control and spray
system capable of administering NPK (Nitrogen, Phosphorus, and
Potassium) simultaneously at variable rates around oil palm trees in
a single pass. This system, developed following the spot application
method, is capable of evaluating the NPK status of a 25 m2 soil area
and applying N, P, and K nutrients at different variable rates using
aqueous solutions of straight fertilizers (Yamin et al., 2020a; Yamin
et al., 2020b). Based on simulation analysis, six 8006 flat fan nozzles
were meticulously chosen to ensure optimal swath coverage of
fertilizer spray. Nozzles 1–3 were affixed vertically on the
horizontal boom to apply spray on the machine side of oil palm
trees, while nozzles 4–6 were positioned at −22°, −21°, and −20°

angles to the horizontal plane on a 45° inclined boom to administer
spray across the tree, employing the trajectory approach as depicted
in Figure 16. Employing this approach, an average simulated liquid
velocity of 14.05 m/s per nozzle was determined, allowing for
spraying at a distance of 2.5 m across the oil palm tree.
Consequently, this technique achieves enhanced fertilizer
distribution around the tree within a 25 m2 region encompassing
the most effective roots. Finite element analysis was utilized to devise
the mechanical structure of the applicator, responsible for housing
all equipment and fertilizer tanks. The mechanical structure and
fertilizer tank assembly exhibited minimum safety factors of
3.13 and 11.34, respectively, ensuring their ability to withstand
the requisite weights during field operation.

4.3 Agro-food robotics

Agro-food robotics represents a fast advancing domain that is
transforming farm production capacities, leveraging the advantages
of robots over human labor, including heightened accuracy and
efficiency, enhanced consistency and reliability, and reduced
operational costs. In digital agriculture, farmers are eager to
identify deficiencies and variations in large-scale cultivations,
employing precise technology and accurate management
solutions to address them effectively. Furthermore, optimizing
input utilization is a promising approach to boost farm
profitability. Comprehensive research and development in
agricultural robotics have been documented in a wide range of
review papers (Shamshiri et al., 2018a; Bergerman et al., 2016;
Duong et al., 2020; Kootstra et al., 2020; Oliveira et al., 2021a)
covering specific tasks such as phenotyping (Atefi et al., 2021; Yao
et al., 2021; Xu and Li, 2022), arable farming (Emmi and Gonzalez-
de-Santos, 2017), livestock farming (Ren et al., 2020), greenhouse
horticulture (Barth et al., 2016), orchard management (Zhang et al.,
2019), forestry (Oliveira et al., 2021b), and food processing (Duong
et al., 2020). Review papers also cover specific technologies used in
agricultural robotics, such as computer vision (Lu and Young, 2020;
Tian et al., 2020; Fountas et al., 2022; Wang et al., 2022), active
perception (Magalhães et al., 2022), path planning (Santos et al.,
2020), and grasping and soft grasping (Elfferich et al., 2022; Navas
et al., 2024). The majority of these studies have emphasized that in
order for agricultural robots to operate efficiently in harsh and
unpredictable environments (i.e., including extreme weather
conditions), they must be equipped with redundant sensing
solutions to effectively perceive their surroundings and be able to
communicate and interact seamlessly with other robots and
machinery in the field. Some studied have proposed robotic
platforms with flexible designs that can be integrated with
custom-built attachments to perform specific tasks such as
mowing (Verne, 2020), weeding (Gerhards et al., 2022), and
spraying (Meshram et al., 2022). Robots that are equipped with
several data acquisition devices such as multi-spectral (Karpyshev
et al., 2021), hyperspectral (Zhang et al., 2012), NDVI (Tiozzo
Fasiolo et al., 2022), thermal (da Silva et al., 2021), or NIR
cameras (Milella et al., 2019) provide a great opportunity for
field scouting (Yamasaki et al., 2022), early disease detection
(Mishra et al., 2020), and yield estimation (Kurtser et al., 2020;
Massah et al., 2021). Employing robots for these tasks have a high
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potential for saving costs, however this is justified if additional
cultivation steps or a higher repetition rate leads to a qualitative or
quantitative increase in yield. A recent study on the acceptance level
of agricultural robots in Germany clearly indicates that the majority
of the farmers surveyed are keen to immediately use this technology

on their farms specially for tasks such as weeding due to the potential
benefits of saving labor and practicing more sustainable farming
methods (Rübcke von Veltheim and Heise, 2021). A survey in the
published studies also shows that small robots are particularly of
interest for small and irregularly shaped fields where large

FIGURE 16
An automatic variable-rate liquid fertilizer with adjustable spray coverage, developed for practicing digital agriculture in oil palm plantations (Yamin
et al., 2022).
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machinery are unable to operate efficiently (Shamshiri et al., 2018a).
The scalability of field robots and suitability for small field sizes
besides their lower ownership costs create opportunities for smaller
farms to become economically viable.

