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Multi-time scale assessment of ecological restoration effects based on objective
and scientific approaches can provide crucial information for implementing
environmental protection policies and ensuring sustainable regional
development. This study evaluated the effect of ecological restoration based
on a natural evolution as a reference frame, using yearly Landsat time series.
Southern Ningxia in China was selected as the study area. The remote sensing
ecological index (RSEI) was calculated. The features of natural evolution were
derived from the time series of the RSEI in the natural reserve areas (NRAs).
LandTrendr was employed to characterize the disturbance–recovery processes.
Furthermore, we adopted the dynamic time-warping method for the entire study
period, along with the relative variation ratio (during the disturbance–recovery
cycle) to capture the long-term and short-term ecological restoration effects,
respectively. The following conclusions were drawn: First, a time-series RSEI
based on LandTrendr was used to successfully monitor disturbance–recovery
processes. Second, the majority of RSEI disturbances (i.e., >60%) occurred
between 2000 and 2005. It is characterized by fewer disturbance times and
obvious spatial heterogeneity in disturbance duration. Notably, from 2000 to
2022, the RSEI improved. Additionally, approximately 40% of the study area
portrayed a strong similarity to the RSEI of the NRAs. We conclude that
quantifying the ecological restoration effect at multi-time scales is a practical
operational approach for policymakers and environmental protection. Our study
presents novel insights for assessing regional ecological quality, by capturing the
processes of natural evolution features in NRAs.
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1 Introduction

With substantial population growth and the rapid development of the society and global
economy, urbanization and industrialization are expanding exponentially, resulting in
regional land degradation and environmental change (Tian et al., 2021; Sikder et al., 2022).
The cumulative effects of intensified anthropogenic activities have a significant ecological
influence on the natural environment, e.g., declining biodiversity, soil erosion, habitat
degradation, and a reduction in habitat diversity (Qu et al., 2020; Cao et al., 2022; Shang
et al., 2022). Therefore, an accurate assessment of the ecological environmental quality and
restoration effects in a natural reserve area (NRA) can provide crucial information for the
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implementation of effective environment-protection policies in the
area (Liang et al., 2019); this information can serve biodiversity
conservation (Yang, 2021), regional sustainable development (Lu
et al., 2015; Shan et al., 2019), and ecological civilization
construction (Dong et al., 2020).

With the development of remote sensing technology, satellite
imagery has become an important approach for analyzing ecological
environmental quality and the effects of ecological restoration
policies and plans. To monitor the ecological conditions in a
region, some scholars developed remote sensing-based
parameters, such as the ecological environmental status (Wang
et al., 2019), scaled drought condition (Rhee et al., 2010), and
aggregate drought (Keyantash and Dracup, 2004) indices, using
simple weighting methods (e.g., least square method, analytic
hierarchy process, and principal component analysis) (Yang
et al., 2020; Dai et al., 2023). To ensure a comprehensive
quantitative evaluation of the ecological environment quality,
previous studies determined the weights of the abovementioned
integrated ecological indices; however, these integrated ecological
indices yielded divergent assessment results (Liu et al., 2019; Xiong
et al., 2021). The integrated requirements of ecosystems can only be
fulfilled by conducting detailed studies that incorporate ecosystem
status assessments (Qiao et al., 2021; Zhou et al., 2021). The remote
sensing ecological index (RSEI) was established by integrating four
indicators (i.e., humidity, greenness, temperature, and aridity) into
principal component analysis (Xu, 2013); it can be calculated based
on remotely sensed bands from identical satellite sensors, without
weight determination (Yi et al., 2023). Notably, a dynamic change in
the RSEI is generally correlated to environmental pressures caused
by anthropogenic activities (e.g., urbanization and industrialization)
(Boori et al., 2021), ecosystem change (e.g., changes in vegetation
cover) (Yang et al., 2022), and climatic fluctuations (e.g., changes in
temperature and humidity) (Zheng et al., 2022); thus, the RESI can
be employed for improving the continuous dynamic assessment of
the ecological restoration effects in a region (Zhang et al., 2022; Xiao
et al., 2023).

Previous studies have indicated that the variations in ecological
environmental quality can be induced by a series of ecological
programs, including artificial and natural restoration programs.
To evaluate the effectiveness of ecological restoration projects,
some studies quantitatively analyzed the time-series trends of
individual ecological factors (e.g., through RSEI) or vegetation
indices [e.g., normalized difference vegetation index (NDVI) and
enhanced vegetation index (EVI)] (Shen et al., 2018; Zhang et al.,
2018; Xu et al., 2020). Some studies have used change detection
algorithms and models to evaluate the ecological restoration effects
in different regions and identify the abrupt points in the time series
of comprehensive ecological indices, e.g., continuous change
detection and classification, continuous monitoring of land
disturbance, Landsat-based detection of the trends in disturbance
and recovery, breaks for additive seasonal and trend (BFAST), and
vegetation change tracker (Huang et al., 2010; Verbesselt et al., 2010;
Zhu and Woodcock, 2014; Zhang et al., 2018; Zhu et al., 2020). For
example, short-term abrupt changes (disturbance time and recovery
rate) in the gross primary productivity have been analyzed to
describe and quantify vegetation health (Li et al., 2023).
Significant progress has been made in the assessment of
ecological restoration effects. However, the existing literature

lacks comprehensive assessments that focus on the short-term
changes and long-term trends in the ecological environment,
resulting in uncertainties in the current knowledge of ecological
restoration processes (Li et al., 2023; Wei et al., 2023). Further, it is
difficult to provide an objective assessment of the effects of
ecological restoration, owing to the non-consideration of the
natural conditions (Li et al., 2017) of a region and the
environmental change response at the global scale (Guo et al., 2022).

