
Industrial agglomeration,
international R&D capital and air
pollution-based on provincial
spatial panel data

Dawei Gao, Yan Deng  * and Zhengyang Chen

College of Economics and Management, Zhengzhou University of Light Industry, Zhengzhou,
Henan, China

Introduction: This paper presents a spatial effect model to examine the impact of
industrial agglomeration and international R&D capital technology spillover on
air pollution.

Methods: The study utilizes spatial panel data from 30 provinces and cities in
China spanning the period 2008 to 2022, allowing for the decomposition of both
direct and indirect spillover effects.

Results: Additionally, the research investigates the threshold effect of industrial
agglomeration and international research and development capital and technology
spillover on air pollution, considering independent research and development as the
threshold variable. The findings reveal evident spatial autocorrelation and spatial
dependence between industrial agglomeration, international R&D capital, and air
pollution. Importantly, both international R&D capital technology spillover and
industrial agglomeration exhibit a single threshold effect. This implies that
surpassing the threshold value leads to a more pronounced positive impact of
international R&D capital technology spillover on reducing air pollution, while the
impact of industrial agglomeration on air pollution tends to be positive.

Discussion: The findings of this study have significant theoretical and practical
implications for the promotion of sustainable economic development, particularly
in China.
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1 Introduction

China’s development of a green economy and ecological civilization necessitates not only
compliance with global emission reduction obligations but also adherence to the laws of nature
to mitigate the adverse impacts of environmental pollution on human health (Cheng and You,
2019). After years of concerted efforts, China has achieved remarkable success in reducing
CO2 emissions and currently holds the position of the world’s leading producer and consumer
of biofuels. Additionally, in response to climate change, China has set a “double carbon target.”
At the 2022 National Conference on Ecological and Environmental Protection, Li Gao, Director
of the Department of Climate Change, announced that China will implement resolute new
measures to achieve its carbon emission reduction goals for 2030, including strengthening the
regulation of non-carbon dioxide greenhouse gas emissions. Urban areas, in particular, are
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significantly impacted by air pollution resulting from the release of
pollutants such as SO2, particulate matter (PM), NOX, and volatile
organic compounds (VOCs), which contribute to the frequent
occurrence of haze (Zhang et al., 2021).

Technological advancements play a crucial role in mitigating air
pollution, and they can be fostered through two primary channels:
domestic research and development (R&D) efforts and international
collaboration. Domestic R&D programs focus on exploring
innovative solutions and developing cutting-edge technologies
tailored to local environmental challenges. These initiatives
involve government funding, academic institutions, and industry
partnerships to drive scientific breakthroughs and practical
applications. Simultaneously, international collaboration facilitates
knowledge exchange, resource sharing, and joint efforts to tackle
transboundary air pollution issues. By leveraging both domestic and
international resources, countries can accelerate the development
and deployment of effective technologies for combating air pollution
on a global scale.

The research motivation and novelty of this paper are threefold.
Firstly, it categorizes international R&D collaborations into two
main types: horizontal collaborations and vertical collaborations.
Horizontal collaborations involve partnerships between firms or
organizations within the same industry or sector, aiming to share
knowledge and resources to enhance technological advancements
collectively. On the other hand, vertical collaborations refer to
collaborations between firms or organizations across different
stages of the value chain, facilitating the transfer of innovation
and expertise along the production process; Secondly, this study
investigates the determinants of international R&D collaborations,
particularly focusing on economic factors such as market size,
research capabilities, and intellectual property rights protection.
By exploring these factors, the paper aims to provide insights
into the drivers of successful international R&D collaborations
and contribute to the existing literature on innovation and
technology transfer; Lastly, this research examines the impact of
international R&D collaborations on firm performance and
competitiveness. It analyzes how collaboration affects various
aspects of firm performance, including productivity, profitability,
market share, and innovation outcomes. With this analysis, the
study seeks to shed light on the potential benefits and challenges
associated with international R&D collaborations and their
implications for firms’ strategic decision-making and long-term
sustainability.

2 Literature review

Since the mid-20th century, environmental issues have grown
increasingly severe, exerting a gradual influence on human life.
Consequently, scholars worldwide have undertaken extensive
research to analyze the various factors that can potentially impact
the environment. Specifically, some scholars have concentrated on
the effects of artificial intelligence (AI) on the environment (Wang
et al., 2020; Xuan and Zhang, 2021; Lv et al., 2023;Wang et al., 2023),
while others have examined the relationship between financial
development and environmental pollution (Zheng et al., 2021; Yu
and Fan, 2022; Wang et al., 2024). Additionally, certain researchers
have explored the impact of environmental pollution from a

geopolitical standpoint (Graham et al., 2022; Wang et al., 2023;
Zhang and Yu, 2023), or investigated the effects of information and
communication technology (ICT) on environmental pollution (Liu
et al., 2018; Liu and Zhu, 2021; Wang et al., 2023). Moreover, there
have been studies focusing on the links between corruption
governance and environmental pollution (Zhang, 2016; Pei, 2022;
Chen et al., 2023; Wang et al., 2023). The aim of this paper is to
examine the impact of industrial agglomeration and international
R&D cooperation on the environment, providing valuable insights
into the complex relationship between these factors.

