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Cationic metals such as lead (Pb) and metalloids such as arsenic (As) in
contaminated soil can be simultaneously immobilized by iron phosphate
because As(V) is stabilized by binding to iron (hydr)oxides and metals
precipitate with phosphate. However, phosphate competes with As for
sorption sites, which may affect the simultaneous stabilization of Pb and As.
Therefore, the purpose of this study was to evaluate the simultaneous
stabilization of As and Pb using iron phosphate both in single- and multi-
metal solutions and soil. In both single- and multiple-element solutions, Pb
was completely removed by iron phosphate. Arsenic immobilization was
explained by the Freundlich isotherm. Arsenate [As(V)] removal by iron
phosphate decreased with increasing pH, while arsenite [As(III)] removal
increased with increasing pH. The extraction of bioavailable As from
contaminated soil increased after incubation with iron phosphate, whereas the
concentration of bioavailable Pb decreased. The increase in bioavailable As can
be attributed to As substitution by phosphate, which was not immobilized by iron.
Although both As and Pb can be removed by iron phosphate in aqueous solutions,
an iron phosphate mineral with relatively low Ksp should be used to
simultaneously immobilize As and Pb in soil.
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1 Introduction

Place’s Agricultural land surrounding abandoned mines is often contaminated with
metal(loid)s. Arsenic (As) is one of the elements found in higher concentrations in mine
sites, often associated with metals such as cadmium (Cd), copper (Cu), lead (Pb), and zinc
(Zn) (Bolan et al., 2014). These pollutants adversely affect plants growing on croplands and
migrate into the surrounding waterways and air, thereby increasing environmental
pollution problems (Esshaimi et al., 2012). Arsenic is a highly toxic carcinogen, and the
consumption of As-contaminated rice may cause liver, kidney, lung, and skin cancer (Yu
et al., 2003; Chikkanna et al., 2019).

Metals such as Cd, Cu, Pb, and Zn are some of the elements usually found near mine
sites in concentrations that might be toxic to biological systems (Han et al., 2002;
Sayadi, 2014). Metals can be absorbed and bioaccumulated in crops and living
organisms to high concentrations. This poses significant threats to the overall
health of ecosystems and may ultimately lead to the death of organisms (Nagajvoti
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et al., 2010). Soil pollutants such as metals and metalloids often
occur with more than one element in increased concentration,
and it is necessary to control them simultaneously
(Martin, 2012).

However, the physicochemical properties of metals such as
Pb and metalloids such as As are very different, so it is difficult to
control them simultaneously. Arsenic exists as a neutral form,
such as organic water-soluble H3AsO3 and AsO(OH)3, or as an
oxyanion in the natural environment, so it has different chemical
properties from metallic contaminants that normally exist in
cationic forms (Stollenwerk, 2003; Cortes-Arriagada and Ortega,
2020). Toxic metal(loid)s such as As, Cd, Cu, Pb, and Zn can be
stabilized by changing the pH and redox potential (Sharma et al.,
2015). For example, as the pH increases, arsenate adsorption
decreases because the iron (Fe) mineral surface has a net negative
charge, weakening its binding to minerals and increasing its
mobility and toxicity (Raven et al., 1998). In contrast, Pb
precipitates as lead hydroxide at a pH higher than 6, reducing
mobility and toxicity (Payne and Abdel-Fattah, 2004).
Furthermore, lower Eh conditions contribute to the reduction
of As(V) to As(III), increasing the toxicity and release of metals
bound to Fe/Mn oxides because of the decomposition of Fe/Mn
oxides under reducing conditions (Yang et al., 2022). The
mobility of metals in soil generally decreases with increasing

pH; however, As(V) can be desorbed or mobilized because its
mobility increases with increasing pH, causing it to diffuse into
the environment (Stollenwerk, 2003; Kim et al., 2011).

Most of As exists as arsenite [As(III)] and arsenate [As(V)] in
soil and water environments, and As(III) is more mobile and
toxic than As(V) (Moon et al., 2004). Both As(III) and As(V)
adsorb to iron (hydr)oxides such as goethite and ferrihydrite,
which effectively remove As and lower its toxicity (Smedley and
Kinniburgh, 2002; Sundar and Chakravarty, 2010; Park et al.,
2016; Zhang et al., 2019). Specifically, the ferric-arsenate
[Fe(III)–As(V)] precipitate and its natural mineral form
(scorodite, FeAsO4·2H2O) occur in the As-contaminated soil
(Zhao et al., 2021). Once As in the soil is co-precipitated with
iron (hydr)oxides as ferric-arsenate, the toxicity and mobility of
As will be reduced (Aredes et al., 2013).