Priority should be given to selecting a reference framework and
developing an effective method for carrying out a comprehensive
and objective assessment of the ecological restoration effects in a
region. An ideal ecological reference framework and a time-series-
based analysis of the ecological environment quality indicators can
provide a comprehensive and objective analysis of the effects of
restoration in an area (He et al., 2020). As an ideal ecological
reference for a definite time series, a previous study carried out
an ecological restoration effect assessment to determine the
probabilities of the influences of similar ecological indices (e.g.,
RSEI) between a study region and a natural reserve area (e.g.,
national parks and national forest parks) (Wang et al., 2022). A
majority of existing studies adopt the dynamic time-warping (DTW)
method; based on the time-series decomposition and shifting effects,
the optimal path among the two time-series (Keogh and Pazzani,
2001) is identified, which is then used to calculate the optimal
distance (i.e., similarity weight) between two long time-series images
(Tang et al., 2020).

In this study, we used an NRA as an ideal ecological reference
area to assess the ecological restoration effect in the study area
(southern Ningxia). Furthermore, we developed a framework to
analyze the ecological restoration effects in the region using the
Landsat data from the perspectives of short- and long-term schemes,
based on change-detection algorithms and the DTW model. This
study provides a comprehensive and objective analysis of the
regional effects of ecological restoration.

2 Study area

We selected the semi-arid and sub-humid loess hilly ecoregion
located in southern Ningxia (105°19′–106°57′ E and 35°11′–36°31′
N) as the study area (Figure 1). Encompassing an area of 15,526 km2,
this region, which is a part of the northwestern Loess Plateau, is one
of Ningxia’s three recognized ecological functional zones,
characterized by high ecological vulnerability and sensitivity (Li
et al., 2015; Dong et al., 2023; Wei et al., 2023). It covers the Liupan
Mountain and Qingshui Valley and is characterized by elevations
ranging from 1,305 m to 2,936 m above sea level (asl) (Figure 1C).
The average temperature of the region fluctuates between 6.7°C and
8.8°C, while precipitation varies from 458.6 mm to 668.2 mm; the
sunshine duration ranges from 2056.9 h to 2,384.4 h annually (Meng
et al., 2022). However, the area is significantly impacted by severe
drought and extensive anthropogenic activities, e.g., large-scale
deforestation and land reclamation, resulting in considerable
ecological damage. Since 2000, the Chinese government has
implemented a series of ecological restoration policies and
actions to address the severe environmental issues in the area (Li
et al., 2013; Qiu et al., 2018; Ji et al., 2021). Five NRAs are distributed
in the study area (namely, Liupanshan, Nanhuashan, Huoshizhai,

Frontiers in Environmental Science frontiersin.org02

Wang and An 10.3389/fenvs.2024.1356269

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1356269


Yunwushan, and Zhenhu), covering mountain grassland and
meadows, mountain forest scrub meadows, typical grassland
ecosystems (in the semi-arid area of the Loess Plateau), and
water conservation forests (Yin et al., 2023). The detailed
descriptions of the five NRAs are presented in Table 1. The land
cover in this region consists of three main types: forest, farmland,
and grassland (Figure 1B).

3 Materials and methods

The workflow for monitoring the variations in the RSEI and the
ecological restoration effects can be summarized as follows (for

details, please see Figure 2): 1) RSEI for the study period were
calculated (Figure 2A). 2) The variations in the RSEI were analyzed
(Figure 2B). 3) To derive the cover of natural vegetation in the
region, the multi-order adjacency index was computed (i.e., grass
and forest) using a spatiotemporal restoration evolution model
(Figure 2C). 4) Finally, the long-term and short-term effects of
ecological restoration in the study area were evaluated (Figure 2D).

3.1 Data preprocessing

In this study, we utilized the surface reflectance data obtained
from the Landsat-5, Landsat-7, and Landsat-8 sensors recorded

FIGURE 1
(A) Location of the study area in Ningxia, China; (B) distribution of land cover types in the area; and (C) digital elevation model (DEM) of the region.

TABLE 1 Detail descriptions of the natural reserve areas (NRAs) considered in this study as reference ecological areas.

