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The blue and green water resource distribution of the Jing River Basin, a cradle of
Chinese civilization on the Loess Plateau, was studied using the Soil and Water
Assessment Tool and the Sequential Uncertainty Fitting algorithm (vers. 2).
Understanding these resources aids in the ecological preservation of the
Yellow River Basin and its high-quality development. Future climate conditions
were simulated using the Statistical Downscaling Model (SDSM). The data came
from the Shared Socioeconomic Pathway (SSP) projections (SSP1-2.6, SSP2-4.5,
and SSP5-8.5) in the Canadian Earth System Model (vers. 5), covering the 2030s,
2060s, and 2090s (based on 2015–2045, 2046–2075, and 2076–2100 climate
projections, respectively). The SDSM accurately simulated temperature and
precipitation trends, with its temperature predictions being more accurate.
The results show that the maximum temperature, minimum temperature, and
precipitation tend to increase under the three future climate scenarios, and the
amount of blue and green water continues to increase in the future, with the
SSP5-8.5 scenario showing the highest amount of blue and green water, and the
SSP1-2.6 scenario showing the lowest amount of blue and green water, in terms
of the climate scenarios. In terms of temporal distribution, 2090s has the most
abundant blue and green water and 2030s has the least blue and green water
content. Forecasting blue and green water changes due to climate change is vital
for regional water management and risk assessment.
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1 Introduction

Given that water scarcity is one of the three significant global systemic risks, learning
how to sustainably manage water resources is a current research hotspot (Hoekstra, 2014).
The inevitable impact of global warming on meteorological and hydrological factors such as
evaporation, precipitation, and runoff could also result in a significant increase in the
frequency of the occurrence of extreme hydrological events (Berg et al., 2013). Evaluating
both blue and green water resources is crucial for enhancing the management of water
resources since it helps determine water availability and security (Dey and Remesan, 2022).
Blue water refers to “exposed water,” which includes river runoff on the land surface, soil
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runoff, and subsurface runoff (Chahed et al., 2008). Falkenmark and
Rockström (2006) used the term “green water” to refer to “hidden
water,” which encompasses both water in the soil and water that has
evaporated. Green water is the most crucial source of water for food
production, supporting rain-fed agriculture on about 80% of the
global arable land area and providing food security to more than
seven billion people worldwide (Alexandratos, 1995). Blue water
affects human life and development from several perspectives, such
as by providing water for daily life, industrial production, and
agricultural irrigation (Zhao D. et al., 2021). Consequently,
analyzing future water cycle patterns from the perspective of
climate change, while particularly assessing blue and green water
resources, can improve the equilibrium between water supply and
demand as well as provide guidance for managing water resources in
a basin, optimizing the environment, and enhancing the
configuration of the water cycle.

Situated in northwest China’s arid and semi-arid terrain, the Jing
River Basin has advanced agricultural and animal husbandry
practices (Xie et al., 2020). In the basin, agriculture and animal
husbandry have prospered. Numerous issues, including rising water
demand and excessive water consumption, have resulted in the basin
(Shen et al., 2018; Zhao B. et al., 2021). The Jing River Basin has had
significant constraints on its social and economic development due
to a number of issues, including excessive water usage (Zhang et al.,
2018). Because a lack of available water resources has created a
substantial danger for human society as a result of the continued
warming of the global climate (Kim et al., 2007; Chu et al., 2010), it is
crucial to investigate the possibilities for future blue and green water
transitions in the Jing River Basin. For Jing river, climate variability
is a serious obstacle to efforts aimed at sustainable development and
the elimination of poverty (Chen Y. et al., 2020). Jing river is the
most vulnerable region to the consequences of climate change
because of its reliance on rainfed agriculture. This position has
also been influenced by its weak ability to adapt and increasing
reliance on natural resources for subsistence (Chen Y. et al., 2020;
Yang et al., 2023). Climate change is currently having a significant
impact on the country’s revenue, thus study into creating the best
adoption strategies based on scientific data has focused on this
problem. Compared to other global climate models, the Coupled
Model Intercomparison Project Phase 6 (CMIP6) increases the
accuracy of the model’s ability to predict future climatic data by
simulating future climate with physical and biological processes that
are more comparable to the actual ones (Chen H. et al., 2020; Haji-
Aghajany et al., 2022). In light of the above, In order to increase the
future climate’s accuracy, the Jing River Basin’s future climate is
simulated in this research using cmip6.