The stabilization mechanism of metals such as Cd and Pb
includes precipitation with phosphates by substituting cations in
phosphate compounds (Wang et al., 2001; Bolan et al., 2014). In
addition, because phosphate is a nutrient essential for plant growth,
treatment with phosphates tends to promote growth in metal-
contaminated soils (Cao et al., 2003; Soares and Siqueira, 2008).
However, phosphate treatment in contaminated soil adversely
affects the stability of As because its chemical properties are
similar to those of phosphates, which induces competition for
adsorption sites on iron oxides (Hughes, 2002; Theodoratos
et al., 2002; Kaur et al., 2011). Therefore, it is difficult to
simultaneously control As and metals by phosphate
treatment in soil.

Cui et al. (2010) suggested that As and Pb could be
immobilized by Fe and phosphate, respectively, and they
amended iron as ferrous sulfate and phosphate as calcium
magnesium phosphate, phosphate rock, and single super-
phosphate. However, because oxyanions such as As and
antimony (Sb) in the soil environment are stabilized by iron
oxides and metals with divalent cations are stabilized by
phosphate (Liang et al., 2014; Sazakli et al., 2015),
compounds containing both Fe and phosphate may
simultaneously control multiple metals and metalloids.
Therefore, the objective of this study was to evaluate the
possibility of simultaneous stabilization of As and Pb using
iron phosphate. The concomitant removal of As and Pb by iron
phosphate was evaluated in solutions with different pH values.
In addition, the application of iron phosphate for the
remediation of soil contaminated with multiple metals and
metalloids was tested.

FIGURE 1
Langmuir and Freundlich isotherm models for As adsorption on
iron phosphate.

TABLE 1 Arsenic adsorption isothermal equation parameters.

Species Langmuir parameters Freundlich parameters

Qm (mg/g) b (L/mg) R2 Kf (mg/g) n R2

As(V) 5.120 0.135 0.963 1.773 1.153 0.992

As(III) 0.060 0.394 0.147 1.137 0.997 0.475

As(V)+Pb NA* NA NA NA NA NA

As(III) +Pb 37.879 1.467 0.884 4.900 0.874 0.930

*Not available.
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2 Materials and methods

2.1 Iron phosphate synthesis

Iron phosphate (FePO4) was prepared by mixing 25 mL of 0.83M
Iron(III) chloride hexahydrate and 25 mL of 0.83 M dibasic anhydrous
sodium phosphate in a 50-mL conical tube. After mixing, the solution
was left to react for 30 min, and the white precipitate was recovered by
centrifugation at 4,000 rpm for 10 min. The precipitate was washed
several times with deionized water to remove the remaining ions and
then dried in an oven at 60°C.

The mineralogy was confirmed using X-ray diffraction (Rigaku, JP/
SmartLab, 9 kW). The surface structure and composition were analyzed
using scanning electron microscopy combined with an energy-
dispersive X-ray spectroscopy (EDS) (Zeiss Ultra Plus). Specific

surface areas were measured using the Brunauer–Emmett–Teller
(BET) protocol (Micromeritics, ASAP 2020).

2.2 Metal removal using iron phosphate

Metal removal experiments were conducted in single and mixed
solutions of As and Pb. The As(V) stock solution was prepared from
sodium arsenate heptahydrate (Na2HAsO4·7H2O). The As(III) stock
solution was prepared from sodium arsenite (NaAsO2). The Pb stock
solution was prepared from lead nitrate [Pb(NO3)2]. The As
concentration in the solutions ranged from 0.5 to 10 mg/L, and the
concentration for the Pb solutions was 5–100 mg/L. Solutions
containing both As and Pb were prepared by mixing stock solutions
to adjust the final concentration to be the same as for a single-element
solution. To evaluate the pH effect on metal or As immobilization, the
solution pH was adjusted using acetate buffer, Tris-HCl buffer, and
glycine buffer to achieve pH 5, 7, and 10, respectively.