In the realm of contemporary research, both domestic and
international scholars have advanced the study of industrial
agglomeration and its correlate, environmental pollution. Despite
these advancements, the discourse has yet to coalesce around a
universal consensus, and debate persists, predominantly encapsulated
within three primary schools of thought:① there is the argument that
industrial agglomeration mitigates pollution. Empirical analyses by Li
et al. (2017) leveraging panel data vector autoregressive models
illuminated a dynamic relationship between industrial
agglomeration, technological innovation, and environmental
pollution—evidencing that amplified degrees of industrial
agglomeration appreciably curtail industrial pollution emissions and
foster technological innovation. Xu and Zhang (2018) also substantiated
that industrial agglomeration markedly enhances air quality, a robust
findingwhen accounting for the heterogeneity of air quality assessments
and upon the exclusion of cities with egregiously high pollution levels.
Similarly, Han and Zhang (2023) and Fan and Xu (2023) respectively
determined that industrial specialization agglomeration significantly
lessens pollution intensity within industrial units, and that utilizing
high-speed rail services to intensify factor agglomeration leads to
improvements in green production efficiency within industrial
clusters, thereby contributing to regional ecological advancement; ②
an antithetical perspective posits that industrial agglomeration
exacerbates environmental pollution. Ji and Zhu (2019), examining
pollution emissions as an intermediary variable in the context of
industrial agglomeration and resource misallocation, ascertained that
while pollution emissions do not uniformly respond to differing degrees
of agglomeration contingent upon misallocation conditions, an overall
trend suggests an escalation in emissions correlating with increasing
agglomeration. Likewise, He (2023) identified a single threshold effect of
industrial agglomeration upon environmental efficiency within the
Chengdu-Chongqing Economic Circle, revealing that initial
agglomeration inhibits environmental efficiency enhancement, which
may, however, be mitigated by technological innovation. This finding is
congruent with Wang and Nie (2016), who noted that industrial
agglomeration has the potential to obstruct environmental
governance efforts in the short term, manifesting as spatially
‘concentrated emissions’ from polluting enterprises; ③ a faction of
researchers emphasize the inherent uncertainty in the relationship
between industrial agglomeration and environmental pollution. The
work of Xu and Li (2023) discovered a pronounced inverted “U”
relationship between dairy farming industry agglomeration and
environmental efficiency, attributing initial efficiency improvements
to a “scale effect” until a critical agglomeration turning point is reached,
beyond which a “crowding effect” supersedes and suppresses
environmental efficiency. He et al. (2022) posited an analogous
inverted “U” relationship between the level of industrial
agglomeration and pollution, suggesting most Chinese provinces
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currently reside on the positive externality side of the curve. Liu et al.
(2018) identified a nonlinear spatial interrelation between industrial
agglomeration and environmental pollution across varied Chinese
regions. Kou (2021) and Sun et al. (2021) further nuanced the
discourse by analyzing different types of industrial agglomerations
and their disparate impacts on environmental pollution, with the
latter uncovering an inverted “N” relationship where extreme
agglomeration levels inversely affect environmental performance.

The relationship between international R&D capital technology
spillovers and environmental pollution has been extensively studied.
Gao (2016) conducted a comprehensive analysis using a system GMM
model to examine the impact of global R&D investment on carbon
emissions in China. The findings revealed that technological spillover
resulting from foreign direct investment and import transactions
effectively increased China’s carbon emissions. Similarly, Huang
et al. (2018) utilized a CH-LP model to explore the linear and
nonlinear effects of domestic R&D, foreign direct investment, and
trade on carbon intensity. The study uncovered that the dissemination
of domestic R&D and imported trade technologies contributed to
increased carbon intensity, whereas foreign direct investment and
export trade effectively reduced carbon intensity in China. In
another investigation, Wang et al. (2023) employed a nonlinear
panel threshold regression model and identified that when foreign
direct investment exceeded a certain threshold, its impact on promoting
carbon emissions initially increased, but then decreased. Furthermore,
Gao and Nie (2019) highlighted that foreign direct investment and
export trade not only fostered the enhancement of carbon productivity
within a particular region but also indirectly improved carbon
productivity in other regions. The introduction of foreign technology
contracts had a direct effect on significantly augmenting carbon
productivity in the region but resulted in a decline in carbon
productivity in other regions. Examining the effects of technology
spillovers on CO2 emissions, Jiao et al. (2018) incorporated variables
such as direct and indirect technology spillover effects into an
econometric model. The results indicated that the diffusion of
foreign direct investment technology contributed to a reduction in
CO2 emissions. In contrast, Wang and Zhu (2018) found that outward
foreign direct investment substantially increased sulfur dioxide
emissions in various provinces in China. Moreover, Ding and Zhang
(2021) investigated the mediating effect of import trade technology
spillover on the intensity of industrial atmospheric pollution. The study
uncovered a “positive N-shaped” relationship, suggesting that both high
and low levels of technology spillover can lead to environmental
pollution. Lastly, Wang et al. (2023) explored the impact of trade on
carbon emissions and discovered that the effect varied depending on the
nature of trade. Trade openness was found to contribute to an increase
in carbon emissions, whereas trade diversification was associated with a
decrease in carbon emissions. Import diversification was identified as
having the most substantial impact on reducing carbon emissions.