Full name Central location Area (km2) Landform Major land cover types

Liupanshan NRA (35.59 N, 106.25 E) 1,132 Mountain Grassland/forest

Nanhuashan NRA (36.43 N, 105.66 E) 81 Mountain Grassland

Huoshizhai NRA (36.12 N,105.74 E) 80 Mountain Grassland

Yunwushan NRA (36.26 N, 106.38 E) 34 Mountain Grassland

Zhenhu NRA (35.84 N, 105.47 E 19 Hill Grassland
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from 2000 to 2022; the data were sourced from the United States
Geological Survey (USGS) (Figure 2) and processed using the
Google Earth Engine cloud platform (Gorelick et al., 2017). The
Landsat images were preprocessed for atmospheric and geometric
corrections using the Landsat Ecosystem Disturbance Adaptive
Processing System (Masek et al., 2006). To ensure high-quality
observations, the pixel band of the CFmask algorithm was
utilized to filter clouds, cloud shadows, and snow pixels (Zhu
and Woodcock, 2014), thus, retaining the remaining pixels to
construct the time-series data for the study area. As this study
focused on long-term ecosystem changes, it was essential to integrate
the Landsat-5, Landsat-7, and Landsat-8 data, to standardize the
vegetation index time series and harmonize the band reflectance
values (Zhu et al., 2016). The total number of Landsat images used in
this paper with the coverage of cloud less than 20% was displayed in
Figure 3. Due to the similarities in their bandwidth and position, the
reflectance data measured by the Thematic Mapper (TM) and
Enhanced Thematic Mapper Plus (ETM+) sensors were

comparable, allowing for their cross-calibration with the Landsat-
5 (TM) and Landsat-7 (ETM+) data, as demonstrated in previous
studies (Chander et al., 2009).

3.2 Calculation of ecological environmental
quality indices

The RSEI, a comprehensive evaluation measure introduced by
Xu (2013) to assess the ecosystem quality includes the parameters of
greenness, wet, heat, and dryness—four indicators that are
intricately connected to human survival (Hu and Xu, 2018;
Zheng et al., 2022). The index was calculated using Eq. 1.

RSEI � f Greenness,Wet,Heat, Dryness( ) (1)

In this study, we used the NDVI, soil moisture monitoring index
(SMMI), land surface temperature (LST), and normalized difference
build-up and soil index (NDBSI) to characterize the

FIGURE 2
Flowchart portraying the step-by-step methodology employed for evaluating the ecological restoration effects and the variations in the remote
sensing ecological index (RSEI): (A) Calculation of remote sensing ecological index; (B) Analysis of RSEI change; (C) Deriving of vegetation restoration
spatio-temporal evolution; (D) Evaluating of ecological restoration effect.
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abovementioned indicators (Xu, 2013; Xiao et al., 2023).
Furthermore, we employed principal component analysis (PCA)
for minimizing the errors that result from human intervention and
integrate the NDVI, SMMI, LST, and NDBSI. The equations used
for calculating the four indices are shown below:

NDVI � nir − r
nirr

(2)

where nir and r are the surface reflectance values for the near-
infrared (NIR) and red bands, respectively. NDVI is mostly used to
represent the greenness component (also called greenness index).

SMMI �
���������
nir + swir1

√
�
2

√ (3)

SMMI is sensitive to humidity. where swir1 represent the
spectral reflectance of short-wave infrared band [1.55–1.75 µm
for the TM/ETM + sensors and 1.57–1.65 µm for the Operational
Land Imager (OLI)].

LST � T

1 + λT
ρ( ) * ln ε

− 273.15 (4)

The heat index is expressed in terms of surface temperature LST,
where T denotes the thermal infrared band, λ is the central
wavelength of the ETM+ 6 band (λ = 11.45 μm), ρ is 1.438, ε is
the surface emissivity (Nichol, 2005).

NDBSI � IBI + SI

2
(5)

IBI � 2 * swir1 * swir1 + nir( ) − nir/ nir + r( ) + g/ g + swir1( ))[ ]
2 * swir1 * swir1 + nir( ) + nir/ nir + r( ) + g/ g + swir1( ))[ ]

(6)
SI � swir1 + r( ) − nir + b( )

swir1 + r( ) + nir + b( ) (7)

where r, g, and b represent the red, green, and blue bands,
respectively. The NDBSI is expressed as the average of IBI and
SI. IBI and SI represent the index-based built-up and soil indices,

respectively. In the study area, impervious building surfaces replaced
natural ecosystems, resulting in surface dryness. Bare soil was also a
significant contributor to the dryness. Therefore, the built-up and
bare soil indices were used to quantify the extent of surface dryness
in the study area.

RSEI � ω1 *PC1 NDVI, SMMI, LST,NDBSI( )
+ω2 *PC2 NDVI, SMMI, LST,NDBSI( ) (8)

All the calculations were performed using GEE, and
normalization was applied to all indices. As the first principal
component did not contribute to 85% (based on the results after
performing the PCA), we weighted the first two principal
components, which yielded a cumulative contribution of >85%.
ω1 and ω2 represent the contribution rates of the corresponding
principal components. In this study, the closer the RSEI value is to 1,
the better the environment quality is. RSEI was divided into five
levels at intervals of 0.2: very poor (0–0.2), poor (0.2–0.4), moderate
(0.4–0.6), good (0.6–0.8), and excellent (0.8–1.0), based on the
classification standards of the technical specification for
ecological environment assessment (Xu, 2013; Xiao et al., 2023).