The experiment was conducted by mixing 0.05 g of iron phosphate
and 20 mL of elemental solution in a 50-mL conical tube and shaking it
for 24 h at 180 rpm (Kim and Park, 2023). The suspension was filtered
using a 0.45 μm syringe filter, and the concentrations of As, Pb, Fe, and
P were measured using inductively coupled plasma optical emission
spectroscopy (ICP-OES, PerkinElmer, Avio 500).

Through the calculation of the adsorption isotherm, the
chemical reactions and properties of the minerals and solutions
can be determined (Olsen and Watanabe, 1957). The data on the
immobilization of As by iron phosphate were analyzed using the
Langmuir and Freundlich isotherm models. The Langmuir (Eq. 1)
and Freundlich (Eq. 2) isotherms can be written as follows:

qe � bQmCe

1 + bCe
Langmuir isotherm (1)

qe � KfC
n
e Freundlich isotherm (2)

where, qe (mg/g) is the amount of As adsorbed per gram of iron
phosphate, Qm (mg/g) is the maximum amount of the adsorbed As,
and Ce (mg/L) is the equilibrium concentration of As. b (L/mg) is the
Langmuir adsorption constant, which is related to the affinity of the
binding sites. Kf ((mg/g)(L/mg)1/n) is the Freundlich adsorption
constant, and n is related to the adsorption intensity.

2.3 Incubation of metal- and arsenic-
contaminated soils with iron phosphate

Loamy sand soil contaminated with metal(loid)s such as As, Cd,
Cu, Pb, and Zn was collected around an abandoned metal mine,
dried at room temperature, and sieved to collect particles <2 mm in
size. The pH and EC of the soil were measured after shaking 5 g of
soil in 25 mL of deionized water for 30 min. The organic matter in
the soil was analyzed using theWalkley–Black method (Walkley and
Black, 1934). The total element concentrations were determined by
digesting the soil with aqua regia. The chemical properties of the soil
are presented in Supplementary Table S1. To immobilize the As, Cd,
Cu, Pb, and Zn with iron phosphate, 10 g of mine soil was mixed
with different amounts of iron phosphates (5, 10, and 20 g/kg). The
water content of the soil was kept at 15% by adding 2 mL of

FIGURE 2
Eh–pH diagram of As and Fe (A) and Pb and phosphate (B).
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deionized water and then incubating it in an incubator at 25°C for
7 days. To evaluate the immobilization of the target elements in the
soil, they were extracted from soil samples in 25 mL of deionized
water and 50 mL of 0.05 M (NH4)2SO4 for 2 h at 180 rpm in a shaker
(Taghizadeh-Toosi et al., 2012). The supernatant was separated by
centrifugation at 4,000 rpm for 10 min and then filtered through a
0.45-μm syringe filter. Then, the bioavailable metal and As
concentrations were analyzed using ICP-OES.

3 Results and discussion

3.1 Adsorption isotherm

XRD and SEM-EDX analysis showed amorphous iron phosphate
with fine particles (Supplementary Figures S1, S2). The BET specific
surface area of the iron phosphate was measured and found to be 72.2 ±
0.2 m2/g due to the small size of the nanoparticles.

FIGURE 3
Saturation index plot showing the potential precipitation of As as a function of pH.

FIGURE 4
Removal rate of As(III) in single As(III) solution and mixed As(III) solution with Pb.
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Arsenate was immobilized by iron phosphate, and the
immobilization rate ranged from 50.7% to 63.7%, depending on
the initial As(V) concentration. As the concentration of As in the
initial solution increased, the phosphorus (P) concentration
increased in the final solution (Table 2). This suggests that As(V)
substitutes for phosphate in iron phosphate (Tawfik and Viola,
2011). Arsenate, as the phosphate analog, induced the release of
phosphate because of competition for sorption sites (Lambkin and
Alloway, 2003). However, Fe was not released during As(V)
immobilization, indicating that As(V) reacted with Fe and was
removed from the solution.

