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Introduction: Vegetation is the main factor of ecological stability, but the
construction of largescale corridor projects will bring some damage to vegetation.

Methods: Based on the NDVI, temperature and precipitation data of the growing
season from 1990–2021 (June to September), this paper uses the maximum
synthesis method, trend analysis method, correlation analysis method and
coefficient of variation method to study the spatial-temporal changes and
driving factors of NDVI in the past 32 years, taking the 30 km belt buffer zone
along the Lan-Xin Railway as the research area. The influence range of railway
construction on NDVI in different climatic conditions is analyzed.

Results: The results showed that: (1) From 1990–2021, the average annual
temperature of the growing season in the study area showed an increasing
trend, the average annual precipitation showed a decreasing trend, and the
average annual NDVI showed an increasing trend; NDVI was positively
correlated with temperature in 54.04%, and positively correlated with
precipitation in 62.88%. Precipitation had a greater effect on NDVI than
temperature. (2) Under the same climatic conditions, the NDVI variability
coefficient in the study area fluctuates significantly within 3,000–21,000m
along the railway line, stabilizing beyond 21,000m; the impact range of
railway construction on NDVI gradually increases with increasing precipitation
within the same temperature range, and increases gradually with rising
temperatures within the same precipitation range. (3) During the growing
season (June to September) in the study area, when the temperature is below
25°C, NDVI increases initially with increasing precipitation before decreasing,
showing an overall upward trend; when the temperature is above 25°C, NDVI
initially increases with increasing precipitation before decreasing. High
temperature and high precipitation will inhibit vegetation growth and reduce
NDVI. TheNDVI of the core area before the railway construction is larger than that
of the background area, while the NDVI of the core area after the railway
construction is smaller than that of the background area.

Discussion: In short, the construction of Lan-Xin Railway has a certain influence
on NDVI along the line. When studying the impact of large-scale engineering
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projects on vegetation in the future, higher resolution imagery can be used along
with the incorporation of human activities’ influence. These factors will enable
more accurate and comprehensive research.
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1 Introduction

Large-scale linear engineering constitutes a critical component of
the modern in-tegrated transportation system. It plays a significant role
in supporting the national economy during its new development phase
and serves as a crucial strategic asset of the country (Li et al., 2017). The
Lan-Xin Railway project comprises both the Lan-Xin Railway and the
Lan-Xin high-speed railway. The Lan-Xin high-speed railway serves as
the primary railway artery traversing Gansu, Qinghai and Xinjiang
provinces, which not only adds a large transport capacity out of
Xinjiang, greatly improves the transportation capacity, but also
forms the main framework of Xinjiang’s connection with the inland
provinces and regions. The construction of the Lan-Xin Railway project
has greatly improved the capacity of both passenger and freight
transportation. It has become a crucial “transport channel” that
accelerates the western development process. However, it is
important to acknowledge that the ecological environment in
Xinjiang is extremely fragile and challenging to restore once
damaged (Zhou et al., 2015; Liu et al., 2022). The construction of
railway projects have caused disturbances to the surface vegetation and
vegetation growth environment along the Lan-Xin Railway (Cui and
Shi, 2010; Otto et al., 2016; Jiang et al., 2017; Li et al., 2019). This has
accelerated soil erosion, compromised the water-holding capacity of the
soil in this area, and led to the degradation of the overall quality of the
ecological environment (Dutta et al., 2015; Lu et al., 2018; Zhu et al.,
2018). Consequently, the already vulnerable ecological environment in
Xinjiang faces increased ecological pressure (Fu et al., 2016; Luo et al.,
2018; Zhou and Liu, 2018; Xu et al., 2020).

The Normalized Vegetation Index (NDVI) serves as a crucial
indicator for monitoring vegetation cover (Xie et al., 2023), and it is
extensively utilized in the assessment of vegetation (Ma et al., 2021a;
Xiong et al., 2023) and ecological environments (Xu et al., 2022).
Scholars, both domestic and international, have employed NDVI data
in studying the status of vegetation growth and its response to climatic
factors. Zhang et al. (Zhang et al., 2021a), Li et al. (Li et al., 2021), and
Xue et al. (Xue et al., 2021) have employed correlation and trend
analysis to examine the changes in vegetation cover and its responses to
driving factors in regions such as Tibet, Xinjiang, and Southwest China.
Utilizing MODIS NDVI data, Ma et al. (Ma et al., 2022), Guan et al.
(Guan et al., 2021), and Yu et al. (Yu et al., 2020) have analyzed the
impacts of climate change and human activities on the dynamics of
vegetation change in Xinjiang. Xu et al. (Xu et al., 2023), Cui et al. (Cui
et al., 2023), and Cui et al. (Cui et al., 2018) have used the Yangtze River
and Songhua River basins as their research subjects, studying the
dynamic impacts of climate change on the basins’ vegetation. Some
researchers have also investigated the influence of large-scale projects on
NDVI. Yang et al. (Yang et al., 2021), Yang et al. (Yang et al., 2022), Ma
et al. (Ma et al., 2021b), taking the Qinghai-Tibet Railway, Sichuan-
Tibet Railway and other large projects as research objects, analyzed their
impact on NDVI and its change characteristics. Through the utilization