The extant body of literature has devoted substantial attention to
examining the nexus between industrial agglomeration and air
pollution, as well as the consequences of international R&D
capital technological spillovers on carbon dioxide emissions.
Despite these scholarly endeavors, there persists a divergence of
conclusions within the research community. The existing
scholarship manifests certain lacunae that warrant further
scholarly inquiry: Firstly, there is a preponderance of research
concentrating on the ramifications of international R&D capital

technological spillovers for carbon emissions or carbon efficiency,
while comparatively scant attention is paid to the multifaceted
impact of such spillovers on sulfur dioxide emissions. Secondly,
the spatial spillover effects of industrial agglomeration on
environmental pollution, and their potential nonlinear
interdependencies, require closer scrutiny. The compendium of
literature focusing on the interrelation between industrial
agglomeration and international R&D capital technology transfer
remains incomplete.

To redress these deficiencies in the literature, the present study
seeks to empirically explore the effects of industrial agglomeration
and international R&D capital technological spillovers on air
pollution. For this purpose, a spatial econometric model will be
developed to ascertain both the direct and indirect influences
exerted by these factors. An empirical investigation deploying
spatial panel data, collected from 30 provinces and municipalities
in China over the interval encompassing 2008 to 2022, will be
undertaken. This research will disentangle the convoluted spillover
effects, and it will probe into the potential threshold effects of
industrial agglomeration and international R&D capital
technological spillovers on air pollution quality, deploying
independent R&D as a pivotal threshold variable. It is envisaged
that the insights gleaned from this analysis will not only contribute
to a more sophisticated theoretical framework surrounding
industrial agglomeration but also furnish empirical evidence that
can inform the formulation of policy interventions geared towards
scientifically engineering a more congenial living environment.

3 Variables and research methods

3.1 Selection of variables

3.1.1 Explained variable
Currently, the principal constituents of air pollution emissions

in China are carbon dioxide (CO2) and sulfur dioxide (SO2). The
focus of this study is on SO2 emissions for several reasons. Firstly,
there is a lack of comprehensive statistical data on CO2 emissions, as
well as a standardized calculation approach for assessing
CO2 emissions. Additionally, the author’s prior research has
extensively addressed CO2; thus, this study endeavors to
substantiate the relevant theoretical framework by concentrating
on SO2 emissions. Secondly, given that China is the world’s leading
emitter of SO2, the data available from the National Bureau of
Statistics is not only more granular but also holds a greater degree of
veracity. Consequently, this study adopts the index of SO2 emissions
intensity as a proxy for air pollution, operationalized as the ratio of
total provincial and municipal SO2 emissions to the Gross Domestic
Product (GDP)—denoted as pollution emission. The requisite data
was procured from the official website of the National Bureau of
Statistics of China.

3.1.2 Core explanatory variables
3.1.2.1 International R&D capital stock

The stock of foreign R&D capital obtained by Chinese provinces
and cities through three spillover channels, namely import trade,
export trade, and foreign direct investment, was measured by
referring to Eqs 1-3 Lichtenberg et al.’s formulas, as follows:
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Spimit � IMit

∑
i
IMit

∑7

j�1
IMjt

Yjt
Sjt (1)

Spexit � EXit

∑
i
EXit

∑7

j�1
EXjt

Yjt
Sjt (2)

Spfdiit � FDIit
∑
i
FDIit

∑
7

j�1

FDIjt
Yjt

Sjt (3)

where Spimit , Spexit , and Spfdiit indicate the foreign R&D capital obtained
by province i through import trade, export trade, and foreign direct
investment, respectively, in year t; IMjt indicates China’s imports
volume from country j in year t; EXjt indicates China’s export
volume to country j in year t; and FDIjt indicates the foreign
direct investment volume of country j to China in year t; Yjt

indicates the GDP of country j; Sjt indicates the R&D capital
inventory of country j in year t; and IMit, EXit, and FDIit
indicate, respectively, the import trade volume, export trade
volume, and foreign direct investment volume of province i in
year t.

Based on the availability of the data, the time range studied in
this paper was from 2008 to 2022. The capital stock measurement
method is used to calculate Sjt for G-7 countries (the
United States, Japan, France, Canada, Germany, the
United Kingdom, and Italy). First from the World Bank
Treasury query in dollars 2010 constant price G-7 countries
GDP, in the China science and technology statistics book G-7
countries independent R&D (R&D) accounted for the proportion
of gross domestic product (GDP), G-7 countries gross domestic
product (GDP) by independent research and development
(R&D) the proportion of gross domestic product (GDP), in
2010 constant price independent research and development of
R&D (R&D) value, again in 2010 yuan against the dollar
exchange rate will G-7 countries R&D investment into RMB.
Data on foreign direct investment and import and export trade in
30 Chinese provinces (municipalities) are obtained from the
website of the China Bureau of Statistics.