The immobilization data were well-fitted to both the Langmuir
and Freundlich isotherms. The Freundlich adsorption isotherm
better explained As(V) adsorption (R2 = 0.99) than the Langmuir
adsorption isotherm did (R2 = 0.96) (Figure 1; Table 1). The absence
of a plateau in Figure 1 further supports the conclusion that the
Freundlich adsorption isotherm is a more suitable model for
explaining the adsorption behavior observed in the study. The
maximum adsorption amount (Qm) calculated based on the
Langmuir isotherm model was 5.12 mg/g (Table 1). The
Langmuir isotherm implies monolayer adsorption, whereas the
Freundlich adsorption isotherm shows multilayer adsorption

(Priya et al., 2022). A better fit to the Freundlich adsorption
isotherm suggests that the adsorbent has a higher adsorption
capacity (Zhou et al., 2017). Although the immobilization of
As(V) and As(III) by iron phosphate was explained by the
Freundlich adsorption isotherm, the surface precipitation of As
by iron phosphate cannot be excluded. Ardes et al. (2013)
showed that surface precipitation might result from the kinetics
of adsorption/desorption, which can be recognized as ternary
adsorption. Tiwari and Pandey (2013) also explained that Fe(III)
and As(V) were precipitated, followed by the complexation of As
with ferrihydrite.

The precipitation reaction requires partial dissolution of Fe from
minerals to induce surface precipitate. When iron phosphate reacted
with As, dissolved Fe resulted in the formation of various
precipitates associated with As(V) (Lenoble et al., 2005). Iron was
released in the solution at a pH higher than 7, which indicates the
possibility of surface precipitation in alkaline conditions (Table 3).
Under the experimental condition (pH 3), As exists as H3AsO3 and
Fe is in the form of Fe2+ according to the Eh–pH diagram of As and
Fe, which might contribute to both adsorption and surface
precipitation (Figure 2A). However, Fe2+ was not detected in the
experimental solution, suggesting that As sorption was mainly

TABLE 2 Phosphorus concentration (mg/L) in solution after the removal of As(V), As(III), and Pb by iron phosphate.

Elements in solution Initial elemental concentration (mg/L)

As 0.5, Pb 5 As 1, Pb 10 As 2.5, Pb 25 As 5, Pb 50 As 10, Pb 100

As(V) 6.86 ± 0.02 7.25 ± 0.10 7.50 ± 0.10 8.24 ± 0.04 8.99 ± 0.03

As(III) 7.81 ± 0.26 8.43 ± 0.18 8.45 ± 0.17 8.18 ± 0.07 9.10 ± 0.24

Pb 6.40 ± 0.03 6.11 ± 0.11 5.81 ± 0.09 5.35 ± 0.05 4.59 ± 0.06

As(V)+Pb 6.55 ± 0.04 6.80 ± 0.18 6.56 ± 0.20 6.28 ± 0.12 5.72 ± 0.08

As(III) +Pb 8.02 ± 0.42 8.37 ± 0.65 7.21 ± 0.02 6.21 ± 0.18 5.55 ± 0.15

TABLE 3 Iron and P concentrations after the removal of As(V), As(III), and Pb at different pH values.

Chemical species pH

3 5 7 10

Fe in solution (mg/L) As(V) ND ND 29.27 ± 1.23 14.57 ± 2.39

As(III) ND ND 25.82 ± 1.00 10.41 ± 4.89

Pb ND ND 26.77 ± 0.19 18.42 ± 1.67

As(V)+Pb ND ND 26.64 ± 0.99 0.32 ± 0.11

As(III) +Pb ND ND 21.69 ± 0.99 0.85 ± 0.60

P in solution (mg/L) As(V) 10.26 ± 0.21 9.06 ± 0.13 42.05 ± 0.63 96.55 ± 2.47

As(III) 8.33 ± 0.21 7.48 ± 0.13 39.88 ± 0.63 86.15 ± 1.25

Pb 6.28 ± 0.14 9.78 ± 0.12 39.60 ± 1.94 102.18 ± 0.34

As(V)+Pb 7.11 ± 0.24 8.24 ± 0.14 41.37 ± 1.25 64.30 ± 3.80

As(III) +Pb 5.89 ± 0.24 6.87 ± 1.29 35.88 ± 0.97 60.40 ± 1.84

ND: Not detected.
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attributed by the adsorption process (Aredes et al., 2013). Gallegos-
Garcia et al. (2012) also reported that As showed a high affinity for
iron (hydr)oxide minerals, and ion exchange adsorption of As on the
mineral surface was the As removal mechanism when Fe was
not eluted.