of remote sensing data and correlation analysis, most of studys (Olthof
and Pouliot, 2010; Scheftic et al., 2014; Yin et al., 2016) delves into the
spatio-temporal dynamics of NDVI (NormalizedDifference Vegetation
Index) in the study area, drawing insightful conclusions. Few studies
have hitherto scrutinized the influence range of large-scale railway
projects on NDVI under varying climatic conditions. For example, Zou
et al. (Zou et al., 2012) took the Lanxin Railway second line as an
example from Minle to Yumen, analyzing the impact of engineering
construction on the integrity of the ecosystem within a 10 km range on
both sides of the railway. Xue (Xue, 2023) used the Zhangjiakou section
of the Beijing-Zhangjiakou Railway as a typical case, establishing an
index system for ecological environment quality, landscape pattern, and
carbon storage, evaluating the ecological impact of the railway corridor,
and analyzing the ecological costs and benefits of the railway corridor
from an economic perspective. Yang (Yang, 2023), based on the RSEI
model, took the city of Poland along the route of the China-Europe
freight train as an example, analyzing the spatiotemporal changes in the
ecological environment at the urban scale before, during, and after the
operation of the China-Europe freight train. Focusing on the Xinjiang
section of the Lan-Xin Railway Project, this research aims to fill this
gap. By analyzing NDVI data alongside temperature and precipitation
records during the growing season (June to September) from 1990 to
2021, the study discusses the temporal and spatial changes of NDVI
along the railway and its responsiveness to climate factors. The
correlation analysis and coefficient of variation methods are
employed to explore the relationship between the influence range of
railway construction on NDVI and climate factors. The research
findings hold significant implications for the construction and
planning of major energy channel projects.

2 Materials and methods

2.1 Study area

The Lan-Xin Railway, stretching from Lanzhou in Gansu
Province to Alashankou in the Xinjiang Uygur Autonomous
Region, stands as one of the longest railway lines constructed post
the establishment of the People’s Republic of China. It once served as
the sole railway line connecting Xinjiang to the mainland, constituting
a significant segment of the railway network in Northwest China.
Following the inauguration of the Lan-Xin Railway’s main line in
1990, the development of the double line commenced in 1992,
spanning a total length of 1,622 km. The entire line was completed
in 1994, followed by a series of electrification transformations
conducted from 1995 to 2012. The construction of the Lan-Xin
High-Speed Railway initiated at the end of 2009, with the entire
line becoming operational in 2014. Upon completion, the logistical
and passenger transport capabilities of Xinjiang experienced
significant enhancement, providing robust transport capacity for
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the development and export of Xinjiang’s coal and other resources.
The railway has become an energy “transport corridor” between
Xinjiang and the mainland, promoting not only Xinjiang’s
economic development but also catering to the travel needs of
its residents.

The study area, characterized by a typical temperate continental
arid and semi-arid climate, boasts an average annual temperature
of −4~9°C, an annual precipitation range of 150–200 mm, a frost-
free period spanning 140–185 days per year, four distinct seasons,
and complex landforms, inclusive of the Altai Mountain and
Junggar Basin (Chen et al., 2023). The Lan-Xin Railway
(Figure 1, No. Xin S (2023) 061) penetrates Xinjiang via the
Hongliu River, traverses Weiya, and proceeds through Hami,
Shanshan, and Turpan along the southern foot of the Tianshan
Mountain. It then crosses the Tianshan Mountain at Dabancheng to
reach Urumqi City, moves west through Shihezi, Kuitun, and Boler,
referred to as the city of military cultivation, before finally arriving at
the border port city of Alashankou. Stretching from Lanzhou West
Railway Station to Urumqi Railway Station, the Lan-Xin High-Speed
Railway spans 1,786 km, encompassing 22 stations, with the
Xinjiang section measuring 709.923 km in length.

The Xinjiang Uygur Autonomous Region encompasses a vast
expanse of desert. To enhance the precision of the research findings,
areas of the desert lacking vegetation cover were masked, and water
bodies within the study area were excluded, thereby refining the
accuracy of the results.