3.1.2.2 Industrial agglomeration level (IA)
There are many different criteria for measuring industrial

agglomeration, such as the GINI coefficient, Hoover index, E-G
index, and location entropy, each of which has its advantages and
disadvantages. Here, we will draw lessons from the practices of
Zhong and Wei (2019), and measure the industrial
agglomeration level (IA) in all provinces and cities by location
entropy. This paper uses industrial added value to measure the
IAit index, the formula is (IDVi/∑ IDV)/(GDPi/∑GDP),
among which (IDVi/∑ IDV) is the proportion of industrial
added value in the total industrial added value, and
(GDPi/∑GDP) is the proportion of GDP of provinces and
cities in the total GDP. Data are from the website of the
China Bureau of Statistics.

3.1.3 Threshold variables and control variables
3.1.3.1 Threshold variables: domestic independent R&D
index (R&D)

The index of domestic independent R&D expenditure adopts the
ratio of R&D internal expenditure to GDP, that is, the intensity of

R&D investment. The more R&D investment, local enterprises can
have a higher level of technology and use more advanced technology
and equipment, to improve the efficiency of water resources
utilization and reduce pollution emissions (Wang and Fan, 2021).
R&D internal expenditure data are obtained from China Science and
Technology Statistical Yearbook.

3.1.3.2 Control variable: GDP per capita (PS)
The choice of per capita GDP as the control variable can reflect

the development degree of a region’s economy, and the level of
economic development is an important variable affecting
environmental pollution. To eliminate the price factors, the GDP
index was used to reduce the per capita GDP in a period based on
2010. The total population adopts the resident population of each
province at the end of the year. Per capita GDP is the total GDP of
each province (city) divided by the resident population of each
province (city) at the end of the year. The data on the total
population and GDP are obtained from the website of the
Chinese Bureau of Statistics.

3.2 Research methods

3.2.1 Spatial correlation test
The applicability of the spatial measurement model can be

determined by using the spatial correlation test (Eq. 4). The
“Moran index I” (Moran’sI) is the most common means of
spatial correlation test in the current spatial measurement model.
The formula is:

I � ∑n
i�1Σn

j�1wij
* xi − �x( ) xj − �x( )

s2∑n
i�1∑

n
j�1wij

(4)

Where i = 1,2,. . ., n, j = 1,2,. . ., n; �x � 1
n∑

n
i�1xi is the mean in the

sample, wij is the matrix element, while S2 � 1
n∑

n
i�1(xi − �x)2 is the

variance in the sample.

3.2.2 Space panel econometric model
Without considering spatial effects, traditional regression

models may produce biased or even incorrect results (Eq. 5).
Therefore, this paper uses a spatial panel econometric model
based on the Cobb-Douglas production function (Douglas C.
North, 1994; Coukmoe, 2000) to investigate spatial effects.

yit � τyit-1 + ρ∑
n

j�1
wijyit +∑

k

k�1
χitkβk +∑

k

k�1
∑
n

j�1
wijxjtkθk + μi + γt + φit

(5)
φit � λ∑n

j�1wijφjt + εit i = 1,. . .,n;t = 1,. . .,T
where yit indicates the explained variable, namely the emission

intensity of sulfur dioxide of province i at time t; yit−1 indicates the
lag term of the explained variable; ∑n

j�1wijyit indicates the spatial
interaction term of the explained variable; and wij represents the
spatial weight matrix. The rook first-order spatial weight matrix of
30 provinces and cities in China was adopted based on the concept
of adjacency. This means that if province i and province j (i ≠ j) are
directly adjacent, then wij = 1, otherwise wij = 0. ρ indicates the
spatial autoregressive coefficient; μi and γt represent the spatial
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(individual) and temporal effects, respectively; the residual φit in
province i was assumed to depend on the residual φjt of the spatial
adjacent unit; and εit indicates the white noise process.

① If λ = 0, it is the Space Dubin Model (Spatial
Dubin Model, SDM).

② If λ = 0 and θ = 0, it is the “spatial autoregressive model”
(Spatial Autoregressive Model, SAR).

③ If ρ = 0 and θ = 0, then the Spatial Error Model (Spatial Error
Model and SEM). The spatial Dubin model, the spatial
autoregressive model, and the spatial error model are all
set at τ = 0.

Although least squares estimation leads to inconsistency in the
estimation of regression parameters, spatial parameters, and
standard errors of models with spatial lag-dependent variables,
the likelihood estimation is consistent (LEE et al., 2004), so the
spatial panel econometric model is estimated by the
likelihood method.

In selecting spatial weights, select the 0–1 spatial weight matrix,
which is assigned according to the spatially geographic proximity,
with geographically close regions assigned a value of “1” and other
regions a value of “0.”

3.2.3 The threshold measurement model
This paper draws on the method of Eq. 6 quoted in Hansen

(1999) to construct the threshold measurement model of air
pollution and examines the threshold effect of industrial
agglomeration and international R&D capital technology
overflow on air pollution when independent research and
development is taken as the threshold variable. The threshold
model is as follows:

LCit � β1 + β2Rit × I thr≤ γ( ) + β3Rit thr> γ( ) +∑ βjXjit + εit

(6)
where LCit represents the emission intensity of sulfur dioxide, as
representative of air pollution; Rit represents the core explanatory
variables, namely import trade, export trade, foreign direct
investment, and industrial agglomeration; I(·) indicates the
threshold indicator function; thr indicates the threshold variable;
(rdit)indicates R&D investment; γ represents the threshold value of
different threshold variables; Xjit is the control variable; and εit and
μit are random interference terms.