3.3 Variations in ecological
environmental quality

Detecting the disturbances in ecological environmental quality is
essential for understanding the effects of anthropogenic activity on the
variations in the ecological environmental quality of a region. Landsat-
based detection methods (e.g., LandTrendr), used for identifying such
disturbance and analyzing recovery trends, are widely used for detecting
forest disturbance. Recently, LandTrendr has been widely applied in
various fields, e.g., for permafrost thaw monitoring and dynamic
mapping of mangroves (de Jong et al., 2021; Runge et al., 2022). The
LandTrendr trajectory segmentation method is used to detect changes
based on the spectral-temporal segmentation algorithms, for a time-
series of moderate-resolution satellite images (primarily Landsat); this
process typically comprises of five stages: removing spikes, detecting the

FIGURE 3
Landsat images used in this study.
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potential vertices, fitting the time-series trajectories, optimizing the
model, and identifying the best-fitting model (Kennedy et al., 2010).
In this study, the LandTrendr algorithm was used to identify the
variations in the ecological environmental quality of the study area
(Figure 4A); the RSEI time-series trajectories were input into the
LandTrendr algorithm on the GEE platform. The control parameter
values, including the maximum number of segments, had no effect on
the results; therefore, we adopted the default parameters to simplify
the workflow.

Notably, LandTrendr can capture short-duration events and
smooth long-term trends from the spectral trajectories of the
changes in the ecological environmental quality, based on the
yearly Landsat time-series RSEI. Therefore, metrics such as
disturbance, recovery and trend were derived by considering
specific events and longer-duration processes. The three kinds of
parameters used to analyze the variations in the RSEI were
statistically quantified based on the disturbance and recovery
parameters and trends (Figure 4).

3.3.1 Disturbance and recovery parameters
The starting and ending points of the segments denote the vertices

whose time positions and RSEI values provide the disturbance and
recovery information. The disturbance and recovery parameters are
presented in Figure 4B. The parameters for disturbance and recovery
were derived from the RSEI time series (Table 2). The spatiotemporal
distributions of the ecological environmental quality parameters were
obtained by setting an optimal threshold for the disturbance magnitude,
with a significant difference between the NRAs and study areas. Overall,

1,155 samples from theNRA and 1,133 samples from the study area were
selected to determine the ideal threshold for our analysis. We applied the
pixels for which the magnitudes were greater than the threshold.

3.3.2 Trend
“Trend” can be denoted as the pattern of oscillations between the

disturbance onset and the recovery-end measurements of ecological
environmental quality (Figure 4C), portraying decreasing, increasing, or
stable trends from the disturbance onset to the recovery end, which can
be derived using the Mann–Kendall (MK) non-parametric analysis
method (at significance level of α = 0.05) (Czerwinski et al., 2014).
Decreasing, increasing, or stable trends are important to assess the
ecological environmental quality of a region because they can be
indicative of degradation, evolution, or stability, respectively.

3.4 Deriving a spatial evolution model for
vegetation restoration

The multistage adjacency index (MAI) can quantitatively analyze
the expansion characteristics between the newly added and existing
patches, with respect to their spatial relationship, using a multistage
buffer zone approach (Liu et al., 2018); notably, this approach was
originally used to describe the expansion types for urban landscapes and
precisely capture the characteristics of the urban expansion process. The
MAI can be calculated using Eq. 9:

MAI � K − ai
ak

(9)

FIGURE 4
Conceptual model portraying the variations in the ecological environmental quality of the study area based on the LandTrendr data: (A) disturbance
times; (B) disturbance parameters; (C) trend.

TABLE 2 Definition of disturbance and recovery parameters in this study.

Class Definition

Disturbance onset Beginning time of RSEI disturbance occurring

Disturbance end Ending time of RSEI disturbance disappearing

Disturbance duration Continuous time from disturbance start to disturbance end

Disturbance magnitude Maximum change of corresponding to disturbance onset and end

Disturbance times times of the disturbance from 2000 to 2022

Recovery onset Beginning time of RSEI recovery occurring

Recovery end Ending time of RSEI recovery occurring
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where K is the number of buffers for each added patch, ak is the area
of the kth buffer (outermost buffer), and ai is the intersection area
between the kth buffer zone and the original patch. The larger the
MAI area between the kth buffer zone and the original patch, the
greater the distance between the new and original patches, and the
higher the degree of vegetation restoration expansion. In addition,
the MAI value depends on the buffer distance; we set the buffer
distance as 30 m to maintain consistency with the spatial resolutions
of the Landsat images.