2.2 Data sources and research framework

2.2.1 Data sources
The Global Inventory Modeling and Mapping Studies (GIMMS)

NDVI dataset (1990–1999), obtained from remote sensing data (https://
www.nasa.gov/), possesses a long time series and extensive coverage. It
effectively captures the dynamic changes of vegetation and is extensively
utilized in detecting regional scale vegetation changes, among other
applications. The dataset has a spatial resolution of 10000 m × 10000 m
and a temporal resolution of 15 days. The dataset has undergone
various processes such as atmospheric correction, geometric
correction, removal of erroneous lines, and elimination of volcanic
eruptions, thereby ensuring good data quality. The NDVI data from
2000 to 2021 is extracted from the MOD12A3 data, a part of the
MODIS dataset released by NASA. The dataset has a monthly temporal
resolution, a spatial resolution of 1000 m × 1000 m, and follows the
GCS_WGS_1984 geographical coordinate system. The maximum
NDVI data values during the growing season (June to September)
were compiled to derive the peak NDVI data value for Xinjiang’s
growing season over a 32 year period. To maintain uniformity in data
resolution, bilinear interpolation was employed to adjust the data to a
1000 m resolution.

The climatological data, which includes temperature and
precipitation from 1990 to 2021, is sourced from the “China
1 km resolution Monthly Mean Temperature Dataset” and
“China 1 km resolution Monthly Precipitation Dataset” provided

FIGURE 1
Location and research area of Lan-Xin Railway.
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by the National Tibetan Plateau Scientific Data Center. This dataset,
in NETCDF format, has a spatial resolution of 1000m × 1000 m. It is
created using the Delta spatial downscaling scheme, which is based
on the global 0.5° climate data from the Climate Research Unit
(CRU) and high-resolution climate data from WorldClim. The
dataset’s accuracy is validated using data from 496 independent
meteorological observation points.

2.2.2 Research framework
The research framework is depicted in Figure 2. The data used in this

study consisted of Normalized Difference Vegetation Index (NDVI),
temperature, and precipitation at a resolution of 1,000 m from 1990 to
2021. The study area encompasses a 30 km buffer zone along the Lan-
Xin Railway. In terms of researchmethodology, the maximum synthesis
method was employed to process the NDVI data. Trend analysis was
utilized to examine the spatio-temporal variation of NDVI and climatic
factors. A correlation analysis was conducted to analyze the response of
NDVI to climatic factors. The coefficient of variation method was
employed to determine the extent of the Lan-Xin Railway project’s
influence on NDVI along its route. It was observed that the influence of
the Lan-Xin Railway on NDVI varied with precipitation when the
temperature was either below or above 25°C. Additionally, this influence
varied with temperature in regions with different precipitation levels.
The responses of NDVI to climatic factors in both the ecological
background area and the core area were compared and analyzed.
Finally, conclusions were drawn based on the aforementioned data,
methodologies, and findings. The calculation and visualization software
used in the study include ArcMAP, Origin and draw.

2.3 Methods

2.3.1 Maximum value composite
By utilizing theMaximumValue Composite (MVC)method in the

processing of NDVI remote sensing data, it is possible to further
eliminate the interference caused by clouds, atmospheric

disturbances, and solar altitude angle data (Long et al., 2013). This
method is used to determine the maximum NDVI on an annual basis.

2.3.2 Trend analysis
In this study, we employed a one-dimensional linear regression

method to examine the trends in NDVI, temperature, and
precipitation during the growing season (June to September)
from 1990 to 2021 within the study area. This approach aids in
il-lustrating the interannual variation trends of NDVI and climate
within the study area (Wang et al., 2017; Guo et al., 2020).

2.3.3 Correlation analysis
The Pearson correlation coefficient, a concept originally

proposed by Francis Galton in the 1880s and later refined by
Carl Pearson, serves to measure the correlation between two
variables, yielding values that range from −1 to 1 (Zhang et al.,
2021b; Ma et al., 2023; Wang et al., 2023).

2.3.4 Coefficient of variation
The coefficient of variation is a statistical measure that

represents the degree of dispersion in data, expressed as an
absolute value. Unlike the standard deviation, it does not rely on
the data’s mean value; being a dimensionless quantity, it allows for
the comparison of two datasets with differing dimensions or mean
values (Milich and Weiss, 2000). The formula for its calculation is
as follows:

CV � 1
�X

����������∑n
i�1

Xi − �X( )2
n − 1

√√
(1)

Where, CV denotes the coefficient of variation of NDVI, n
signifies the number of years, Xi stands for the NDVI value of a
given year “i,” and �X corresponds to the average NDVI from the
period 1990 to 2021. A higher CV value indicates a more significant
degree of NDVI fluctuation. Conversely, a lower CV value suggests a
lesser degree of NDVI fluctuation (Zhao et al., 2019; He et al., 2022).