4.4 Autonomous navigation with
collision avoidance

The development of robust collision avoidance systems for
mobile robots that operate inside unstructured agricultural fields
proposes serious challenges due to the extreme variations in high-
density bushes and disturbances of the outdoor environment. Data
fusion and multiple perception solutions are usually employed to
assist the existing GPS-based navigation and to improve the
reliability of the operation. Figure 17 shows the hardware layer of
a control system that benefits from a set of ROS-basedmulti-channel
infrared sensors for providing feedback, and a Jetson Nano onboard
computer for performing the computation. The system is expected
to maintain an agricultural tractor between the plants’ rows with an
accuracy of 5–10 cm from the side with an ideal speed of 5–8 km/h
(Weltzien and Shamshiri, 2019). In the software layer, different
controllers including PID, machine learning, and fuzzy knowledge-
based algorithms (Shamshiri et al., 2024) can be implemented and
compared. However successful development of such systems
requires a proof-of-concept via extensive validation tests with the
digital representation of the sensors, a dynamic model of the robot
platform, and a virtual replica of the orchard. The effectiveness and
throughput of agricultural mobile robots are propelled by the

utilization of machine learning (ML) and deep learning (DL)
techniques, which empower robots to learn from and analyze
data autonomously, without explicit programming. ML/DL has
emerged concurrently with the discipline of Big Data, facilitating
the detection of relationships, analysis of patterns, and generation of
predictions within farming activities. An illustrative example of the
application of supervised machine learning algorithms, coupled with
multiple distance detection sensors, is demonstrated by the SunBot
project, as depicted in Figure 17, which proposes the use of a field
agent robot for autonomous navigation within berry orchards,
conducting health assessments and gathering data to support
digital agriculture initiatives. Given the limitations of traditional
farming approaches in enhancing productivity, modern farms
increasingly rely on IoT systems for data collection, alongside
ML/DL techniques for data analysis and decision-making. This
integration enables farms to automate partially or fully, thereby
optimizing operations and driving productivity growth.

To verify the effectiveness of the proposed collision avoidance
system depicted in Figure 17, initial field visits were conducted to
collect preliminary data using high-precision RTK GPS. These data
served as the foundation for creating a virtual orchard within
CoppeliaSim (Shamshiri et al., 2018b), which was interfaced with
the ROS (Quigley et al., 2009). This setup facilitated the testing of
different sensors, hardware in the loop, and control algorithms on a
full-scale simulated tractor and orchard model, as depicted in
Figure 18. The simulation methodology involved translating raw
data streams from various sensor inputs (such as GNSS, LiDAR,
laser, radar, and RGB camera) into actionable information within
the command and control system. This allowed for experimentation

FIGURE 17
A proposed control system for collision avoidance in a four-wheel steering field robot agent for berry orchards, utilizing multiple programmable
distance sensors to implement machine learning and knowledge-based algorithms for assisted navigation (Shamshiri et al., 2024).
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with autonomous navigation, enabling the tractor to avoid both
moving and stationary obstacles within the orchard environment.
Through this simulation-based approach, the proposed collision
avoidance system could be thoroughly evaluated and refined before
implementation in real-world settings. The result provided a safe,
fast, and low-cost experiment platform for the development, testing,
and validating of the sensing and control strategies with different
algorithms. The simulation scene shown in Figure 18A enabled
human-aware navigation by finding the best positions for each
sensor on different tractors and provided a flexible solution for
attaching other implements and determining the optimum row-end
turning patterns in presence of random obstacles. It also accelerated
complicated analysis with the weight distribution of the attached
implements and to understand the behavior of the tractor on uneven
terrains. The main elements of the simulation scenes in this project
were (i) mesh files representing plants, tractors, and obstacles, (ii)
API and codes that created interfaces between different software
environments, and (iii) algorithms and dynamic models including
image processing for human detection, inverse kinematics for the
hydraulic arms, minimum distance calculation, steering system,
path following, and obstacle avoidance algorithms. A prototype
of the final proposed solution that benefits from various sensors
for autonomous navigation, obstacle avoidance, and safety is shown
in Figure 18B. It should be noted that although electrical tractors and
mobile robots are contributing to the digital transformation of
agriculture by replacing drivers and human operators with

artificial intelligence, they are still functioning in experimental
phases and require supervision, which makes them far from
being deployed on commercial and large operational scales.