To evaluate the possibility of As precipitation with iron
phosphate, geochemical modeling using PHREEQC was
implemented with the following solution properties: temperature,
25°C; pH, 3, 5, 7, and 10; pe, 4; solution density, 1; As(V), 10 mg/L;
sodium (Na), 9.7 mg/L; Fe, 0, 0, 29.3, and 14.6 mg/L; P, 10.3, 9.1,
42.1, and 96.6 mg/L; and strengite (FePO4·2H2O), 2.5 g/L,
respectively. The results showed that the saturation index of
FeAsO4·2H2O ranged from −5 to −7 according to pH, indicating
that there is a possibility of As precipitation with Fe if the condition
changes (Figure 3). At pH 7, the saturation index of As2O3 and
native As increased, which is related to the release of Fe from iron
phosphate, resulting in the possibility of As mineral
precipitation (Figure 3).

Arsenite was not immobilized by iron phosphate at the initial
low As(III) concentration and was only slightly removed at a higher
As(III) concentration (Figure 4). Because As(III) has higher mobility
than As(V), it is estimated that the immobilization rate was lower
(Oremland and Stolz, 2003). Therefore, it is necessary to oxidize
As(III) and adsorb it as As(V) in the real environment.

Lead was not detected in the solution, and the concentration
of released P decreased as the Pb concentration increased because
of the precipitation of P with Pb (Table 2). Because almost 100%
of Pb was removed, an adsorption isotherm model was not
applied for Pb removal. According to the Eh–pH diagram of
Pb and phosphate, Pb and P exist as Pb2+ and H2PO4

−,

respectively, in the experimental condition, precipitation
might be the main mechanism of Pb removal in the solution
(Figure 2B). The phosphate concentration increased with
increasing pH in the solution, showing that there is a
possibility of Pb precipitation with phosphate (Table 3). Cao
et al. (2003) also reported that Pb removal from the solution by
phosphate primarily involves the precipitation of metal
phosphate along with some ion exchange processes and
surface complexation reactions on the phosphate rock.

In the mixed solution of As(V) and Pb, the initial As(V) and
Pb concentrations decreased, indicating that As(V) reacted with
Pb and precipitated. When soil is contaminated with both As
and Pb and lead arsenate is formed, their bioavailability is
reduced compared to when As and Pb are present separately
in the soil. Thus, in this case, having both reduces their
environmental impact (Gamble et al., 2018; Li et al., 2019).

In the simultaneous removal of As(III) and Pb by iron
phosphate, As(III) did not react with Pb. Arsenite removal
was higher in the mixed solution than in the single-element
solution, and 100% of Pb was removed by iron phosphate
(Figure 4). The reason for the higher removal of both As(III)
and Pb in the mixed solution can be attributed to the oxidation of
As(III) by Fe(III), followed by phosphate substitution and the
reaction of Pb with the released phosphate (Lenoble et al., 2005).
The Fe released from the reaction of Pb and phosphate might
participate in the reaction of Fe with As(III), leading to a higher
As(III) removal rate in mixed solution than in single element
solution. Arsenite adsorption in the mixed solution was better
explained by the Freundlich isotherm than by the Langmuir
isotherm (Figure 1).

FIGURE 5
Removal rate of As(V), As(III), and Pb in a single solution and As(V) and As(III) when mixed with Pb according to different solution pH values.
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FIGURE 6
Arsenic (A) and Pb (B) concentrations extracted with de-ionized water and 0.05 M ammonium sulfate from mine soil after incubation with
iron phosphate.
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3.2 Effect of pH on metal and
arsenic removal

As the pH increased, As(V) immobilization decreased, while
As(III) immobilization showed the opposite tendency (Figure 5).
Decreased As(V) immobilization can be explained by negatively
charged As species predominant in the pH range of 2–12 and an
increase in negative mineral surface at a higher pH than pHZPC

(Mamindy-Pajany et al., 2011). Arsenic is oxidized at low pH and
mainly exists in the form of As(V) in the natural environment
(Bissen and Frimmel, 2003; Tabelin et al., 2020). The removal rates
of As(V) and As(III) are contradictory because As(V) competes with
hydroxide ions, which promotes desorption when the pH increases,
thereby increasing mobility (Kim et al., 2019).