FIGURE 2
Research framework.
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3 Results

3.1 Spatio-temporal evolution of NDVI and
climate factors

3.1.1 Interannual fluctuations in NDVI and
climatic factors

To investigate the temporal fluctuations in NDVI in the study
area from 1990 to 2021, we employed the maximum synthesis
method to derive the peak synthetic data for the growing season
(June to September) from the original remote sensing data spanning
1990 to 2021. Subsequently, a trend analysis was conducted on the
32-year annual mean NDVI values in the study area.

Based on the interannual NDVI trends during the growing season in
the study area from 1990 to 2021 (Figure 3A), the average NDVI
demonstrated a fluctuating up-ward trend, with a mean of 0.22 and a
range from 0.18 to 0.26. The minimum and maximum values were
recorded in 2001 and 2017, respectively. Over a 32-year period, the
NDVI increased at a rate of 0.0016 annually, but displayed a decreasing
trend from 1990 to 2001, primarily attributed to human activities like
railway construction. The entire period from 2001 to 2021 exhibited a
fluctuating upward trend, with a maximum increase of 0.0791. The
linear regression equation for NDVI from 1990 to 2021 is y = 0.0016x-
2.9507, with an R2 value of 0.54. Based on the distribution values and a
95% confidence interval, the NDVI distribution appears to be relatively
discrete, showing a slight upward trend that is not statistically significant.
During the construction of the Lan-Xin high-speed Railway, the study
area experienced a decrease in NDVI, In the subsequent period of
railway operation, the NDVI exhibited a dynamic upward trend.

The annual variation of NDVI during the growing season exhibits a
significant correlation with local temperature and precipitation. Overall,
the average temperature during the growing season (Figure 3B) in the
study area from 1990 to 2021 demonstrated a fluctuating upward trend,
with a range of 24.0°C–27.3°C and an annual increase rate of 0.04041°C,

the highest and lowest temperatures occurred in 2021 and 1992,
respectively. The linear regression equation for the temperature data
from 1990 to 2021 is y= 0.04x-55.367, with anR2 value of 0.22. Based on
the regression analysis, while there is an overall increasing trend in
temperature, it is not statistically significant and the temperature values
are relatively scattered. During the growing season from 1990 to 2021,
the precipitation in the study area (Figure 3B) displayed an overall
fluctuating and declining trend, with an annual decrease rate of
0.082 mm and an average precipitation fluctuating between
17.55 and 43.88 mm, The highest and lowest precipitation years
occurred in 2016 and 1997, respectively. The linear regression
equation for precipitation from 1990 to 2021 is
y = −0.082x+192.504, with a coefficient of determination R2 = 0.01.
It is evident from the data that the distribution of precipitation exhibits
considerable variability, displaying a subtle declining trend over time
and significant year-to-year fluctuations.

Themain vegetation types in the study area include grasslands, rain-
fed crops, and perennial and annual herbaceous plants. The dynamic
variation of NDVI is influenced by fluctuations in temperature and
precipitation. For instance, in 2001, the average NDVI value during the
growing season in the study area hit a record low. Concurrently, it was
observed that both temperature and precipitation in 2001 were notably
low. In 2008, the average annual NDVI during the growing season
significantly decreased due to high temperatures and low precipitation
in the study area. In 2017, with the combined effect of optimal
temperature and precipitation, the average annual NDVI during the
growing season in the study area achieved its peak.

3.1.2 Features of NDVI spatial distribution
The annual average NDVI of the growing season in the study area

was calculated for the period from 1990 to 2021. The resulting annual
spatial distribution map of NDVI for the growing season was divided
into five categories (Figure 4). From 1990 to 2021, the average NDVI
value was 0.2214, indicating a lowmeanNDVI value and uneven spatial

FIGURE 3
(A) Interannual variation trend of NDVI during the growing season in the study area from 1990 to 2021; (B) Interannual variation trend of temperature
(°C)/precipitation (mm) during the growing season in the study area from 1990 to 2021.
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distribution. The majority of the NDVI values in the northwestern part
of the study area exceed 0.4. However, in the southeastern part, located
in eastern Xinjiang where desertification is severe, most NDVI values
range between 0 and 0.2. In the study area, 57.63% of NDVI values fall
between 0 and 0.2, 22.83% between 0.2 and 0.4, 14.53% between 0.4 and
0.6, and 5.01% exceed 0.6. Kuitun City, Shihezi City, Changji City, and
Urumqi are situated in the southwest and south of the Junggar Basin, as
well as in the middle part of the northern foothills of the Tianshan
Mountains. The NDVI value is relatively higher in these oasis groups.
Turpan City, Hami City, and Bole City are respectively located in the
Turpan, Hami, and Boltala Oases. These oases have been formed by
rivers created from the melting of glaciers and snow. The conditions of
wa-ter vapor are relatively sufficient, fostering the growth and
development of vegetation, and resulting in higher NDVI values.