4.5 IoT-based control of irrigation pumps

Maintaining precise control of environmental variables within
both open-field and closed-field production systems has significant
potential for enhancing operational sustainability. By minimizing
water, chemical, and energy demands while simultaneously
mitigating disease spread, and increasing yield, such control
measures can result higher profits. In controlled environments
like aeroponic or hydroponic indoor farming, automation
systems encounter various uncertainties and disturbances that
elude complete modeling or implementation via conventional
control algorithms. Consequently, adaptive solutions are
necessary to effectively limit production costs and enhance
efficiency. To achieve this, data collected from multiple wireless
sensors distributed across the growth environment should be
leveraged in conjunction with knowledge-based software and
dynamic models. For instance, the IoT-based fertigation control
system, shown in Figure 19, can monitor various aspects of a
hydroponic production, including flow rate, electrical
conductivity (EC), and pH of the fertigation solution, alongside
external variables such as solar radiation and climatic conditions.

FIGURE 18
Demonstration of a proof-of-concept for assisted autonomous navigation showing (A) a dynamic simulation for experimenting with multiple
sensing solutions, and (B) an articulated steering electric tractor manufactured byWeidemann, equipped with a custom-built electric mower (courtesy of
the SunBot project).
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Utilizing the collected data, the system integrates them into models,
rule-based algorithms, or adaptive control laws to ensure that
specific control commands, such as triggering particular pumps
or initiating other processes, are executed at the right moments to
effect environmental adjustments. This approach optimizes resource
utilization, and enhance sustainability and overall system
performance.

Since control of some actuators require separate driver boards
that can only receive specific type of messages, a separate custom-
designed IoT-based controller was designed that communicates
with wireless sensor nodes, end-users, and actuators drivers, and
can send and receive command signals via CANBUS as shown in
Figure 20. This controller board benefits from a STM32 32-bit
ARM processor, and an ESP8266 microcontroller, an onboard
RTC clock, two CANBUS ports for industrial communication, and
an SD card for data logging. The board can also be interfaced
simultaneously with multiple controller driver boards such as relay
modules via wired communication ports such as I2C, USART, and
SPI, or by means of WiFi wireless signals. The control commands
can be generated by the crop growth models that have been
implemented in the processor as codes or Simulink blocks.
Furthermore, the controller is capable of receiving command
signals from cloud-based applications. Concurrently,
environmental sensors are attached to collect measurements,
storing data on an SD card, and transmitting data either
directly to a web server or through wireless communication to a

gateway utilizing LoRamodulation. An in-depth elucidation of this
framework pertaining to greenhouse tomatoes is provided in
(Shamshiri et al., 2020; Rezvani et al., 2020). The board
presented in Figure 20 was utilized to collect air temperature
data within an experimental Agricube. Programmed to read and
transmit measurements every 10 s, the board conveyed this
information to an open-source secure cloud database via WiFi
connection. These data points, each assigned a unique ID
representing the collection time and location, were stored on a
private cloud database accessible via a secured API key address.
Subsequently, they were utilized by the IoT controller as feedback
for the control algorithm.

To ensure the reliability of IoT control, numerous data
collection samples were conducted and analyzed. The results
indicated that no data points were lost during the tests as long as
the WiFi network remained available. Enhancing the system’s
reliability can be achieved by augmenting the number of WiFi
access points, enabling the controller to seamlessly switch
between networks. The response of the controller, as depicted in
Figure 20, illustrates the robust performance of IoT-based
automation, characterized by high spatiotemporal resolution and
excellent stability in data transfer, with 10 readings per minute
achievable within a 1.0 km distance from the wireless controller.
This level of performance underscores the reliability of this approach
in adjusting growth parameters for controlled environment crop
production systems.