This paper simulates the future climate of the Jing River Basin
using the CMIP6 CanESM5 model. Compared to CMIP5,
CMIP6 offers a more trustworthy understanding of the
hydrologic effects of climate change and draws on results from
earlier community modeling projects (Bian et al., 2021). When
CMIP6 and CMIP5 homology modes (such as CanESM5 mode
in CMIP6 and CanESM2 mode in CMIP5) are examined, it is
discovered that CMIP6 homology modes have a significantly better
simulation capability than CMIP5 homology modes (Wang et al.,
2021; Yang et al., 2021). CanESM5 is a global climate model capable
of simulating and predicting the complex interactions between the
atmosphere, oceans, land, and cryosphere, which is particularly

important for a country like China with a vast area and diverse
climates. CanESM5 has a high degree of accuracy and reliability in
simulating climate change and extreme weather events in China,
which is important for addressing the challenges posed by climate
change and formulating The high accuracy and reliability of
CanESM5 in modeling climate change and extreme weather
events in China is of great significance in addressing the
challenges posed by climate change and formulating coping
strategies (Hamed et al., 2022).

Song et al. (2021) used the CMIP6 model to predict climate
extremes in China, including simulating the spatial distribution and
trends of temperature patterns. Zhao B. et al. (2021) analyzed the
change in future rainstorm risk in China based on the CMIP6model;
the results showed that the number of days with rainstorms is
predicted to continue to increase in an increasingly warm global
climate, while the frequency and intensity of rainstorms will also
tend to increase. Xiao et al. (2021) used CMIP6model data to predict
temperature and precipitation in the Yellow River Basin for the next
86 years based on a multi-model averaging approach; the results
compared the hydrological environment of the future basin under
four warming scenarios, including 1.5°C and 2.0°C global warming,
carbon neutrality, and carbon peaking; it was found that drought in
the Yellow River Basin would be mitigated the most under carbon
neutral conditions. The Jing River Basin, one of the major tributaries
of the Yellow River’s upper reaches, has a significant influence on
Northwest China’s socioeconomic development and ecological
environment. The forecasting and management of future water
supplies in the Jing River Basin have gained significant
importance due to the acceleration of global climate change.

Blue water and green water changes can be simultaneously
assessed with success using hydrologic modeling. The Soil and
Water Assessment Tool (SWAT) model is a dispersed watershed
hydrological model that can simulate a lengthy time series of
processes involved in the hydrological cycle (Arnold et al., 1995;
Hlavinka et al., 2011). For instance, Chen et al. (2022) combined the
SWAT and downscaling models with future scenario meteorological
data from multiple models of CMIP6 and data required for
hydrological models to simulate future runoff in the Huai River.
In line with the findings, the typical amount of runoff that occurs
each year is expected to keep increasing for the foreseeable future.
Chen et al. (2021) were able to estimate runoff in the Palo Duro
watershed (Texas, United States) using the SWAT model, as well as
explore the geographical and temporal distribution characteristics of
blue–green water resources in this watershed. Ultimately, the critical
role of blue and green water in the expansion of crop yields was
elucidated. Woldesenbet et al. (2022) analyzed the blue–green water
in the Nile River Basin using the SWAT model, focusing on the
different types of land use occurring in the basin. Protecting the
watershed ecology and managing the environmental sustainability
of water resources involved investigating the yield estimation and
regional and temporal distribution patterns of blue-green water in
the Jing River using the SWAT model as a technique.

In the Yellow River Basin, the Jing River is a small and
transparent tributary originating in the Liupan Mountain, which
has been designated as a national natural reserve. Due to extreme
climate change and the basin’s unequal regional and temporal
distribution of precipitation, the basin’s hydrology is becoming
increasingly unstable; the Jing River Basin is not only one of the
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severe soil erosion sites on the Loess Plateau but also one of the
storm-prone areas in northwestern China (Xu et al., 2010).
Therefore, examining the water resources of the Jing River Basin
from the perspective of climate processes is critical for planning
water allocation and consolidating the ecosystem balance in this
basin. However, previous studies have primarily explored historical
changes and drivers of runoff in this basin (Wang et al., 2014; Huang
et al., 2017; Li et al., 2022). To the best of our knowledge, current
research has not focused on the amount of blue and green water in
the Jing River Basin and the spatial distribution thereof and progress
over time in light of climate change. Thus, we selected the Jing River
as the study area. Therefore, the following are the main goals of this
study: (1) employ the simulation results of the SWAT model to
analyze the spatial and temporal change characteristics of blue and
green water in the Jing River Basin, including the historical trend
and the future long-term series; (2) utilize the SDSMmodel to model
the future climate change in the Jing River Basin; (3) analyze the
patterns of changes in the baseline and future periods in terms of the
spatial and temporal changes of blue and green water.