3.2 Analysis of NDVI response to
climate factors

3.2.1 Analysis of NDVI response to temperature
In the study area, we employed Pearson correlation analysis to

compute the Pearson correlation coefficient for each pixel. This resulted
in a Pearson correlation distribution map of NDVI and temperature
from 1990 to 2021 in the study area (Figure 5). A Pearson correlation
coefficient less than 0 signifies a negative correlation, greater than
0 signifies a positive correlation, and a larger absolute value signifies a

stronger correlation. The results revealed that the mean Pearson
correlation coefficient between NDVI and temperature is 0.29.
Additionally, NDVI has a positive correlation with temperature in
approximately 54.04% of the study area. Moreover, the region
displaying a significant positive correlation between NDVI and
temperature constitutes approximately 0.58% (p < 0.05). The results
showed that temperature had no significant positive effect on NDVI.
Regions exhibiting a negative correlation between NDVI and
temperature suggest that extreme temperatures (either high or low)
in these areas inhibit NDVI.

3.2.2 Analysis of NDVI response to precipitation
The correlation of NDVI with precipitation in the study area was

calculated. Additionally, a correlation distribution map of NDVI and
precipitation in the study area was obtained for the period from 1990 to
2021 (Figure 6). The results reveal that the average correlation coefficient
between NDVI and Pearson is 0.64, with the Pearson correlation value
ranging from−0.53 to 0.73. Approximately 62.88%of the region’sNDVI
exhibits a positive correlation with precipitation. This is higher than the
54.04% of the region that shows a positive correlation with temperature.
The results indicate that precipitation has a more substantial impact on
NDVI than temperature. NDVI demonstrated a positive correlation
with precipitation in 12.28% of the regions (p < 0.05). Conversely, in
15.07% of the regions, NDVI was negatively correlated with
precipitation. This suggests that extreme precipitation levels, either
too high or too low, in these regions significantly influence NDVI.

FIGURE 4
Spatial distribution of NDVI during the growing season from 1990 to 2021.
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3.3 Impact range analysis

Upon analyzing the distribution of NDVI in the study area, we
observed variations in NDVI across regions at different distances
from the Lan-Xin Railway. These variations can be attributed to
disturbances in the surrounding ecological environment due to the
construction and operation of the Lan-Xin Railway. Therefore, to
precisely determine the influence range of the Lan-Xin Railway, we
employed the coefficient of variation method. This method
calculates the NDVI variation coefficient, which fluctuates with
increasing distance under various climatic conditions. The
distance at which the coefficient of variation stabilizes is
considered as the influence range of the railway construction. In
the study area, we created strip buffers every 1,000 m from the
railway, with a maximum buffer distance of 30 km. For instance, a
“6,000 m buffer” refers to a strip buffer centered on the railway. The
inner part of the buffer is 5,000 m from the railway line, the outer
part is 6,000 m, and the width of the buffer is 1,000 m. This pattern
continues for the subsequent buffers.

3.3.1 Analysis of CV coefficient of variation
fluctuations

Data from 2010 (pre-construction), 2014, 2018, and 2021 (post-
construction) were chosen to represent the periods before and after
the railway construction. The coefficient of variation method was
employed to assess the fluctuations in the NDVI coefficient of
variation under varying distance and climate conditions. This
allowed for an analysis of the diverse impact ranges of railway

construction on NDVI under different climatic conditions. Based on
the historical temperature and precipitation classification in the
study area, with an average of the growing season temperature of
about 25°C, temperatures were categorized into two groups: below
25°C and above 25°C. Precipitation was divided into five categories,
each representing a 50 mm range: below 200 mm, 200–250 mm,
250–300 mm, 300–350 mm, and above 350 mm. The common area
of temperature and precipitation data was chosen to represent the
data under each climate condition. For instance, the intersection of
data for temperatures below 25°C and pre-cipitation between
250 and 300 mm was selected, and the corresponding area in the
NDVI data was used as the NDVI data for that climate condition.

Figure 7 illustrates the fluctuation of the NDVI variation
coefficient under various climatic conditions prior to the railway
construction in 2010. In this context, “0_25” signifies a temperature
less than 25°C, “0_200” denotes precipitation less than 200 mm, “25_
25+” represents a temperature exceeding 25°C, “350_350+” indicates
precipitation over 350 mm, and so forth. “0_25_0_200” designates
an area with a temperature below 25°C and precipitation under
200 mm. This notation is consistently used in the same manner
throughout the paper. As this study examines the NDVI variation
coefficient under identical climatic conditions, it necessitates the
selection of NDVI data with consistent temperature and
precipitation ranges. Owing to the constraints of the study area’s
size, certain values are absent under specific climatic conditions, but
this does not impact the research findings. As depicted in Figure 7,
the NDVI variation coefficient along the railway exhibits significant
fluctuations between 3,000–21000 m, with the CV value gradually

FIGURE 5
Pearson correlation distribution of NDVI and temperature.
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stabilizing thereafter. Given the consistent climatic con-ditions
selected for this study, the pronounced fluctuation of the CV
variation coefficient within a short railway distance can discount

the influence of climate factors, and the topographic changes within
a short distance can be disregarded. There is some variation in the
range of impacts under different climatic conditions.