FIGURE 19
Realization of IoT-based control for multiple actuators using LoRa sensors and a WiFi receiver for precision irrigation, showing (A) the main
components and connections betweenmodules, (B) awireless sensor nodewith onboard GPS, and (C) a wireless controller with onboard relays. (Source:
Adaptive AgroTech).
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4.6 IoT-based monitoring in
remote locations

The majority of agricultural fields are situated in remote
regions with restricted mobile coverage and network
accessibility. Consequently, it is commonplace to utilize wireless
transmitters and WiFi repeaters to extend coverage over broader
areas. However, the energy consumption of these devices, coupled
with their reliance on limited energy sources, poses a significant
challenge that necessitates design of power management boards.
Figure 21 illustrates multiple solar-powered LoRaWAN sensors
deployed across various berry orchards in the state of
Brandenburg, Germany (Shamshiri and Weltzien, 2021). These
sensors are employed for IoT monitoring of various agricultural
parameters, including air and soil temperature, relative humidity,
soil moisture, leaf wetness, light conditions, and dew-point
temperature. Using solar power, these sensors offer a
sustainable solution for remote monitoring, ensuring battery
charging for continuous data collection and transmission
without relying on frequently battery replacement. Some of the
main difficulties experienced with the implementation and use of

these IoT sensors in orchards can be mentioned as: lack of
infrastructure for mobile network coverage, data management
and concerns regarding security and privacy, issues related to
cost and maintenance, scalability limitations, tolerance to faults,
and the need for skilled professionals to implement and manage
the system. In addition, inflexibility of the available IoT solutions
to operate in harsh environmental conditions, as well as regulatory
compliance and standards adherence can be mentioned as the
main factors that prevents farmers from adopting these devices.
Although LPWAN, point-to-point LoRa, and LoRaWAN sensors
are low-energy solutions with long communication range, but they
can also face connectivity limitations such as signal interruption
and wireless signal quality. For example, in remote areas
characterized by geographical constraints and diverse land
topologies, wireless signals may encounter attenuation issues
due to environmental obstacles or electromagnetic interference
from other devices. Such challenges can delay the propagation of
wireless signals, impacting the reliability of communication
networks. To address these issues, various solutions such as
installing signal repeaters to amplify and extend the reach of
wireless signals can be used. Additionally, designing more

FIGURE 20
Realization of IoT-based control for multiple actuators with separate drivers via WiFi, showing the connectivity board that functions as the receiver
and main controller, and sample data collected from an experimental Agricube, demonstrating the closed-loop response of a simple ON/OFF control
system for a heater to maintain the air temperature between 25°C and 27°C with a feedback frequency of 0.16 Hz (Source: Adaptive AgroTech).
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efficient network topologies, such as mesh networks, can help
optimize signal propagation by establishing multiple
communication pathways and enabling data to circumvent
obstacles more effectively. These measures contribute to
improving the robustness and reliability of wireless
communication systems in remote and challenging environments.

In small-scale fields, the costs associated with maintenance
and ownership may not be justifiable for farmers, particularly
when concerns arise regarding the potential sharing of sensitive
field information and the associated risks to their production
reputation due to inadequate IoT security protocols. The
differences between hardware and software from different
manufacturers imply heterogeneity in wireless
communication protocols and connectivity standards, making
it difficult to integrate and standardize the IoT automation
process. Additionally, there is currently a lack of
standardization and regulation in the IoT industry, which
can lead to confusion and complexity when implementing
IoT devices in agriculture. Therefore implementation and
maintenance of IoT in commercial farms can be expensive
and require significant investment in hardware, software, and
network infrastructure. Moreover, the reliability of IoT-based
automation systems in agriculture is significantly influenced by
the harsh environmental conditions and varying climatic
characteristics, such as high temperatures, wind speeds,
heavy rain, and dusty environments, which can damage
sensors or disrupt their performance. Consequently, selecting
robust hardware setups capable of withstanding these conditions is
paramount. An illustrative example of such a robust hardware
setup is presented in Figure 21, showcasing a modular IoT solution
featuring multiple LoRaWAN sensors and gateways custom-built
for live field monitoring projects (Shamshiri and Weltzien, 2021;
Weltzien and Shamshiri, 2019). These devices are designed to
withstand harsh field conditions and address challenges associated
with WiFi instability. Each sensor benefits from multiple
transmitters to mitigate the risk of signal loss, while multiple
gateways ensure data uploads to private clouds, enhancing
system reliability and resilience.