In this work, we considered six growth types for analyzing the
vegetation restoration evolution in the study area (using the
spatiotemporal model): edge, adjacent, intermediate, separate,
and spread expansions and inner filling, in accordance with the
approaches employed in previous studies (Liu and Xu, 2021; Liu
et al., 2022) (Figure 5). “Inner filling” primarily portrays the
specific scenario wherein newly added patches fill the gaps within
the pre-existing forest patches, corresponding to the natural
recovery process of vegetation. The “edge expansion” growth
pattern can be used to plan and develop land use based on the
foundation of existing patches. The other four expansions
(adjacent, intermediate, separate, and spread) were used to
develop and expand specialized industries in the study area,
through the large-scale planting of economic trees (e.g., fast-
growing timber species). “Separate expansion” and “spread
expansion” were used to describe the gradual natural
expansion in the study area, portraying the distinct patterns of
natural and artificial vegetation restorations. Notably, using a
multi-stage buffering approach, MAI can enable the quantitative
characterization of the spatial patterns of vegetation restoration
by creating multiple equidistant external buffers for each newly
added vegetation patch at different time periods. Thus, different

spatiotemporal evolution models of vegetation restoration reflect
different effects and types (i.e., natural or artificial) of ecological
restoration.

3.5 Evaluation of ecological
restoration effect

Landsat time-series analysis can be used to assess the effects of
ecological restoration in a region. Notably, the emphasis of such an
analysis should be on long- and short-term ecological restoration effects
in specific areas. In this study, long- and short-term ecological
restoration effects are considered according to the whole period
(2000–2020) and during the disturbance–recovery cycle on the basis
of LandTrendr algorithm, respectively. We used NRAs as the reference
areas. The primary reason for this is that NRAs is less affected by
anthropogenic activities, and its ecosystem evolution follows the natural
evolution pathway, which serves our aim to effectively assess the effects
of anthropogenic activity on the ecological restoration in the study area.
In addition, the NRAs within the study area have the same natural
conditions, e.g., climate and soil; this allowed us to assess the ecological
restoration effects in the region from an objective and comparable
viewpoint of ecological quality.

3.5.1 Long-term effects of ecological restoration
The DTW method is an alignment-based measurement of the

similarity between two time series, and its goal is to determine the
optimal alignment between the two series while ensuring minimum
cost (Zhang et al., 2017). Let the reference (A{a1, a2, a3, · · ·, am}) and
query (B{b1, b2, b3, · · ·, bn}) series be two time-series of lengths m
and n, respectively. Here, the reference and query series are the time-

FIGURE 5
Concept map of the spatiotemporal evolution model for the vegetation restoration in the study area. Notes: Circles represent multi-stage buffering
zones: (A) Inner filling; (B) Edge expansion; (C) Adjacent expansion; (D) Intermediate expansion; (E) Separate expansion; (F) Spread expansion.
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series average values of the RSEI of the NRA and the time-series
value of the RSEI in each pixel of the study area, respectively. The
DTW distance can be calculated using Eq. 10, as follows:

Di,j � δ ai,bj( ) + min
D i − 1, j( )

D i − 1, j − 1( )
D i, j − 1( )

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭ (10)

where δ(ai,bj) is the distance between nodes ai, and bj, Di,j is the
DTW distance between A(1: i) and B(1: i) as the summed distance
from (1, 1) to (i, j). When i � m and j � n, the recursion stops, and
D(m, n) is the final DTW distance between series A and B.

In this study, DTW was selected because of its ability to monitor
long-term ecological restoration effects. The DTW distance between
the RSEI series of the study area (RSEI SA) and the time-series
average values of the RSEIs in the NRA (RSEI NRA) for
2000–2022 were defined as the long-term ecological restoration
effects in each pixel , LERi, in the study area. The long-term
ecological restoration effect was calculated using Eq. 11 and
normalized using Eq. 12, as shown below:

LERi � dtw RSEI NSA, RSEIi( ) (11)

LERi,norm � LERi − LERmin(
LERmax − LERmin

) (12)

where RSEIi is the original long-term ecological restoration effect,
LERi,norm is the normalized long-term ecological restoration effect of
pixel i; and LERmax and LERmin denote the worst and best long-term
ecological restoration effects, respectively. The RSEI for each area
(averaged for the five NRAs) is shown in Figure 6. The RSEI for the
five NRAs differed significantly; additionally, there were obvious
differences in the time-series RSEIs for the period before 2010.

Note that the DTW distance was negatively related to the long-
term ecological restoration effect, i.e., a lower DTW distance from
the study area indicated that the pixel experienced better (high)
ecological restoration effects and was evolving according to the
natural evolution pathway. The DTW value between the NRA and
the study area, which is the nearest distance and has a similar
landform to the NAR, was calculated. The lower the LERi,norm value

is to 0, the closer the natural evolution is. Based on the natural breaks
(Jenks) classification method, our analysis was classified into four
levels, namely, strong, medium, poor, and very poor. Strong
represents the closest to the natural evolution, while very poor
represents far from closest to the natural evolution.