FIGURE 6
Pearson correlation distribution of NDVI and Precipitation.

FIGURE 7
Fluctuation of NDVI’s CV under different climatic conditions before the railway construction (2010).
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Following the construction of the railway, the fluctuation of the
Coefficient of Variation (CV) of the Normalized Difference
Vegetation Index (NDVI) under varying climatic conditions is
depicted in Figure 8, Figure 9, and Figure 10 for the years 2014,
2018, and 2021, respectively. During this period, the CV exhibited
significant fluctuations within the 4,000–19000 m range before

gradually stabilizing. In certain datasets, anomalous values
emerge post-stabilization of the CV, potentially influenced by
human activities or other factors. These anomalies can be
disregarded in data research and analysis. Over time, the distance
from the railway also alters when the CV stabilizes under identical
climatic conditions.

FIGURE 8
Fluctuation of NDVI’s CV under different climatic conditions after the railway construction (2014).

FIGURE 9
Fluctuation of NDVI’s CV under different climatic conditions after the railway construction (2018).
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3.3.2 Impact range analysis
The influence range of railway engineering on the Normalized

Difference Vegeta-tion Index (NDVI) is determined by the
minimum distance at which the coefficient of variation remains
stable. Data analysis of the Coefficient of Variation (CV) fluctuation
charts (Figures 7–10) revealed the impact range of railway projects
on NDVI for the years 2010, 2014, 2018, and 2021 (Figure 11). The
interpretation of climatic conditions remains consistent with the
previous explanation.

As per Figure 11A, prior to the construction of the Lan-Xin
high-speed Railway in 2010, the influence range expanded with
increasing precipitation under identical temperature conditions.
Similarly, with consistent precipitation, the influence range
enlarged with rising temperature. The findings indicate that
under specific conditions, high temperature and heavy
precipitation exert a more substantial impact on NDVI.
Figure 11B–D depict the results after the completion of the
railway construction for the years 2014, 2018, and 2021,
respectively. The results suggest that following the completion of
the railway construction, the overall influence range exhibited an
upward trend with increased precipitation under the same
temperature conditions. Likewise, under a constant precipitation
range, the overall influence range trended upwards with a rise in
temperature.

3.4 Response of NDVI to climatic factors in
the ecological background region

Using the railway project’s influence range on NDVI from the
previous section as a reference point, we define the annular buffer
area outside this range as the “ecological background area”
(hereafter referred to as the background area), while the strip
buffer area within this range is termed the “core area”. The

average NDVI value in both the ecological background area and
the core area represents the NDVI value under the given climatic
conditions. The trend of NDVI value variations under different
climatic conditions was analyzed (Figure 12). Furthermore, the
changes in NDVI under varying climatic conditions were studied
and compared.

As illustrated in Figure 12, when the temperature is below 25°C,
the NDVI value initially increases with rising precipitation, then
decreases, indicating an overall up-ward trend. When the
temperature exceeds 25°C, the NDVI values display a dynamic
pattern of initial increase followed by a decrease with rising
precipitation. Moreover, under identical precipitation conditions,
the NDVI values are generally higher when the temperature exceeds
25°C compared to temperatures below 25°C. Generally, the NDVI
value increases as the amount of water decreases. The NDVI value
tends to in-crease with rising temperature. However, the results also
indicate that when both precipitation and temperature surpass a
certain threshold, they inhibit vegetation growth, leading to a
decrease in NDVI value. For instance, in 2010, when both the
temperature exceeded 25°C and precipitation surpassed 300 mm,
the NDVI value exhibited a downward trend. Prior to the railway
construction in 2010, the NDVI in the core area was higher than that
in the background area. However, post-construction (2014, 2018,
and 2021), the NDVI in the background area gradually overtook the
core area. In 2014, under certain climatic conditions, the NDVI in
the background area exceeded that in the core area, and by 2021, the
NDVI in the background area was generally higher than that in the
core area. Table 1 shows the mean NDVI of the ecological
background region and core region before and after the
construction of the railway. As indicated in Table 1, before the
railway construction, the mean NDVI of the background region was
lower than that of the core region, with the core region’s mean NDVI
about 20.8% higher than that of the background region in 2010.
After the railway construction, the mean NDVI of the background

FIGURE 10
Fluctuation of NDVI’s CV under different climatic conditions after the railway construction (2021).
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region was generally higher than that of the core region, with the
most notable difference in 2014 when the mean NDVI of the
background region was approximately 21.1% higher than that of
the core region. After removing the ecological background influence,
the NDVI decreased by approximately 25.9%. This suggests that the
construction of the Lanzhou-Xinjiang Railway project had a certain
impact on the NDVI along the line, suppressing the NDVI in the
core region to some extent.