3.2.4 Descriptive statistics for variables
Descriptive statistics for each variable are listed in Table 1.

4 Interpretation of result

4.1 Spatial correlation analysis

To ascertain the appropriateness of incorporating a spatial effect
into the analysis, this paper implements the Global Moran’s I index
to assess the spatial autocorrelation of variables including
international research and development (R&D) capital, sulfur
dioxide (SO2) emission intensity, and the magnitude of industrial
agglomeration. The outcomes, as delineated in Table 2, indicate that
a majority of the examined variables, such as international R&D
capital, SO2 emission intensity, and industrial agglomeration,
achieve statistical significance, evidencing pronounced spatial
dependence. Consequently, the adoption of a spatial panel
econometric model is warranted to investigate the impact of
international R&D capital and industrial agglomeration on air
pollution meticulously.

A local spatial autocorrelation test was performed on the
SO2 emission intensity of 30 provinces and cities in China.
Moran’s I scatter plot of sulfur dioxide emission intensity in
30 provinces in China (2022) as shown in Figure 1, most of the
areas are located in the first and third quadrants, indicating that
most areas of the sulfur dioxide intensity show similar spatial
agglomeration characteristics with adjacent areas.

4.2 Spatial panel data model estimation

4.2.1 Model selection
At this juncture, it became essential to identify an appropriate

spatial econometric model for the ensuing analysis. In pursuit of this
objective, a battery of diagnostic tests was administered, comprising
the Moran’s I test, LM (Robust) test, the Wald test, the likelihood
ratio (LR) test, and the Hausman test. The Moran’s I test for spatial
autocorrelation revealed significant values at the 5% significance
threshold. Likewise, the LM (Robust) tests for both spatial error and
spatial lag decisively rejected the null hypothesis, thereby
substantiating the necessity for spatial econometric scrutiny.
Subsequently, the Wald and LR tests were deployed to discern
whether the Spatial Durbin Model (SDM) was reducible to a

TABLE 1 Descriptive statistics.

Variables Obs. Mean Standard deviation Min. Max.

Foreign direct investment FDI 450 0.031 0.025 0 0.135

Export trade EX 450 0.177 0.291 0.001 1.91

Import trade IM 450 0.912 0.782 0.085 2.52

Domestic independent R&D index R&D 450 14.096 2.052 6.183 16.932

Industrial agglomeratio IA 450 0.997 0.436 0.183 2.823

GDP per capita PS 450 4.118 2.449 0.681 14.6156

Research and development rd 450 5.88 0.949 4.155 8.665
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Spatial Autoregressive (SAR) or Spatial Error Model (SEM). The
results of both tests unequivocally endorsed the application of the
SDM model. The Hausman test outcomes indicated a proclivity

towards a fixed-effects model. Lastly, through the application of the
LR test, a differential determination was made between a time-fixed,
area-fixed, and a two-way fixed effects model; the empirical evidence

TABLE 2 Moran’s I index values for the key variables for all provinces and cities of China in the period 2008–2022.

Year lnP p-value lnFDI p-value lnIM p-value lnEX p-value lnIA p-value

2008 0.484 0.000 0.509 0.000 0.356 0.001 0.383 0.000 0.877 0.17

2009 0.48 0.000 0.526 0.000 0.365 0.000 0.383 0.000 0.916 0.26

2010 0.476 0.000 0.558 0.000 0.374 0.000 0.355 0.001 0.898 0.221

2011 0.482 0.000 0.526 0.000 0.383 0.000 0.337 0.001 0.915 0.264

2012 0.482 0.000 0.526 0.000 0.386 0.000 0.337 0.001 0.872 0.175

2013 0.509 0.000 0.486 0.000 0.385 0.000 0.374 0.000 0.845 0.133

2014 0.522 0.000 0.488 0.000 0.372 0.000 0.364 0.000 0.803 0.08

2015 0.512 0.000 0.481 0.000 0.366 0.000 0.359 0.001 0.769 0.051

2016 0.512 0.000 0.502 0.000 0.364 0.000 0.343 0.001 0.74 0.034

2017 0.516 0.000 0.507 0.000 0.387 0.000 0.346 0.001 0.732 0.03

2018 0.519 0.000 0.536 0.000 0.428 0.000 0.401 0.000 0.719 0.024

2019 0.474 0.000 0.545 0.000 0.381 0.000 0.396 0.000 0.71 0.02

2020 0.395 0.000 0.47 0.000 0.377 0.000 0.407 0.000 0.686 0.013

2021 0.373 0.000 0.459 0.000 0.356 0.000 0.401 0.000 0.715 0.023

2022 0.37 0.000 0.44 0.000 0.33 0.001 0.397 0.000 0.718 0.023

FIGURE 1
Moran’s I scatter plot of sulfur dioxide intensity for 30 provinces and cities of China in 2022.
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dictated the selection of a two-way fixed effects model. Thus, the
elucidated analyses culminated in the adoption of the two-way fixed
effects SDM model, the results of which are presented in Table 3.