3.5.2 Short-term effects of ecological restoration
The short-term effects of ecological restoration pertain to the cycle

and feedback of a disturbed ecosystem recovery process through a series
of ecological programs for a specified period. In this study, we assessed the
short-term effects of ecological restoration in Southern Ningxia at the
onset of disturbance and the end period of the recovery process, using the
RSEI derived from the LandTrendr algorithm (see Table 2). Similar to the
analysis of the long-term ecological restoration effects, for the assessments
of short-term effects of ecological restoration in the study area, we
considered the five NRAs as the ecological reference areas. The short-
term ecological restoration (SER) effect was calculated using Eq. 13:

SERi � RSEItei − RSEItoi
∣∣∣∣ ∣∣∣∣

RSEIteNAS − RSEItoNAS

∣∣∣∣ ∣∣∣∣ (13)

where SERi denotes the original short-term ecological restoration effect
in pixel i; RSEItei and RSEItoi denote the RSEIs at the disturbance onset
(to) and the recovery end period (te ) in pixel I of the study area,
respectively.RSEIteNAS andRSEI

to
NAS denote the RSEIs at to and te in the

reference NRA, respectively. Note that the we considered the RSEIs of
the study area and NRA for the same time period, to compare the
relative changes between the RSEI change values with and without
human interference. A detailed classification of the short-term
ecological restoration effects in the study area is shown in Table 3.
Generally, a value above or lower than 25% denoted a manual break.
The higher the SERi value is, the closer the natural evolution is. The
classification of short-term ecological restoration effects is similar with
those of the long -term ecological restoration effects. Strong represents
the closest to the natural evolution.

4 Results

4.1 Spatiotemporal variation of ecological
environmental quality

The spatial distribution of the RSEI in the study area for the
2000–2020 period is shown in Figure 7. As shown the figure, the
overall ecological quality of the study area improved between
2000 and 2020. The effectiveness of the ecological management in the
region was mainly manifested by an increase in the number of areas

FIGURE 6
Remote sensing ecological index (RSEI) of each area, averaged
for the five natural reserve areas (NRAs), for the time-series
of 2000–2022.

TABLE 3 Classification levels for the short-term ecological restoration
effects in the study area.

Classification Standard

Strong RSEItei >RSEItoi , SER≥ 1.25

Medium 0.75≤ SER< 1.25

Poor 0.5≤ SER< 0.75

Very poor SER< 0.5
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classified as “excellent,” denoting an increase from 12.4% to 31.1%; the
proportion of the areas classified as “poor” decreased by 8%. The
“excellent” areas were mainly distributed in the northern region of the
study area. To analyze the spatiotemporal distribution of the RSEI from
2000 to 2022, the disturbance time and the time ofmaximumdisturbance
magnitude were considered (Figure 7C–F). Most of the disturbed RSEIs
accounted for 20% of the total study area. Notably, 20.3% of the disturbed
areas experienced only one disturbance period. The areas that
experienced two RSEI disturbance periods accounted for 61.2%; 13.8%
of the areas had more than four subsequent disturbance periods

throughout the 22-year study period. For each maximum disturbance
magnitude, we calculated the metrics that represented the occurrence
date (i.e., the onset year). Figure 7D portrays the onset year of the RSEI
disturbances. The disturbance onset years were split into four groups
(i.e., 2001–2005, 2006–2010, 2011–2015, and 2016–2022); notably, about
60% of the primary disturbance events occurred within the first 5 years
(i.e., 2000–2005). The highest magnitude of the maximum disturbance
period was 0.2–0.3, with total percentage of 56.7% (Figure 7E). However,
the percentage of the maximum disturbance duration was similar at each
classification level, i.e., <2, 2–10, 10–18, and >18 (Figure 7F).

TABLE 4 Area percentage of the spatiotemporal evolution models, based on six growth patterns (edge, adjacent, intermediate, spreading, and separated
expansions and inner filling), of the vegetation restoration in the study during 2000–2008, 2009–2014, and 2015–2022.

Period Inner
filling (%)

Edge
expansion (%)

Adjacent
expansion (%)

Intermediate
expansion (%)

Separated
expansion (%)

Spread
expansion (%)

2000–2008 0.14 6.27 2.21 0.80 1.91 88.67

2009–2014 0.12 5.48 1.84 0.69 1.75 90.12

2015–2022 0.09 30.50 2.16 1.26 5.82 60.17

FIGURE 7
Spatiotemporal variations in the remote sensing ecological index (RSEI) from 2000 to 2022: (A) RSEI in 2000; (B) RSEI in 2022; (C) time of
disturbance (DT) in RSEI; (D)Onset year ofmaximumdisturbancemagnitude; (E)maximumdisturbancemagnitude (MDM); and (F)maximumdisturbance
duration (MDD).
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4.2 Spatial evolution model for vegetation
restoration