4 Discussion and conclusion

4.1 Discussion

The study indicates that from 1990 to 2021, there has been a
slight upward trend in temperatures in the study area, although not
significant. Rainfall has shown a slight downward trend over the 32-
year period. However, these overall climate changes have not had a
negative impact on NDVI, which has shown an overall upward trend

in dynamic changes. Undoubtedly, the contribution of human
activities to the NDVI along the railway over the past 32 years
cannot be overlooked, and proactive measures must be taken to
mitigate the ecological damage caused by the railway construction.

Currently, most domestic and international research focuses on
the dynamic changes in vegetation, the driving forces of temperature
and precipitation on vegetation, etc. There are few articles
specifically studying NDVI under different climatic conditions.
Based on remote sensing data of NDVI, temperature, and
precipitation during the growing season (June to September) in
the study area, this paper investigates the impact range of railway
construction on NDVI under different climatic conditions, as well as
the pattern of this impact range with climate change. At the same
time, a comparative analysis of the response of NDVI to climate in
ecological background areas and core areas is conducted, drawing
the conclusion that the Lanzhou-Xinjiang railway project has a
certain impact on NDVI along the route. Wu et al. (Wu et al., 2022)
conducted a study on the Guiyang-Huangguoshu Expressway,
exploring the impact of large-scale engineering construction on

FIGURE 11
The impact range of the railway on NDVI under different climate conditions in (A) 2010, (B) 2014, (C) 2018 and (D) 2021.
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vegetation within a certain range and its response to climatic factors.
They concluded that the construction of expressways significantly
affects the surrounding vegetation. However, the paper only
analyzes the influence of natural factors and railway construction
on NDVI during the research process, neglecting the impact of other
human activities such as ecological engineering construction,
agricultural development, and grazing prohibition. Sardiña et al.
(Sardina et al., 2023) utilized NDVI analysis to investigate the causes
of grassland degradation in southern South America. The research
findings indicate that it is climate factors rather than human

activities that have influenced the degradation of grasslands.
Guan et al. (Guan et al., 2021) combine an improved NDVI
prediction model with residual analysis methods to quantitatively
evaluate the impact of human activities on vegetation dynamic
changes in Xinjiang. Thus, it is evident that the influence of
human activities varies under different circumstances, and
exploring the impact of human activities is essential for more
accurate research results. Further investigation into the effects of
human activities in this regard can be conducted in the future.

The article systematically analyzed the correlation between
NDVI and climatic factors at the pixel level, concluding that
temperature has no significant positive impact on NDVI, while
precipitation has a greater positive impact on NDVI than
temperature. This finding is consistent with Chang et al. (Chang
et al., 2022)’s study on Chinese vegetation, where a multiple
regression model showed that the regression coefficient of
precipitation on NDVI is greater than that of temperature,
suggesting precipitation as the dominant factor influencing

FIGURE 12
The trend of NDVI changes under different climatic conditions in 2010 (A), 2014 (B), 2018 (C) and 2021 (D).

TABLE 1 The average NDVI values for the ecological background region and
core region in the years 2010, 2014, 2018, and 2021.

2010 2014 2018 2022

Ecological background region 0.231 0.235 0.232 0.239

Core region 0.292 0.194 0.248 0.232
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NDVI. Bianchi et al. (Bianchi et al., 2020) explored the relationship
between NDVI and changes in precipitation and temperature in
northern Patagonia. They analyzed the relationship between climate
and vegetation, concluding that there is a significant positive
correlation between monthly precipitation and NDVI, while the
relationship between NDVI and temperature is relatively weak.
These findings closely align with the conclusions drawn
regarding the relationship between climate and NDVI in the
article. Xinjiang is a typical ecologically fragile area, and with the
implementation of various ecological conservation projects, future
human activities may have amore positive impact on NDVI. Further
exploration is needed on the dynamic effects of human activities and
climate change on vegetation, as well as their driving mechanisms.