2 Materials and database

2.1 Study area

The Jing River Basin lies in the middle of the Loess Plateau in
China, with geographical coordinates of 34°46′–37°19′N and
106°14′–108°42′E, with an elevation of 440–2200 m, and
topography of northwest high and southeast low (Figure 1). The
Jing River, which begins in the eastern base of Liupan Mountain in

Ningxia Autonomous Region in China, is the first major tributary of
the Wei River. Notably, the first-class watershed of China’s Yellow
River covers a total distance of 455.1 km, with an area of 45,421 km2,
and an average runoff of 2.140 billion m3, flowing through Ningxia
as well as Gansu and Shaanxi provinces. The annual average
temperature of the basin is 8°C. The highest average temperature
(29°C) occurs in July, and the lowest average temperature (−13°C) is
observed in January. The yearly precipitation ranges from 350 to
650mm across this basin. The summer climate is wet and rainy, with
more than 60% of the annual precipitation falling in summer. The
arable land in the flat and vast Jing River Basin accounts for nearly
60% of the entire basin area, providing a guarantee for food
production in the northwest of China.

2.2 Data sources

2.2.1 Data required for the SWAT model
The SWAT model data inputs of the present study are diverse

and include both geographical and data display. Spatial data
generally contains georeferenced DEM data, soil type allocation
data, land use spread data, and DEM data from the geospatial
data cloud. These data were downloaded, preprocessed, and then
cropped based on the watershed boundaries. Land use data is
GlobeLand30 data (https://shop.geospatial.com/), which had
been classified into seven types according to the primary
classification criteria in the latest revision of the Current Land
Use Classification system of China (GB/T21010-2017); land
categories include agricultural land, forest areas, grassland,
marsh, water bodies, urbanized land, and bare soil. Soil data

FIGURE 1
A topographical profile of the Jing River Basin created using a digital elevation model (DEM) with locations of hydrological and meteorological
stations in and near the basin. An inset map shows the geographical location of the basin in an outline map of China.
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(https://gaez.fao.org/pages/hwsd) were applied in the SWAT
model by creating a soil database, which had to be converted
to a uniform soil grain size standard (US-made) before the model
could be run; soil parameters were calculated using Soil-Plant-
Air-Water (SPAW) software. The China Meteorological Science
Data Sharing Service (1979–2019) was consulted for
meteorological information (https://climate-scenarios.canada.
ca/); solar radiation data were calculated based on day-by-day
sunshine hour data (Jin et al., 2005). The hydrological data were
obtained from the Hydrological Yearbook of the People’s
Republic of China; month-by-month runoff data from 1981 to
2019 were selected from data provided by the Zhangjiashan
Hydrological Station. The spatial data supplied to the SWAT
model required a unified projection coordinate system; the
projection coordinate system employed in this research is
WGS 1984 UTM Zone 49N.

2.2.2 Data required for the statistical
downscaling Model

The data needed for the SDSM include National Centers for
Environment Prediction (NCEP) reanalysis, CanESM5 atmospheric
circulation model, and historical meteorological data. The NCEP
reanalysis information for 26 daily series atmospheric circulation
factors for 1979–2014 CanESM5 data were obtained from the
Canadian Climate Impact Scenarios Network (https://climate-
scenarios.ca/); based on the Jing River Basin and the latitude and
longitude of each weather station selected for the BOX_039X_45Y
grid, three Shared Socioeconomic Pathway climate change scenarios,
SSP1-2.6, SSP2-4.5, and SSP5-5.8, were employed. From 1979 to
2014, measurements were taken of the daily maximum temperature,
daily lowest temperature, and daily precipitation.

3 Methodology

3.1 SWAT model

The SWAT simulation of the irrigation services procedures in a
watershed required adherence to the water balance principle,
formulated shown in Eq. 1:

SWt � SW0 +∑t

i�1 Rday + Qsurf − Ea − wseep − Qgw( ) (1)

where SWt is the ultimate soil moisture content, t is the time, SW0 is
the initial soil water moisture on day i, Rday is the precipitation
quantity on day i, Qsurf is the quantity of day i subsurface discharge,
Ea is the quantity of evaporation and transpiration on day i, wseep is
the quantity of water that enters the vadose zone from the soil profile
on day i, and Qgw is the proportion of flowback on day i.

3.2 SDSM model

The equations should be inserted in editable format from the
equation editor. To simulate future precipitation and air
temperature, the SDSM model integrates several linear regression
and meteorological data generator approaches (Zhou and Li, 2002;
Li et al., 2022). Where there is no temperature stochasticity, only

precipitation needs to be considered (Wilby et al., 2003); the
principle is as follows.

(1) Calculate the probability of precipitation as shown in Eq. 2:

Wi � α0 +∑n

j�1αjxj + αi−1Wi−1 (2)

where Wi represents the likelihood of rainfall occurring from day i;
Wi−1 represents the likelihood of rainfall happening from day i–1; xj
refers to the jth forecast factor; and α0, αj, αi−1 are regression
coefficients. The occurrence of precipitation depends on a
random number that conforms to a uniform distribution. If the
random number is smaller than Wi, it is considered that
precipitation will occur on that day.