4.2.2 Effect decomposition measure
The regression coefficients derived from Dubin’s spatial

econometric model do not intrinsically encapsulate the complete
marginal impacts of the explanatory variables. To elucidate the
spatial dependencies, the effects must be fractionated into three
distinct categories: indirect, direct, and cumulative effects. Within
the spatial framework of Dubin’s model, the comprehensive
influence exerted by foreign direct investment (FDI), import
trade, export trade, and the degree of industrial agglomeration
upon the emission intensity of sulfur dioxide can be dissected
into direct and indirect components, as delineated in Table 4.
The direct impact encapsulates the repercussions of FDI, import
trade, export trade, and industrial agglomeration levels on sulfur
dioxide emission intensity directly, within the immediate context.
Conversely, the indirect impact, often referred to as the ‘spatial
spillover effect,’ conveys the extent to which FDI, import trade,
export trade, and industrial agglomeration influence sulfur dioxide
emission intensity in an adjacent or co-located spatial context. The

cumulative effect, derived from the aggregation of direct and indirect
impacts, represents the total imputed effect of the variables under
study on the emission intensity of sulfur dioxide.

The decomposition of the spatial effect of industrial
agglomeration and international R&D capital and technology
spillover on air pollution reveals the following findings: ① the
direct effect of foreign direct investment (FDI) technology
spillover is negative, indicating that FDI can lead to a reduction
in regional sulfur dioxide emission intensity through the
demonstration effect and competition effect of technology
spillover. Conversely, the indirect effect is significantly positive,
suggesting that FDI increases air pollution in adjacent areas. This
can be attributed to local FDI activities driving neighboring regions
to actively seek FDI, leading to the rapid development of related
industries and consequently, worsening environmental pollution.②
the direct, indirect, and total effects of technology spillover from
import trade (IM) are all significantly negative. This implies that
imported foreign advanced machinery, equipment, and
intermediate goods facilitate the absorption and assimilation of
advanced technology, resulting in a considerable reduction in
sulfur dioxide emission intensity both locally and in neighboring
areas. Import trade not only fosters the improvement of local

TABLE 3 Empirical results of the spatial panel data model.

Variable (P) SAR fixed effects SEM fixed effects SDM time area two-way fixed effects

FDI −0.0389 (−0.74) −0.1224*** (−1.98) −0.0635 (−1.26)

EX 0.0663 (1.23) −0.0176 (−0.28) −0.0409 (−0.78)

IM −0.1589*** (−2.72) −0.1991*** (−3.26) −0.2357*** (−4.66)

R&D −2.0500*** (−6.75) −2.4197*** (−5.43) −0.8843** (−2.02)

IA 0.0052 (0.002) 0.0015 (0.72) 0.0035* (1.68)

PS 0.2989*** (2.91) 0.0403 (0.22) 0.8387*** (3.54)

w_FDI 0.3883*** (3.4)

w_EX 0.1533* (1.71)

w_IM −0.2201** (−2.11)

w_R&D −4.6690*** (−5.63)

w IA 0.0138*** (3.2)

w PS −0.4254 (−1.04)

ρ 0.7172*** (21.78) −0.6522*** (−8.75)

λ 0.7665*** (19.69)

σ2 0.0918*** (13.93) 0.0970*** (13.45) 0.0601*** (14.99)

R2 0.4662 0.4602 0.5314

LR test (SDM VS SAR) [0.0000]

LR test (SDM VS SEM) [0.0000]

LR test (Area fixed) [0.0000]

LR test (Time fixed) [0.0000]

Log L −128.6948 −146.9953 −46.4375

Observed value 450 450 450

Note: Z values are indicated in brackets; *, **, and *** indicate a significance level of 10%, 5%, and 1%, respectively; p-values are indicated in square brackets.

Frontiers in Environmental Science frontiersin.org07

Gao et al. 10.3389/fenvs.2024.1355584

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1355584


advanced technology and advanced management practices but also
influences the spatial spillover of technology to adjacent areas,
thereby enhancing their advanced technology and management
practices, thereby improving the overall environmental
conditions. ③ The analysis of export trade (EX) reveals that
while the direct technology spillover effect is negative, it does not
achieve statistical significance. Contrastingly, the indirect effects are
both positive and significant; however, the aggregate effect is positive
but lacks statistical significance. Through the lens of direct effects,
the analysis indicates that the export trade may exert a diminishing
influence on air pollution to some degree, attributable to the
competition effect, economies of scale, and the learning effects
associated with export activities. From the standpoint of indirect
effects, the phenomenon of developed eastern regions adhering to a
green export trade paradigm, which involves the relocation of highly
polluting industries to the less developed Midwest, contributes to
interprovincial pollution. In a broader context, export trade appears
to elevate the intensity of sulfur dioxide emissions in proximate
regions. ④With regard to industrial agglomeration (IA), the direct
effect on sulfur dioxide emission intensity is quantified at 0.0033,
which does not reach statistical significance, suggesting that
industrial agglomeration per se does not significantly exacerbate
regional air pollution. However, the analysis of the indirect effect
unveils a prominent increment (0.0136), surpassing the 1%
threshold for significance, thereby implying that industrial
agglomeration magnifies the severity of sulfur dioxide emissions
in neighboring territories. In consideration of the total effect, which
is measured at 0.0169 and passes the significance test, it can be
concluded comprehensively that industrial agglomeration
accentuates the emission intensity of sulfur dioxide.