In this study, forests and grasslands were considered for
vegetation restoration; farmlands were excluded because they
are an artificial ecological system. Our analysis revealed that the
majority of areas experienced two disturbances. Therefore, the
area-averaged percentages of the disturbance-onset years for the
highest and second-highest disturbance magnitudes were
calculated (Figure 8). As shown in the figure, the top-three
area-coverage percentages were noted in 2001, 2009, and 2015.
Therefore, the three time-periods, namely, 2000–2008,
2009–2014, and 2015–2022, were considered as the
disturbance-recovery cycles. The spatiotemporal evolution
model of vegetation restoration was analyzed in detail, shown
in Figure 9. As shown the Figure 9, in spatiotemporal evolution
model for 2000–2008, approximately 80% of vegetation
restoration portrayed the growth pattern of “spreading
expansion,” and the remaining 20% of vegetation restoration
portrayed the other five patterns (i.e., edge, adjacent,
intermediate, and separated expansions and inner filling).
Detail statistic was shown in Table 4. During 2009–2014 and
2015–2022, the coverage area of the maximum spatiotemporal
evolution model of vegetation restoration expanded. The second-
maximum coverage-area value of the spatiotemporal evolution
model was noted for “inner filling,” portraying an increase from
2000 to 2022, whereas spreading expansion portrayed a decrease
during the same period. Overall, in the early stage, the vegetation
restoration in the study area depended on artificial ecological
restoration; in the present stage, it depended on a combination of
natural and artificial ecological restoration.

4.3 Analysis of ecological restoration effect

4.3.1 Long-term effects of ecological restoration
The long-term effects of ecological restoration in the study area

are shown in Figure 10. Figure 10A portrays the similarity in the
time-series of the RSEIs of the study area and the NRAs. The areas

classified as “strong” dominated the study area, mainly located in the
grasslands in the northern part and around the forest area in the
southern region; this pattern was similar to the observations of the
NRAs (which had low anthropogenic activity). The areas classified
as “medium,” “poor,” and “very poor” were located in the central
part of the study area, which is a deviation of the NRA due to the
effectiveness of ecological management.

We used MK tests to verify the trends in the RSEI time-series
from 2000 to 2022. Figure 10B portrays the changing trend of the
RSEI. The RSEI trends were classified into “increasing,”
“decreasing,” and “stable” phases. The stable trends dominated
the dynamic RSEI changes. Decreasing and increasing trends
were observed in southern and northern regions of the study
area, respectively. Notably, the majority of areas that experienced
disturbances (denoted by the disturbances in the RSEI) recovered to
their initial state and improved or weakened in areas affected by
anthropogenic activity.

4.3.2 Short-term effects of ecological restoration
We considered four levels, namely, “very poor,” “poor,”

“medium,” and “strong,” to assess the short-term ecological
restoration effect (SER) in the study area; the details of the
classification standard are shown in Table 3. Similar to the
spatiotemporal evolution model of vegetation restoration, the
cycle between disturbance onset and recovery end was considered
to analyze the short-term ecological restoration effect in the study
area. The spatial distribution of SER in 2000–2008,
2009–2014 and 2015–2022 is displayed in Figure 11. During
2000–2008, the area of the maximum SER was classified as
“strong.” The second-maximum coverage area value of SER
was “very poor;” the areas classified as “very poor” were
located in the northern, southern, and eastern parts of the
study area. During 2009–2014, the percentages of the “strong,”
“very poor,” “medium,” and “poor” areas were 38, 23, 20, and
19%, respectively. During 2015–2022, the proportion of the
coverage areas portrayed the following order: “strong,” “poor,”
“very poor,” and finally “medium.” Overall, the spatiotemporal
variations in the SER were obvious in all three periods. The
spatial distribution of “strong” areas portrayed stability, while
those of “very poor,” “poor” and “medium” areas portrayed
significant variations. Notably, the negative or positive effects
of SER may fluctuate depending on the degree of human
interference.

5 Discussion

The RSEI has been widely used tomonitor the spatial assessment
of the comprehensive ecological quality of a region and conduct a
dynamic analysis at a temporal scale. In the current literature, the
majority of studies assess the ecological restoration effect in a region
by monitoring the time-series-based changed in the RESI, while
using change-detection algorithms to identify the abrupt points in a
time series. To address the complexity of detecting ecological
environment restoration, we introduced the MAI to
quantitatively analyze the spatiotemporal change characteristics
of the ecological restoration effect in the study area. Overall,
from 2000 to 2022, “inner filling” portrayed an increasing

FIGURE 8
Area-averaged percentage of disturbance-onset years of the
maximum and the second-maximum disturbance magnitude.
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tendency, while “spread expansion” portrayed a decreasing
tendency, indicating that the vegetation restoration patterns
occurred due to the transition from artificial restoration to a
combination of artificial and natural restorations. This was
indicated by the fact that newly added ecological-restoration
patches filled the gaps within the pre-existing patches, reflecting
the distinct restoration patterns between the effects of natural and
artificial restorations. In this study, we established a comprehensive
and objective ecological-assessment model for five NRAs and the

study area, to evaluate the long-term effects of ecological restoration
in the target region. In the future, the NRAs will be widely used to
monitor the ecological restoration effects in the target study area.
First, the NRAs and ecological restoration areas in the same region
portrayed identical vegetation growth environments (e.g., climate
conditions and soil and vegetation types) (Aronson et al., 2020),
indicating that they had comparable ecological quality. Notably,
NRAs can provide detailed vegetation-growth information as ideal
ecological references.