(2) Simulate the precipitation as shown in Eq. 3:

Ri � exp β0 +∑n

j�1βjxj + εi( ) (3)

where Ri refers to the precipitation on day i; εi refers to the error
term; and βj refers to the regression coefficient.

3.3 Model evaluation

The model’s applicability depends on four indicators
including R2, Nash-Sutcliffe efficiency (NSE), percent bias
(PBIAS), and root mean square error (RSR). First, R2 indicates
the fit between the model simulation and the input measured
values; the closer the value is to 1, the less the difference is
between the simulated values of the model and the measured
input values, the better the fit between the two results, and the
smaller the deviation between the two results (Zuo et al., 2015).
Percent bias is the average trend between model-simulated values
and input-measured values, with PBIAS > 0 indicating small
model-simulated values and, conversely, PBIAS > 0 indicating
large model-simulated values (Geza and McCray, 2008). The RSR
is the proportion of the average root mean square error to the
confidence interval of the recorded input values; the lower the
significant value of the RSR, the more accurate the simulation
(Gupta et al., 1999).

The R2, NSE, PBIAS, and RSR were calculated as shown in
Eqs 4–7:

R2 � ∑n
i�1 Qm − Qm( ) Qs − Qs( )

∑n
i�1 Qm − Qm( )2∑n

i�1 Qs − Qs( )2⎡⎣ ⎤⎦2 (4)

NSE � 1 − ∑n
i�1 Qm − Qs( )2

∑n
i�1 Qm − Qm( )2 (5)

PBIAS � ∑n
i�1 Qm − Qs( ) × 100∑n

i�1Qm
(6)

RSR � RMSE
STDEVobs

�
������������∑n

1 Qm − Qs( )2
√
��������������∑n

i�1 Qm,i − Qm( )2√ (7)

where Qm, Qs, Qm, and Qs denote the multi-year measured, the
simulated, the multi-year average measured, and the average
simulated of Q values, respectively.
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3.4 Blue and green water volume statistic

The calculated blue–green water yields depend on SWATmodel
outputs, where the output of blue water yield is expressed as the
value of water yield per sub-basin plus deep aquifer recharge. The
green water yield is the sum of the actual evapotranspiration and soil
water content for each RHU in the output (Moriasi et al., 2007). The
Eqs 8–10 were applied to derive the coefficients for blue, green, and
green water:

G � ET + SW (8)
B � WYLD + DA RCHG (9)
GWC � G

G + B
× 100% (10)

where G and B indicate the quantity of green and blue water
resources, respectively, and GWC indicates the green water
coefficient.

4 Results

4.1 SWAT model results

4.1.1 SWAT model parameter rate determination
and validation

The river network water system of the Jing River Basin was
extracted using DEM data and divided into 29 sub-basins. Then,
using land use, soil, and weather data, 342 hydrological response
units were created and entered into the SWAT model one at a time.
To reduce the effect of initial conditions on the model simulation
results (Akhavan et al., 2010), 2 years of data from 1979 to 1980 were
used as the model warm-up period, the model past an exponential
period of 1981–2000, while the model evaluation period was
2001–2019. The data inputs and parameters in both calibration
and validation in the SWAT model are consistent.

There are many parameters in the SWAT model, each with a
distinct physical meaning. Parameter values must be changed during
model calibration and validation in order to make the modeled
runoff compatible with the observed data. The suggested runoff
matches the data that was observed. Certain parameters have
minimal impact on the model simulation, although certain
parameters that are sensitive have minimal impact as well.
Certain sensitive parameters have a significant influence on the
model simulation, whereas other parameters have no effect.
Sensitivity assessments of model parameters can be a helpful
modeling tool to determine which parameters have a higher
impact and to grade them. and rate calibration can help
minimize the amount of parameters that require adjustment. The
Lat-in hypercube sampling - one at a time (LHS - OAT) method in
the SWAT CUP2019 software was used to do parameter sensitivity
analysis. This method regresses the parameters produced by Latin
hypercube sampling against the values of the objective function,
analyzing each parameter individually. The SWAT-calibration-and-
uncertainty-analysis program was applied to conduct a global risk
assessment of 28 runoff three-dimensional computer factors (Zadeh
et al., 2017); meanwhile, the 16 parameters with the highest
sensitivity were finally selected as the rate parameters for the Jing
River Basin (Table 1) (Figure 2).

The SWATmodel simulation results (Figure 3), rate regular, and
validation period results) are shown in Table 2. According to Morsi,
the model provides a better simulation when R2 > 0.7, NSE > 0.5, |
PBIAS| ≤ 25%, and RSR ≤ 0.7 (Singh et al., 2005) (Table 2).
According to the findings in the present study, it appears that
the SWAT model was a good choice for analyzing how the
influence of climate change would manifest itself in the
blue–green water resources of the Jing River Basin.