Hence, it is posited that the impact of industrial agglomeration
on diminishing the spatial spillover effect is more pronounced at the
regional level than the interregional internal spillover effect. The
primary impetus behind this observed phenomenon may be
attributed to the diffusion of economic activity from local
industrial clusters to adjacent areas. This diffusion catalyzes
subsequent industrial agglomeration activities, culminating in
augmented environmental pollution locally.

4.2.3 The threshold effect analysis
As shown in Table 5, the influence of industrial agglomeration

and international R&D capital technology overflow on air
pollution shows non-linear characteristics. With independent
research and development (rd) as the threshold variable, the
technology spillover effect of international research and
development capital relying on foreign direct investment,

import trade, and export trade channels is shown as a single
threshold. Similarly, the impact of industrial agglomeration on
air pollution also shows a threshold.

The threshold model estimates for core explanatory variables
and other variables are shown in Table 6.Model (1)–(4) indicates the
threshold effect of export trade (EX), import trade (IM), foreign
direct investment (FDI), and industrial agglomeration (IA) on air
pollution based on independent research and development (rd)
threshold variables.

The results of the study indicate the following findings:

(1) When the main variable of interest is export trade (EX), the
technology spillover effect from export trade demonstrates a
single-threshold pattern, with autonomous R&D serving as
the threshold variable. When independent R&D does not
exceed the threshold (rd<7.84), there is a positive correlation
between technology spillover from export trade and air
pollution. Conversely, when the threshold is surpassed
(rd≥7.84), the effect of technology spillover from export
trade on air pollution becomes negative. This implies that
a higher level of independent R&D is required to support the
technology spillover effect from export trade, which in turn
reduces air pollution.

(2) When the main variable of interest is foreign direct
investment (FDI), there is a non-significant negative
relationship between FDI technology spillover and air
pollution when the intensity of R&D investment capital
falls below the threshold (rd<7.84). However, once the
threshold is exceeded (rd≥7.84), a significant negative
effect of FDI technology spillover on air pollution is
observed. When the intensity of R&D investment capital
surpasses the threshold, the technology spillover effect of
FDI can be better utilized, leading to the adoption of
advanced technology for environmental purposes, thereby
reducing sulfur dioxide emissions.

(3) When the main variable of interest is import trade (IM), its
impact on air pollution aligns with the performance of export
trade. In other words, when the threshold is not surpassed
(rd<7.84), there exists a positive correlation between import
trade technology spillover and air pollution. Conversely, once
the threshold is surpassed (rd≥7.84), import trade technology
spillover has a negative impact on air pollution. Beyond this
threshold, the effect of import trade technology spillover can
further motivate enterprises to upgrade their environmentally
advanced technology and management practices, thus
positively influencing air quality.

TABLE 4 Decomposition of the total effect in the Spatial Durbin model into direct and indirect effects.

Variable Direct effect Indirect effect Total effect

FDI −0.0665 (−1.28) 0.3745*** (3.28) 0.3080*** (2.6)

IM −0.2352* (−4.80) −0.2040** (2.18) −0.4392*** (−4.47)

EX −0.0373 (−0.74) 0.1547* (1.80) 0.1174 (1.35)

IA 0.0033 (1.65) 0.0136*** (2.92) 0.0169*** (3.04)

Note: Z values are indicated in brackets; *, **, and *** indicate a significance level of 10%, 5%, and 1%, respectively.
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(4) When the main independent variable, namely industrial
agglomeration (IA), is considered, it exhibits a singular
threshold effect on air pollution. In cases where
independent research and development (R&D) falls below
the threshold value (rd < 7.20), a considerable positive impact
of industrial agglomeration on air pollution is observed.
Likewise, when independent R&D surpasses the initial
threshold (rd ≥ 7.20), a significant positive effect of
industrial agglomeration on air pollution persists, with the
degree of impact increasing as reflected by the coefficient.
These findings indicate that increased levels of independent
R&D contribute to a rise in air pollution facilitated by
industrial agglomeration. Consequently, heightened
investment in R&D within areas characterized by industrial
agglomeration leads to escalated resource and energy
consumption, resulting in amplified local
environmental pollution.

5 Research conclusions and
enlightenment

5.1 Research conclusions

This study utilizes panel data collected from 30 provinces and
regions in China spanning the period from 2008 to 2022. By
employing a spatial panel model, it examines the intricate
relationship between industrial agglomeration, international R&D
capital technology spillover, and air pollution. Specifically, it
investigates the direct, indirect, and overall effects of industrial
agglomeration and international research and development
capital on air pollution. Additionally, this study introduces the
concept of independent research and development as a threshold
variable, analyzing the threshold effect of industrial agglomeration
and international research and development capital technology
transfer on air pollution. The findings reveal the existence of

TABLE 5 Results of the significance tests and threshold estimates for R&D thresholds.