The article, although to a certain extent, investigates the different
effects of railway engineering on NDVI under various climate
conditions and their changing patterns. However, due to the
limitations of long-term time series remote sensing data resolution,
the interval of the strip buffer is only 1,000 m. If higher precision data
could be collected, a more in-depth study of the impact of railway
engineering on NDVI could be conducted. Freemantle et al.
(Freemantle et al., 2020) utilized high spatial resolution satellite
remote sensing data to explore whether vegetation richness at the
Nuna-Wat Melville Island Arctic Watershed Observatory has changed,
using vegetation cover percentage measurements and indices derived
from local climate data to analyze the NDVI trends separated by
different vegetation types and activity layers for background analysis,
confirming that the use of high spatial resolution remote sensing data
helps link NDVI changes with vegetation and surface process changes.
Munyati et al. (Munyati and Mboweni, 2013) analyzed the NDVI of
semi-arid sparse grassland vegetation, conducting vegetation
monitoring on arid sparse grasslands, which requires imagery with
higher spatial resolution. Additionally, studies by Otto et al. (Otto et al.,
2016) and Meng et al. (Meng et al., 2013) also demonstrate the
importance of high spatial resolution imagery in NDVI research.
Furthermore, the study area has relatively fixed ranges of
temperature and precipitation during the growing season, making it
difficult to study other temperature and precipitation ranges. In the
future, the time series of climate data could be increased to study each
month. Horion et al. (Horion et al., 2013) used a phenological approach
to study the interaction between climate and vegetation dynamics,
indicating that the complexity of the relationship between climate and
vegetation is variable in both space and time. It also indicates that there
are different possibilities for the relationship between climate and
vegetation in different ranges, making it necessary to increase the
time series to study the relationship between climate and vegetation.
Due to the long time series of the study, NDVI data could not be
collected from the same sensor, so two different NDVI products were
used, which would result in some differences in their NDVI over the
time series. Beck et al. (Beck et al., 2011) compared several NDVI
datasets and found that trends onChinese land surfaces were consistent,
but trends in Europe were inconsistent. In the comparison of temporal
change values, the GIMMS dataset performed the best, while the
performance of MODIS-NDVI was better than any AVHRR-NDVI
dataset. This also proves that there are certain differences between
different datasets, andmore precise research results could be obtained if
the same dataset could be used within the time series. Therefore, in
future research, the same NDVI product should be used when
conditions permit.

4.2 Conclusion

This study focuses on the 30 km buffer zone along the Lan-Xin
Railway. The dynamic changes of climate factors and the spatial-
temporal distribution of NDVI during the growing season from
1990 to 2021 were analyzed using methods such as maximum
synthesis, trend analysis, correlation analysis, and coefficient of
variation. The study also explores the impact of railway
construction on NDVI and the extent of this influence under
various climatic conditions. The findings indicate that.

(1) From 1990 to 2021, the study area’s annual mean temperature
during the growing season demonstrated a consistent upward
trend. The average annual precipitation during the growing
season exhibited a steady downward trend. The annual mean
NDVI during the growing season revealed a consistent
upward trend, particularly after 2001, with a significant
increase despite a low mean NDVI of 0.2224. Regarding
spatial distribution, the northwest region of the study area
has a larger NDVI value than the southwest. Furthermore,
57.63% of the regions have an NDVI value ranging from 0 to
0.2, with only 5.01% exceeding 0.6. A pixel-by-pixel
correlation analysis was conducted to examine the
relationship between NDVI and both temperature and
precipitation. The results indicated a positive correlation
between NDVI and temperature in 54.04% of the region,
and a positive correlation between NDVI and precipitation in
62.88% of the region. Overall, both temperature and
precipitation could increase the NDVI value, with
precipitation exerting a greater impact than temperature.

(2) Under identical climatic conditions, the coefficient of
variation of NDVI, both pre and post railway construction,
experiences significant fluctuations within a
3,000–21000 m range along the railway line. The
coefficient of variation gradually stabilizes post
construction. With a constant temperature and increasing
precipitation, the influence range of railway construction on
NDVI progressively expands. Similarly, with constant
precipitation and increasing temperature, the influence of
railway construction on NDVI progressively widens.

(3) During the growing season in the study area when the
temperature is below 25°C, NDVI values initially increase,
then decrease, yet the general trend is upward. When the
temperature exceeds 25°C and precipitation increases,
NDVI values demonstrate a dynamic trend of initially
increasing and subsequently decreasing. Regions with
higher temperatures have higher NDVI values than those
with lower temperatures. However, extreme temperatures
and precipitation may hin-der vegetation growth, thus
reducing NDVI. Prior to the construction of the Lan-Xin
Railway, the NDVI in the core area exceeded that in the
background area. Post-construction, the NDVI in the core
area is less than that in the background area. After removing
the ecological background influence, the NDVI decreased by
approximately 25.9% following the construction of the
railway. It can be seen that the construction of the
Lanzhou-Xinjiang Railway has had a certain impact on
the NDVI along the route.
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