4.1.2 SWAT model water balance components
The SWAT water balance analysis is critical to assessing the

model’s performance during the calibration and validation phases to
determine the degree to which water constituents are predicted.
Table 3 presents the annual basin averages of the different water
balance elements for the rate period and validation period simulated
by the model. Green water is the sum of actual evapotranspiration
(ET) and soil water content (SW). Soil water content (SW)
represents the water content of the soil profile at the end of the
period. Actual evapotranspiration (ET) is an important component
of green water, and the predicted high evapotranspiration rate may
be related to the vegetation type and high temperatures in the area.
Blue water is the sum of total water yield (WYLD) and deep aquifer
recharge (DA_RCHG). The total water yield (WYLD) represents the
amount of water flowing out of the basin outlet during the time step,
which mainly consists of the amount of groundwater recharged to
the river (GW_Q), the lateral flow to the river (LATQ), and the
amount of surface runoff recharged to the river during the time step
(SURQ). The contribution of groundwater to the river (GW_Q) in
the Jing River Basin is almost zero, and GW_Q refers to the amount
of water returning to the river from the shallow aquifer during the
time step. The topographic slope has a huge impact on lateral flow
(LATQ), which is calculated as a percentage of mean annual rainfall
and is small in shallow-slope terrain. Precipitation is the main
determinant of surface runoff (SURQ). Typically, changes in
deep seepage and streamflow are proportional to precipitation,
indicating the importance of precipitation in semi-arid regions.
Deep aquifer recharge (DA_RCHG) indicates the amount of
water entering the deep aquifer from the root zone during the
time step. Figure 4 shows the water balance components at the
annual scale for the Jing River Basin, the results of this study are
consistent with previous studies (Wu et al., 2022; Luo and
Moiwo, 2023).

4.2 SDSM model results

4.2.1 SDSM model rate determination and
validation

The SDSM downscaling method has the following steps. First,
the relevant forecast factors are selected, and the relationship
between them is established with forecast quantities based on
statistical methods; then, the factors are verified with measured
data. Finally, the future daily series of the meteorological
elements at the station are produced by feeding the large-scale
meteorological parameters from the CanESM5 model into the
established model. The principles for selecting predictors for
SDSM are as follows: (1) a strong correlation and consistency
exists between the predictors and the forecast quantities; (2) the
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predictors and the forecast quantities are linked by physical
processes; (3) the links between the predictors are weak or
uncorrelated; (4) the predictors are common to both the
CanESM5 model and the NCEP reanalysis data; and (5) the
predictors can be accurately simulated by CanESM5.

The years 1979–2000 were selected as the model rate period
and the years 2001–2014 as the model validation period to
construct a daily model of the mathematical connection

between anticipated components and anticipated quantities, in
which the maximum and minimum temperatures were selected
as unconditional processes while precipitation was selected as a
conditional process. Since the precipitation data was not
normally distributed, these data were transformed by a
quadratic root transformation (Wilby et al., 2002). The model
results were evaluated using explained variance (R-squared) and
standard error (SE). Table 4 shows that related scholars have

TABLE 1 Definition of parameters and calibration results.

Parameter Definition Range Fitted value rank

r_CN2.mgt SCS runoff curve number for Moisture condition II −0.5 to 0.5 −0.22 1

v_CANMX.hru Maximum canopy storage 0 to 100 29.75 2

v_TLAPS.sub Temperature lapse rate −10 to 10 3.65 3

r_SOL_BD ().sol Moist bulk density (g·cm−3) −0.5 to 0.5 −0.40 4

v_HRU_SLP.hru Average slope steepness 0 to 1 0.10 5

v_CH_K2.rte Effective hydraulic conductivity of channel (mm·h−1) −0.01 to 500 93.74 6

v_SLSUBBSN.hru Average slope length (m) 10 to 150 99.25 7

v_GW_REVAP.gw Groundwater revap coefficient 0.02 to 0.2 0.14 8

r_SOL_Z ().sol Depth from soil surface to bottom of layer −0.5 to 0.5 0.19 9

v_REVAPMN.GW Threshold depth of water in the shallow aquifer for revap to occur (m) 0 to 500 216.25 10

v_ALPHA_BF.gw Baseflow recession constant (days) 0 to 1 0.90 11

r_BIOMIX.mgt Biological mixing efficient −0.5 to 0.5 0.20 12

r_SOL_K ().sol Soil hydraulic conductivity (mm·h−1) −0.8 to 0.8 −0.32 13

v_RCHRG_DP.gw Deep aquifer percolation fraction 0 to 1 0.47 14

v_EPCO.hru Plant evaporation compensation factor 0 to 1 0.28 15

v_GWQMN.gw Threshold depth of water in the shallow aquifer for return flow to occur (mm) 0 to 5,000 4,387.50 16