Core explanatory variable Hypothesis test F P Threshold value

FDI Single threshold 68.31 0.02 7.84

Double threshold 18.32 0.36 8.24

EX Single threshold 66.75 0.05 7.84

Double threshold 19.73 0.21 8.24

IM Single threshold 67.23 0.03 7.84

Double threshold 17.95 0.25 8.24

IA Single threshold 56.16 0.03 7.20

Double threshold 20.13 0.53 7.84

TABLE 6 Threshold estimation results for R&D threshold variables.

Variable LnEX (1) LnFDI (2) LnIM (3) LnIA (4)

Threshold
value

Estimated
value

Threshold
value

Estimated
value

Threshold
value

Estimated
value

Threshold
value

Estimated
value

LnR&D rd<7.84 0.021 (0.26) rd<7.84 −0.081 (−1.01) rd<7.84 0.053 (0.61) rd<7.20 0.018*** (5.49)

rd≥7.84 −0.063 (−0.77) rd≥7.84 −0.179** (2.21) rd≥7.84 −0.029 (−0.34) rd≥7.20 0.020*** (4.03)

lnEX 0.057*** (0.69) 0.022 (0.27) 0.062 (0.75)

lnIM 0.053* (0.60) 0.018 (0.20) 0.014 (0.16)

lnFDI −0.083 (−1.04) −0.084 (−1.05) −0.136 (−1.65)

lnIA 0.016*** (5.25) 0.017** (5.38) 0.017*** (5.52)

LnPS −1.284***
(−12.86)

−1.297***
(−12.75)

−1.285***
(−12.86)

−1.311***
(−12.61)

C 4.669** (2.03) 5.594** (2.40) 4.6625* (2.03) 5.462** (2.28)

R2 0.386 0.427 0.384 0.450

Obs 450 450 450 450

Note: t values are indicated in brackets; *, **, and *** indicate a significance level of 10%, 5%, and 1%, respectively.
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evident spatial autocorrelation and spatial dependence among
industrial agglomeration, international R&D capital, and air
pollution. Notably, both international R&D capital technology
spillover and industrial agglomeration exhibit a single threshold
effect. When the threshold value is surpassed, international R&D
capital technology spillover displays a more positive impact in
reducing air pollution. Conversely, the impact of industrial
agglomeration on air pollution tends to be positive.

5.2 Policy impact

Based on the above analysis, to improve the environmental
pollution situation, this paper puts forward suggestions from the
following aspects:

(1) In order to enhance the composition of import trade and
facilitate the inflow of energy-efficient and environmentally
friendly machinery, equipment, and intermediate products, it
is imperative to adopt a strategy that involves emulating,
assimilating, and incorporating advanced environmental
protection technologies from developed nations. By
assimilating these technologies into domestic production
processes, the aim is to leverage the potential emission
reduction effects resulting from the technology spillover
associated with import trade (Wang et al., 2023);

(2) The government should enhance environmental standards
for foreign capital inflow, limiting the establishment of highly
polluting foreign-funded enterprises, while prioritizing the
attraction of foreign direct investment (FDI) in industries
characterized by advanced environmental protection
technologies. Simultaneously, efforts should be made to
harness the technology spillover effects associated with
FDI, encouraging foreign enterprises to engage in
technology upgrading and transformation. Domestic
enterprises should also be incentivized to learn from the
advanced environmental protection technologies and
models employed by foreign-funded enterprises. In actively
pursuing FDI, it is crucial to devise region-specific policy
guidance that takes into account variations in environmental
pollution levels and the degree of industrial agglomeration.
This approach aims to minimize indirect effects resulting
from FDI and achieve the dual objectives of attracting foreign
investment and promoting environmental protection;

(3) Local governments at all levels should allocate substantial
resources to comprehensively analyze the implications of
industrial agglomeration on environmental pollution. With
a systematic approach, they should develop sound strategies
to optimize the arrangement of industrial agglomerations
while implementing stringent environmental regulations to
curtail excessive concentration and mitigate pollutant
emissions. Moreover, it is imperative for both the
government and enterprises to consistently augment their
investments in low-carbon research and development (R&D).
This can be achieved by formulating effective policies that
incentivize R&D activities, enhancing the intensity and
innovativeness of low-carbon technology enterprises, and
progressively fostering mutually beneficial collaborations

with industrial clusters and international R&D capital.
These efforts are crucial in diminishing air pollution and
establishing a sustainable living environment.

5.3 Limitations and future research
directions

A primary limitation of this study lies in the establishment of panel
data. The missing data on certain industries was not accounted for,
leading to the exclusion of some data points and resulting in the use of
provincial-level data in the analysis. This method restricts the study to a
macro-level quantitative representation. Future research with higher
data availability could refine and expand the sample by examining
municipal or county-level data and incorporating other intermediary
variables into the analysis framework. Such an approach could provide a
deeper understanding of the internal actionmechanisms of the variables
under study and offer improved path selection.
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