5 Perspectives of agriculture
digitalization in near future

5.1 The 5G network

The introduction of the fifth generation mobile network (5G) is
reshaping and redefining digital agriculture, initiating new
possibilities for farming mechanization. A noticeable trend in this
context involves the deployment of distributed automation systems,
including collaborative robots and swarms of small-scale unmanned
machinery. These systems can autonomously perform a range of
site-specific operations such as weeding and spraying, leveraging
IoT-based cloud computing services. Although similar solutions
have been piloted or implemented on a commercial scale, ensuring
stable and secure connections between nodes remains a persistent
concern. The dynamic nature of agricultural environments, coupled
with the reliance on wireless communication, underscores the
importance of addressing connectivity stability and security to
maximize the effectiveness of these automation systems. Efforts
to enhance connection stability and security between nodes are
essential for realizing the full potential of distributed automation
systems in digital agriculture. The 5G network will provide a reliable
and secure communication infrastructure with low latency
capabilities for the realization of automated farms (Ma et al.,
2017; Khanna and Kaur, 2019; Valecce et al., 2019; Tang et al.,
2021) with AI-robotics. Compared with 4G networks, 5G has a faster
information transmission rate with higher quality of dissemination,
which can effectively be used in developing smart systems with high-
speed data transfer, up to 20 Gbps, and can connect more devices per
square kilometer (Li and Li, 2020; Said Mohamed et al., 2021). This is
crucial to enable robotization and digital agriculture processes.
Simultaneous use of local mesh and cellular networks can effectively
address the problems with poor communications, allowing growers to
have uninterrupted stream of data (Franchi et al., 2021), including crop
yield, soil, fertilization, smart monitoring, irrigation management,
pesticide applications, disease management, autonomous navigation,
fruits harvesting (Navas et al., 2024), and supply chain management
(Khujamatov et al., 2021; Friha et al., 2021). An example lies in the work

FIGURE 21
Implementation of an IoT-based monitoring system in a berry orchard to overcome uncertainties and connectivity issues in remote locations,
showing (A) multiple solar-powered WiFi/LoRa sensors with modular accessories, (B,C) wireless data logger and transmitter for wireless monitoring of
microclimate parameters, and (D) connectivity boards with WiFi/LoRa modules (Source: SunBot.de).
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of Xue et al. (2021) (Xue et al., 2022), in which a frame structure for a
drip irrigation remote control system (DIRCS) utilizing 5G-IoT
technology alongside a mobile application was introduced.
Additionally, Tang et al. (2021) (Tang et al., 2021) demonstrated
significant benefits achieved through the implementation of IoT,
including a 20% reduction in labor force, a corresponding 20%
decrease in pesticide usage, and optimized utilization of water
resources and fertilizers (Yu et al., 2021). Figure 22 visually depicts
various applications of the 5G network in digital agriculture, illustrating
the connectivity links between different sections. These applications
showcase the potential of 5G technology to revolutionize agricultural
practices, enabling efficient remote control andmonitoring systems that
enhance productivity while promoting sustainable resource
management.

The deployment of the 5G mobile network is currently
underway in some developed countries, including the
United States, the United Kingdom, Germany, South Korea,
Japan, and China. However, the initiation of 5G network
deployment in many least developed countries is anticipated to
require a significantly longer timeframe (Rahman et al., 2021).
While the 5G network offers advantages in wireless
communication, ensuring uninterrupted connectivity, there
remain substantial challenges such as reducing interference,
minimizing latency, optimizing power consumption, and
enhancing data rates (Sah et al., 2022). Despite assurances from
5G service providers regarding data integrity, confidentiality, and
availability, security remains a critical concern that necessitates
attention (Humayun et al., 2021). Moreover, the limited battery
capacity of sensor nodes poses a challenge for achieving sustainable
digital agriculture within a 5G framework. When sensor nodes
exhaust their energy reserves, the data center becomes unable to
capture environmental information, leading to potential disruptions
in decision-making and action implementation (Chien et al., 2022).
However, nevertheless these challenges, IoT-enabled precision
smallholder farming holds significant promise for enhancing

livelihoods and expediting the journey to self-reliance for low-
and middle-income countries (Antony et al., 2020). By leveraging
advancements in connectivity and data analytics, digital agriculture
powered by 5G technology has the potential to revolutionize existing
farming practices, and contributing to a more sustainable
agriculture.

5.2 Digital twin concept in greenhouse crop
production

Digital twin (DT) is one of the trending solutions toward real-
time evaluation, optimization, and predictive control of complex
systemic process, which has been successfully implemented in
various industrial fields including manufacturing (Kritzinger
et al., 2018), construction (Korenhof et al., 2021), automotive
(Vachálek et al., 2017), energy (Howard et al., 2020). Originated
back in 2003 by Michael Grieves (Jones et al., 2020), digital twin is
commonly described as consisting of real-world entity (i.e., a
physical product, a process, or a machine component) that is
interfaced with a virtual replication of that entity (i.e., a
simulation model) via bi-directional data connections for feeding
data and exchanging information between the two (Grieves and
Vickers, 2017). In this concept, the physical system interacts with the
digital counterpart within a centralized or cloud-based architecture
in order to optimize the process, update control parameters, and
generate predictive solutions for what-if scenarios. It should be
noted that a system without a connection from the virtual object to
the physical object is different from digital twin, and is called digital
shadow (Elahi et al., 2022).