FIGURE 2
Parameter sensitivity result.
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indicated that the mean value of the explained variance of the
daily maximum temperature at these 13 stations was above 0.7,
with a standard error of 2.01°C–2.40°C. The mean value of the
explained variance of the daily minimum temperature was above
0.6, with a standard error of about 2°C (Table 4). The explained
variance of the daily rainfall was 0.20–0.35, with a standard error
of 0.21–0.30 mm. Related studies have shown that the explained
variance in temperature is more reasonable when it falls above 0.6
(Jia et al., 2015) (Table 4). This paper’s lowest explained
precipitation variance is consistent with the literature’s
findings, primarily because the precipitation process is
complex and influenced by multiple factors (Bai et al., 2022).
In general, the research method used in this paper is more reliable
than previous methods, the model’s temperature and
precipitation are simulated with high accuracy in both the rate
and validation periods, the simulated values compare well with
the measured values, and the assessment of the future climate by
the SDSM model satisfies the requirements that were anticipated.

4.2.2 Future climate scenario projections
The daily maximum temperature, minimum temperature, and

precipitation for each month at 13 stations in the Jing River Basin
from 1979 to 2014 were used as the base period; the same daily
collected from 2015 to 2100 were derived using the CanESM5model
SSP1-2.6, SSP2-4.5, and SSP5-5.8 emission scenario data. Figures 3,
5, 6 show a box plot comparing the base period and the future
forecast data. The five short horizontal lines of the box plot represent
the upper limit, upper quartile position, median value, lower quartile
position, and lower limit in order from top to bottom; any points
that are not in the range are called individual extreme points.

According to the assessment results of the three simulations
(SSP1-2.6, SSP2-4.5, and SSP5-8.5), the future monthly average
maximum temperature in the study area is predicted to increase
significantly (Figure 5). In particular, a significant increase in
monthly mean temperatures in January and December was
predicted. For instance, based on the average of January
observations, the warming of SSP1-2.6, SSP2-4.5, and SSP5-
8.5 was predicted to be 3.42, 4.13, and 6.32°C, respectively; in
December, in temperatures were predicted to increase by 3.54,
3.83, and 5.12°C in SSP1-2.6, SSP2-4.5, and SSP5-8.5,
respectively. Subsequently, more significant increases were
predicted in February and August, with SSP1-2.6, SSP2-4.5, and
SSP5-8.5 increasing by 2.14, 3.13, and 4.29°C in February,
respectively, and SSP1-2.6, SSP2-4.5, and SSP5-8.5 increasing by

FIGURE 3
Monthly precipitation, observed streamflow, and simulated streamflow during the calibration and validation periods at a hydrological station.

TABLE 2 Simulation index results.

Index R2 NSE PBIAS RSR

Calibration 0.74 0.71 16.3 0.54

Validation 0.8 0.8 −0.7 0.45

TABLE 3 Water balance components calculated with SWAT model.

Water balance component (mm/y) Calibrated period (1981–2000) Validation period (2001–2019)

Soil water; SW 25.4 33.5

Actual evapotranspiration; ET 393.5 417.2

Deep aquifer recharge; DA_RCHG 1.5 1.6

Contribution of groundwater to stream flow; GW_Q 15.4 13.6

Lateral flow; LATQ 39.9 43.0

Surface runoff; SURQ 55.3 61.1
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increasing by 2.26, 2.63, and 4.19°C in August. However, the
warming in the other months was insignificant, with SSP1-2.6,
SSP2-4.5, and SSP5-8.5 increasing by about 1.5, 2, and 2.5°C, in
other months, respectively.

The future monthly mean minimum temperature in the Jing
River Basin was predicted to increase significantly (Figure 6).
Simulated temperature under the SSP1-2.6 scenario increased by
1°C–3°C relative to the baseline period, with significant
temperature increases in January, August, September, and
December, rising by 2.99°C, 2.46°C, 2.28°C, and 2.24°C,
respectively, with smaller increases of about 1°C predicted in
other months. Meanwhile, in the SSP2-4.5 scenario, the predicted

temperatures were 1°C–4°C higher relative to that in the base
period, with temperature in January and September increasing by
3.64°C and 3.08°C, respectively; under this scenario temperature
increases of 2°C or more were predicted in February, May, July,
August, and December while increases of about 1.5°C were
predicted in other months. In the SSP5-8.5 scenario,
temperature increases of 5.95°C and 5.31°C were predicted in
January and September, respectively; under this scenario
temperature increases of 4.45°C, 4.54°C, and 4.01°C were
predicted in February, August, and December, respectively,
while increases in other months were about 3°C with overall
temperature increases of 3°C–6°C relative to the base period.

FIGURE 4
Water balance diagrams for calibration and validation in the SWAT model.

TABLE 4 Performance assessment of SDSM during validation period (2001–2014).