FIGURE 9
Spatiotemporal evolution model of the vegetation restoration in the study area during (A) 2000–2008; (B) 2009–2014; (C) 2015–2022.

FIGURE 10
Spatiotemporal distribution of the long-term ecological restoration effects (LER) in the study area: (A) dynamic time warping (DTW) value of the
remote sensing ecological indices (RSEIs) of the natural reserve area (NRAs) and the study region for 2000; (B) changing trend of the RSEI from
2000 to 2022.

Frontiers in Environmental Science frontiersin.org11

Wang and An 10.3389/fenvs.2024.1356269

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1356269


This study is the first to establish a comprehensive and objective
ecological-restoration assessment framework that can monitor long-
and short-term ecological quality levels. In our study, DTW was
introduced to reveal the long-term regional ecological restoration
effect in the study area, compared to that of NRAs; this approach was
used to identify the optimal path between two time-series. In
addition, we considered the cycle and feedback of the recovery
process of the disturbed areas for a specified period by extracting the
disturbance and recovery times of the RSEI, to evaluate the short-
term ecological restoration effect in the study area. This study
attempts to provide a new paradigm for analyzing the ecological
restoration effects in a region using long- and short-term assessment
approaches.

This study has a few limitations. The majority of current studies
based on RSEI involve calculating the mean value from the images
captured during the growing season and then, developing image
mosaics, to address the temporal instability of the RSEI during the
dynamic monitoring of the ecological quality assessment of the
target region (Yan et al., 2019). Owing to the complexity of natural
environmental changes, multitemporal composite images are often
inconsistent with real land-surface information, resulting in the
misjudgment of the disturbance time in the RSEI. Furthermore, the
errors in the LandTrendr algorithm parameters can affect the
judgment of disturbance and recovery, leading to small-
magnitude false-positive changes, poor detection, and neglecting
of spatially adjacent areas (Wang et al., 2023). Moreover, climatic
and seasonal differences can cause relatively large interferences in
the detection of disturbance and recovery, leading to significant
fluctuations in the estimations of regional vegetation and habitats
(Hamunyela et al., 2020).

Overall, we developed an assessment framework to analyze the
ecological restoration effects in southern Ningxia by combining the
DTW method and the LandTrendr algorithm, to explore and
evaluate the long- and short-term restoration effects in the
region. This study extends the application of previously applied
methods to different areas, while focusing on large-scale assessments
of ecological restoration effects. Notably, eliminating the limitations

of the proposed methods requires further exploration and
optimization.

6 Conclusion

In this study, we used the RSEI, which includes the parameters of
greenness, wetness, heat, and dryness, to monitor the variations in
the spatiotemporal pattern of the ecological environmental quality
in southern Ningxia, China. The RSEI was calculated using a yearly
Landsat time-series. LandTrendr was used to analyze the
disturbances in and recovery of the RSEI. Then, for different
periods of discovery and recovery, we adopted the MAI to
capture the expansion characteristics between the newly added
and existing vegetation patches. Five NRAs were selected as the
reference areas for ecological restoration in the region. The DTW
value and relative index based on the time-series of the RSEIs of the
study area and the NRA were analyzed to describe and quantify the
long- and short-term ecological restoration effects during the study
area. LandTrendr was well-suited for capturing the RSEI disturbance
and recovery processes. The most important findings and
conclusions of this study are as follows:

(1) The LandTrendr algorithm was successfully used for
detecting the disturbance (including the times, duration,
and magnitude of disturbance) and recovery in the RSEI.

(2) The ecological quality of the study area, assessed using the RSEI,
portrayed significant improvement. The majority of the areas
that portrayed disturbances in their RSEI values experienced two
disturbance times during the entire study period; the
disturbances with maximum magnitudes occurred
during 2000–2005.

(3) For long-term ecological restoration effects, the areas classified as
“strong” dominated the smaller the area less affected by
anthropogenic activity (the southern and northern areas of
the study region). For short-term ecological restoration effects,
human interference has less affected the areas in the later period

FIGURE 11
Spatial distribution of short-term ecological restoration (SER) effect in the study area in (A) 2000–2008; (B) 2009–2014; (C) 2015–2022.
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(2009–2014, and 2015–2022), which is classified as “strong”. The
more similar were the short- and long-term ecological
restoration effects to the ecological environment evolution
of the NRAs.

Our study corroborates that remote sensing can provide
temporally and spatially continuous synoptic observations of a
region’s response to ecological quality and restoration effects.
Analyzing the ecological restoration effect on long- and short-
term scales can help policymakers, ecological managers, and
landowners understand and improve the environmental
management and vegetation status in affected areas in response
to land degradation, climate change, and environmental projects.
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