Digital Twins have been used successfully in agriculture for
developing autonomous farming robots (Foldager et al., 2020),
identification of plant pests and diseases in crop production
(Pylianidis et al., 2021), stock monitoring of feed silos of
livestock farms (Raba et al., 2021), and energy management in

FIGURE 22
Selected applications of 5G technology in digital agriculture for improving crop production and increasing efficiency.
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commercial greenhouses (Ashraf et al., 2021; Chaux et al., 2021;
Howard et al., 2021). Compared to the industrial application, the
agricultural use of DT is still limited, but has a high potential to be
expanded in the near future. The main use cases of digital twin in
agriculture are focused on predictive analytics, remote monitoring,
resource optimization, and risk mitigation (Purcell et al., 2023).
Examples includes studies on predictive models that simulate crop
growths and soil conditions in order to improve fertilizing and
irrigation (Skobelev et al., 2021), or IoT monitoring of plants health
and environmental conditions and simulate difference scenarios
such as disease outbreaks to mitigate potential losses (Tekinerdogan
and Verdouw, 2020). Recently, digital twins have been adopted and
employed as a framework in the automation process of commercial
greenhouses and hydroponic farms with the objective of reducing
energy cost and improving sustainability of the production. To run
the digital twin, a connection between the virtual and the physical
object is necessary, which includes a various range of sensors at and
around the physical object, so the digital twin can realise and react in
real-time to all internal and external impacts that have an effect on
the behaviour of the physical object. These sensor data are then
processed by the digital twin and compared with the physical object
from the real world, often carried out with artificial intelligence and
machine learning. In this way, the digital twin is always learning
from its physical counterpart. Using this approach, it is possible to
have the DT trained in a way that it can predict the physical
reactions solely from the external impacts, which result in great
opportunities such as perceiving failures before they occur or
simulating different scenarios to optimize processes without any
physical effort. The connections between the physical and virtual
part can also exist the other way round, so the gathered data and the
resulting predictions from the virtual part can be used to control and
correct the actions of the physical part. An overview of the data
architecture and concepts of applying DT for greenhouse crop
production is shown in Figure 23 that involves three main tasks
as energy control, microclimate control, and production changes.
The goal is to monitor optimality degrees of microclimate
parameters (Shamshiri, 2017), reduce energy inputs (Ahamed
et al., 2019; Jain and Tiwari, 2002), and enhance all processes
from the start of the incoming plants until the delivery.

Modern commercial indoor growing systems have embraced
predictive models and model-reference adaptive controllers within
their automation systems, leveraging feedback from wireless sensing
or IoT monitoring platforms to overcome the challenges posed by
conventional timer-based control methods. Through the utilization of
digital twin concepts, real-time monitoring of parameters facilitates the
training of AI-based algorithms such as machine learning controllers or
the development of self-optimizing dynamic models (Shamshiri and
Hameed, 2021; Shamshiri et al., 2020; Ashraf et al., 2021; Shamshiri H.
C.M. et al., 2017; Shamshiri R. et al., 2017; Asfahan et al., 2021; Rezvani,
2021; Sultan et al., 2021), aimed at minimizing energy inputs while
maximizing profitability. Figure 23 also illustrates the architecture of a
digital twin designed for optimizing greenhouse environmental control,
that continuously updates parameters based on various objective
functions, including maximizing yield, profit, waste reduction, and
minimizing energy consumption. In this framework, the control
objective revolves around maintaining internal parameters close to
predefined set-points byminimizing a cost function that drives the error
between reference values and model values to zero. For microclimate

parameters, the controller engages ventilation fans, shading covers,
heating, or cooling systems to achieve optimal air temperature and
relative humidity, corresponding to an optimal vapor pressure deficit. It
should be noted that the dynamics of such systems are highly nonlinear,
subject to variations in solar radiation, crop growth stages, covering
materials, external conditions, and other disturbances, necessitating the
self-tuning of control parameters to mitigate nonlinearities. To address
these challenges, multiple wireless sensor nodes are deployed both
inside and outside the greenhouse, transmitting measurements to a
receiver board. A control algorithm is then employed to adjust the
growth environment by activating pumps and other actuators, thereby
ensuring optimal conditions for plant growth and productivity while
minimizing resource consumption and waste.