Station Name
Tmax (°C) Tmin (°C) P (mm)

R-squared SE R-squared SE R-squared SE

53,725 Dingbian 0.73 2.4 0.60 2.03 0.35 0.24

53,738 Wuqi 0.74 2.28 0.61 2.07 0.34 0.25

53,806 Haiyuan 0.75 2.28 0.67 1.95 0.31 0.23

53,810 Tongxin 0.74 2.35 0.62 2.26 0.35 0.23

53,817 Guyuan 0.75 2.30 0.63 2.11 0.31 0.23

53,821 Huanxian 0.75 2.19 0.62 2.32 0.35 0.25

53,903 Xiji 0.74 2.09 0.61 2.48 0.31 0.23

53,915 Pingliang 0.76 2.15 0.621 1.98 0.33 0.25

53,923 Xifeng 0.77 2.01 0.68 1.75 0.25 0.28

53,929 Changwu 0.79 2.03 0.60 2.25 0.24 0.28

57,025 Fengxiang 0.74 2.31 0.64 1.84 0.20 0.29

57,034 Wugong 0.74 2.21 0.61 1.91 0.21 0.30

57,037 Yaoxian 0.76 2.11 0.64 1.80 0.23 0.21
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The projected mean monthly rainfall in the Jing River Basin has
increased significantly during the study period (Figure 7). In
particular, the predicted increase in monthly average
precipitation in June and September was significant. For
illustration, according to the average June observational data, the
precipitation in the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios rose
by 0.91, 1.3, and 1.63 mm, respectively, while in September the
projected increases were 1.66, 1.79, and 1.85 mm, respectively, in the
same scenarios. The next more pronounced month was October,
when predicted increases in precipitation of 0.25, 0.41, and 0.96 mm
for the same three scenarios, respectively. However, the predicted
precipitation increases in other months were insignificant in the

same three scenarios increasing by about 0.1, 0.2, and 0.4 mm,
respectively.

4.3 Blue and green water simulation
and analysis

4.3.1 Spatial and temporal characteristics of
historical blue and green water

The altered parameters were input into the SWAT model, and
the model was launched to output the hydrological data of the Jing
River Basin during the base period; data related to the blue and green

FIGURE 5
Monthly mean maximum temperature for the base and forecast periods in the Jing River Basin. Note: Shared Socioeconomic Pathway projections
include SSP1-2.6, SSP2-4.5, and SSP5-8.5.

FIGURE 6
Monthly mean lowest temperature for the base and forecast periods in the Jing River Basin. Note: Shared Socioeconomic Pathway projections
include SSP1-2.6, SSP2-4.5, and SSP5-8.5.
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water resources were acquired after calculation (Figure 8). The
number of green water resources in the Jing River Basin is
significantly higher than the number of blue water resources; the
multi-year average amount of green water resources in the reference
period was 433 mm, while the quantity of blue water resources was
only 109 mm; the green water coefficient was higher, as high as
80.66%. The basin contained a reasonable amount of total water
resources, most notably green water resources, which were ten times
more plentiful than blue water resources. This is primarily because
the Jing River Basin is located in the center of the arid Loess Plateau,
where precipitation is scarce, with an annual average of only
525 mm. Predicted precipitation was positively correlated with
the proportion of blue–green water in the basin. In contrast, the
predicted coefficient for green water was negatively linked with

precipitation, demonstrating that green water resources play a
crucial role in preserving an environmental balance.

The predicted concentration of blue and green water resources
in the Jing River Basin shows significant spatial divergence
(Figure 9). The pattern of precipitation, which decreases from the
southeastern to the northwestern parts of China, is reflected
geographically in the range of blue and green water resources
that are found across the country (Figure 9). However, the spatial
distribution of the coefficient for green water is diametrically
opposed to that of rainwater.

Figure 9B shows the percentage of blue water in each sub-basin
was within 150 mm. Among them, downstream sub-basins 28 and
29 had the most abundant blue water resources, up to 150mm, while
upstream sub-basins 2, 5, and 7 had the fewest blue water resources,

FIGURE 7
Monthly average precipitation for the base and projected periods in the Jing River Basin. Note: Shared Socioeconomic Pathway projections include
SSP1-2.6, SSP2-4.5, and SSP5-8.5.