The iron concentration was analyzed and found to be the highest
at pH 7.8 in the adsorption experiment. This might be because iron
is oxidized and precipitated as a hydroxide as the pH increases
(Table 3) (Liu et al., 2005). The phosphorus concentration also
increased as the pH rose due to an increase in the substitution of
As(V) and OH− for phosphate (Table 3) (Borgnino et al., 2006;
Barrow, 2017). The phosphorus concentration in the As(III)-
dissolved solution also increased with increasing pH because of
the substitution of phosphate by OH− (Deng et al., 2018). As the
pH increased, more phosphate dissolved in the solution, which
enhanced the rate of Pb removal (Table 3; Figure 5). However, Pb
has a high removal rate (>90%) at all pH levels, so a slight effect of
pH on Pb removal was observed (Figure 5). This is mainly because
Pb has a high removal rate compared to other elements and less
adsorption competition with hydrogen ions (Weng et al., 2011;
Kocabaş-Ataklı and Yürüm, 2013).

The pH effect on the simultaneous removal of As and Pb by iron
phosphate in a mixed solution was evaluated. However, the initially
measured As and Pb concentrations were low in various pH ranges
because lead arsenate was formed (Figure 5). The co-precipitation of
As(III) and Pb increased with increasing pH, and As(III) further
increased in the mixed solution compared to the single As(III)
solution (Figure 5). The iron concentration increased to pH 7 and
decreased after that, which might react with As(III) (Table 3).

3.3 Contaminated soil incubation
experiments

As the amount of added iron phosphate increased, the
concentration of extracted As increased (Figure 6A). Free
phosphate ions existed in the iron phosphate substituted for As
in the soil and thus increased As mobility. Although bioavailable As
increased with increasing iron phosphate, the Pb concentration in
the extraction decreased with increasing application of iron
phosphate (Figure 6B). Because the reactivity of phosphate for
immobilization with Pb (and for As substitution) is higher than
that of iron for immobilization with As, the extracted As was not
immobilized by the released Fe (Figure 4). In addition, the relatively
high solubility product of iron phosphate might cause the
substitution of arsenate by phosphate because phosphate is a
chemical analog of As(V) (Strawn, 2018).

Lenoble et al. (2005) showed that As was removed by iron
phosphate in solution by solid dissolution and phosphate/arsenate

exchange. However, they did not test As immobilization in soil. In
our study, As mobility increased with iron phosphate, even though
As was removed by iron phosphate in solution. In addition, a variety
of minerals and competing ions in soil might result in different
stabilizations of As in the solution and soil. Therefore, the reactivity
of phosphate should be considered for the simultaneous
immobilization of As and Pb using iron phosphate compounds
in soil. With the reduced reactivity of phosphate, the substitution of
As by phosphate will be less, and the simultaneous immobilization
of both As and metals can be achieved. For example, oxidizing a part
of pyrite (FeS2) and coating the surface of pyrite with phosphoric
acid to produce iron phosphate (FePO4) decreased As and some of
the metals in soil (Fytas and Evaneglou, 1998). Although the
immobilization rate of iron phosphate varies from metal to
metal, it is possible to simultaneously adsorb As, Cd, and Pb
(Yuan et al., 2017).

4 Conclusion

Both As and Pb showed higher removal in a mixed-element
solution than in single-element solutions. In the case of As(III), a
small amount was adsorbed with iron phosphate in the single-
element solution, but in the mixed solution with Pb, As(III) removal
increased. Therefore, a synergistic effect was found when iron
phosphate was applied to multiple-element-contaminated water.
The removal of As was affected by pH, and the pH effect on the
removal revealed a contrast between As(III) and As(V). The
treatment of metal(loid)-contaminated soil with iron phosphate
decreased the bioavailable Pb concentration but increased the As
concentration. This suggests that the competition between As and
phosphate interfered with As immobilization in the soil. Therefore,
iron phosphate is a potential candidate for the remediation of water
contaminated with a mixture of As and metals. However, when
treating contaminated soil, it is necessary to control the pH and
consider the reactivity of iron phosphate.
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