5.3 Blockchain

Blockchain is an emerging digital technology that has the potential
to revolutionize the way farming and food production is conducted by
creating a decentralized and secure network, contributing to better
transparency, traceability, and efficiency in the agricultural supply
chain. Blockchain can be used to create a digital ledger that records
all of the data generated by sensors and controllers. This data can then
be used to make more informed decisions about planting, fertilizing,
and harvesting crops. For example, growers can use blockchain-based
smart contracts to automatically adjust the amount of fertilizer used in
their fields by taking into account the soil’s nutrient content in order to
reduce the amount needed and minimize environmental impact. A key
application of this technology in digital agriculture is supply chain
traceability, whichmeans creating a digital ledger that records the entire
history of a product, from farm to consumer. This can help to improve
food safety, reduce the risk of fraud by tracking the origin of products,
and ensure that they meet certain quality standards. Such information
are required to improve the efficiency of supply chains, as it allows for
better tracking of inventory and logistics. Additionally, by providing
consumers with a transparent view of the entire supply chain,
Blockchain leads to higher consumers’ trust in the products they are
buying. In terms of farmers’ compensation, Blockchain can be used to
create decentralized platforms where farmers can sell their products
directly to consumers, bypassing intermediaries and increasing their
profit margins. This also helps to ensure that farmers are paid a fair
price for their products, rather than relying on intermediaries who may
take a significant cut of the profits. For example, from farmers and seed
seed to consumers’ shelf, a blockchain-based supply chain solution can
track each process with unique identifiers as shown in Figure 24 and
create a digitally traceable end-to-end journey.

Another potential application of blockchain technology in
agricultural robotics is the use of autonomous drones and other
robots. Blockchain can be used to create a secure and decentralized
network that allows drones and robots to communicate and share
data in real-time. This can help to improve efficiency, reduce costs,
and minimize human error in the agricultural supply chain. For
example, drones can be used to survey crops and identify areas that
require attention, while robots can be used to perform tasks such as
planting, harvesting, and maintaining equipment. In addition to
these applications, blockchain technology can be used to improve
the way that agricultural land is managed. For example, it can be
used to create an immutable record of land ownership, reducing
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disputes and increasing transparency in land transactions.
Additionally, blockchain can be used to create a digital record of
land use, making it easier for farmers to access government subsidies
and other benefits. In addition, it can help to reduce environmental
impact, optimize crop yields, and increase revenue potential for
farmers. This is particularly important in countries where land
ownership records are often poorly maintained or subject to
corruption. It should be noted that while blockchain is
considered a promising technology towards a transparent supply
chain of food, there are still many barriers and challenges that hinder
its wider acceptance among farmers and producers. These
challenges are mainly due to technical aspects and limitations in
the existing infrastructure, as well as education, policies, and
regulations. Nevertheless, it is widely discussed that when
successfully implemented, blockchain has the potential to create a
more efficient, transparent, and secure supply chain. This reduces
environmental impact and optimize crop yields, making agriculture
more sustainable and profitable for farmers.

6 Economic, social, and technical
considerations

While the highlighted technological solutions play a significant
role in the digitalization of agriculture, there exists several

limitations and barriers such as high costs that farmers, especially
those operating on tighter budgets, must address to ensure broad
acceptance, adoption, and utilization. For example, farmers should
consider the return on investment (ROI) (Griffin et al., 2018)
associated with deploying expensive 5G infrastructure (van
Hilten and Wolfert, 2022), autonomous electric tractors and
robots (Rose et al., 2021), and IoT devices (Liu and Wu, 2021),
alongside exploring potential subsidies or financial support
mechanisms. For ROI calculations, factors such as reduced labor
costs, optimized resource utilization (such as water and fertilizers)
(Sandor et al., 2022), minimized waste, and enhanced decision-
making should be taken into account. Robotics, wireless automation,
and live monitoring systems can provide excellent insights into crop
health to prevent losses, as well as targeted application of inputs for
cost savings and yield improvements. Therefore calculating the ROI
should involve evaluating not only the initial investment but also the
long-term savings and increased productivity they offer. In addition,
challenges related to the reliability and scalability of current
technologies pose significant concerns to their widespread adoption.

Looking to the future, potential breakthroughs in digital agriculture
involve advancements in AI and machine learning algorithms for
predictive modeling and decision support (Aworka et al., 2022), the
integration of Blockchain technology for transparent and traceable
supply chains (Kamilaris et al., 2019), and the development of
biotechnology solutions for crop improvement and pest

FIGURE 23
Workflow and architecture of a digital twin approach for optimizing environmental control in greenhouse crop production under tropical lowland
climate conditions (Source: Adaptive AgroTech).
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management (Steinwand and Ronald, 2020). Additionally, the
continued expansion of rural connectivity and the adoption of 5G
technology is expected to further accelerate the digital transformation,
enabling real-time data exchange even in remote areas. Although this
transition to highly digitalized farming practices, particularly for those
in developing countries, is still a significant challenge, but it can be
facilitated by the availability of affordable hardware and infrastructure,
customized solutions, training centers, and feedback mechanisms. It
should be noted that this transition carries social and cultural
implications, especially for rural communities deeply rooted in
traditional methods, leading to a restructuring of their economies,
potentially changing existing employment patterns. For instance, as
fieldworks become more automated and data-driven, there may be a
shift away from labor-intensive tasks, hence impacting the roles of
seasonal workforce and their integrationwithin local communities. This
results in both opportunities and challenges, such as the creation of new
skilled jobs in technology-related fields, as well as the displacement of
workers who lack the necessary digital literacy or access to training
opportunities. While some farmers may benefit from the increased
productivity and efficiency enabled by digital tools, others struggle to
afford or access the necessary technology and training. This can divide
and widen socioeconomic inequalities within rural communities,
reinforcing disparities between large commercial farms and small-
scale or subsistence farmers. Preserving and honoring these cultural
legacies while simultaneously embracing innovation pose a delicate
balancing act for rural communities undergoing digital transformation.
To this aim, developing robots, sensors, mobile apps, and software that
are compatible with low-resource settings and support multiple
languages, or organizing community-based hands-on workshops,
peer-to-peer learning networks, and collaboration between research
institutions for enhancing digital literacy will accelerate the accessibility
of technology to a broader range of farmers irrespective of their
geographic location or socioeconomic status.

7 Summary

The digitalization of agriculture is revolutionizing the way crops are
produced and food is secured. The use of cutting-edge technologies such
as robotics, computer vision, IoT, 5G, digital twin, and blockchain has

allowed farmers to make more informed decisions, optimize crop yields,
and reduce costs. This has led to more sustainable and efficient
agriculture, which is crucial for ensuring food security in an
increasingly populated world. The use of robotics in agriculture has
increased efficiency and reduced labor costs, while computer vision and
IoT have allowed for real-time monitoring and data collection. Whether
it is through the use of drones for crop scouting, autonomous tractors for
tilling and planting, or robot manipulators for harvesting, agricultural
robots are changing the way farming activities have been conducted for
decades. The integration of 5G networks has improved connectivity and
data transfer speeds, making it easier for farmers to access information
and make decisions. Future trends in this field shows that new concepts
such as digital twin allows for virtual testing and simulations, providing a
cost-effective way for farmers to make informed decisions. In addition,
blockchain technology has the potential to improve traceability and food
safety by providing a secure and transparent way to track the movement
of crops from the farm to the consumer. However, the widespread
adoption of these technologies in agriculture is not without its challenges
and limitations. Network coverage and connectivity, data management
and storage, security and privacy, cost, interoperability and integration,
and regulation and standards are just some of the challenges that were
highlighted in this paper that need to be overcome. To address these
challenges and promote the acceptance of digital technologies in
agriculture, it is important for all stakeholders, including
governments, industry, and the research community, to collaborate
and work together. Governments can play a key role by providing
funding and support for the development and implementation of
these technologies. Industry can help by investing in research and
development and providing solutions to the challenges faced by
farmers. The research community can contribute by conducting
studies to better understand the limitations and challenges of these
technologies and exploring new and innovative solutions. In
conclusion, with the right support and investments, digital
agriculture has the potential to make a significant contribution to
transform crop production into a more sustainable and efficient
system that can ensure food security for generations to come.
Future studies may involve analyzing of the socio-economic
impacts of digital technologies in agriculture, such as the impacts
of digitalization on farmers and rural communities, the accessibility
and affordability of the existing solutions, and the policies and

FIGURE 24
Schematic description of Blockchain application in agriculture.
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regulations that support or hinder the adoption of future
developments.
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