FIGURE 8
The annual change of blue and green water resources and the coefficients for green water from 1979 to 2014.
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with blue water amounts below 80 mm (Figure 9B). The spatial
pattern of precipitation mainly influences the geographic
variation of blue water resources; the two are substantially
associated (p < 0.01), achieving a high correlation of 0.95.
Figure 9C shows the green water resources were more
abundant, with more than 490 mm of green water resources
in each sub-basin. The upstream sub-basins 1–7 had fewer than
390 mm of green water on average, whereas the downstream sub-
basin 28 had up to 490 mm of green water on average (Figure 9C).
Among them, the downstream sub-basin 28 had the highest
concentration of green water (Figure 9C). The spatial pattern
of precipitation also influences the geographical distribution of
green water quantity; the correlation coefficient r between the
two reached 0.97 (p < 0.01). Figure 9D shows the Jing River Basin
has a high percentage of green water, which is altogether greater
than 75%. The geographical distribution pattern of the green
water coefficient was completely contradictory to the distribution
pattern of the blue–green water coefficient; the distribution of the

green water coefficient became lower from the headwaters to the
tailwaters downstream (Figure 9D). The lowest green water
coefficients (<77%) were found in the lower reaches of sub-
basins 28 and 29; in the lower and middle portions of sub-
basins 2 and 7, green water coefficients of 86% were
observed (Figure 9D).

4.3.2 Future spatial and temporal variation
characteristics of blue and green water

Using the rate-determined SWAT model as the baseline, the
downscaled daily precipitation and temperature data for
2015–2100 were input into the model. All other parameters were
kept constant to obtain predictions of the amounts of blue–green
water for 2015–2100 under each emission concentration scenario.
Figure 10 shows that the quantity of blue–green water shows an
increasing trend in different future scenarios while the coefficient of
green water decreases. The degree of increase of blue–green water in
three situations was predicted as follows: the scenario with the

FIGURE 9
Spatial distribution of historical blue and greenwater in 29 sub-basins of the Jing River, 1979–2014; (A) annual precipitation (mm); (B) amount of blue
water resources (mm); (C) amount of green water resources (mm); (D) green water coefficient (%).
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largest increase in blue–green water was SSP5-8.5, followed by SSP2-
4.5 and SSP1-2.6. Table 5 provides the data related to the discussion
below (Figure 10).

The years 2015–2100 were divided into three periods, referred to
here as the 2030s (2015–2045), the 2060s (2046–2075), and the
2090s (2076–2100). Under the SSP1-2.6 scenario, the amount of
blue water (1) slower growth in the 2030 period compared to the
base period and (2) increased during the 2060s and 2090s relative to
that of the base period. Furthermore, under the SSP2-4.5 scenario,
the amount of blue water was predicted to increase greatly during
2030s, 2060s, and 2090s, with even greater increases predicted for all
three periods in the SSP5-8.5 scenario (Figure 10). Overall, the 2090s
were predicted to have the most blue water, while the 2030s were
predicted to have the least (Figure 10).

Table 5 presents the overall trend of future green water resources
in the Jing River Basin showed an increase compared with the base
period. The green water resources increase by almost 110% under
the SSP1-2.6 scenario and by almost 1.2 times under the SSP2-
4.5 scenario. In the SSP5-8.5 scenario, the amount of green water
increased also by nearly 105% (Table 5). The SSP1-2.6 and SSP5-
8.5 scenarios had the least and most green water,
respectively (Table 5).

In all projections and periods, the future green water coefficient
is predicted to decline in comparison to the base period, except for
the increase in the 2030s under the SSP1-2.6 scenario. This would

occur in the 2030s. In the SSP5-8.5 scenario, the green water
coefficient decreased by 5.34% in the 2090s when compared to
the base period. This was because the largest amount of green water
is predicted to be produced during the 2090s.

Figure 11 depicts the regional distribution of blue water in the
Jing River Basin for the next three eras. The western half of the basin
currently has the most plentiful blue water area; the total
geographical distribution of blue water is predicted to become
more abundant in the central region in the future, with a
predicted tendency to diminish from the central to the
north–south regions (Figure 11). The most blue water was
predicted to occur in the 2060s era under the SSP1-2.6 scenario,
where the volume of blue water was greater than 90 mm in all
regions except in sub-basins 28 and 29 (Figure 11A). In comparison,
the least amount of blue water was found in the 2030s period, where
the amount of blue water was less than 150 mm in the entire basin
(Figure 11A1). The blue water in the 2030s is predicted to be lowest
under the SSP2-4.5 scenario (blue water < 160 mm); in sub-basins
28 and 29, the predicted blue water is < 100 mm (Figure 11B1). The
blue water volume in the 2060s under the SSP2-4.5 scenario is
predicted to be > 110 mm in all sub-basins except in sub-basins 1–3
(Figure 11B2). Meanwhile, the blue water volume in the 2090s under
the SSP2-4.5 scenario is predicted to be > 100 mm (Figure 11B3).
The SSP5-8.5 scenario is predicted to result in the least amount of
blue water in the 2030s (<150 mm) in the entire basin (Figure 11C1),

FIGURE 10
Blue and green water simulation in the Jing River Basin under a range of future climatic scenarios for 2015 to 2100. Note: Shared Socioeconomic
Pathway projections include SSP1-2.6, SSP2-4.5, and SSP5-8.5.

TABLE 5 Annual blue and green water in the Jing River Basin under climate scenarios for the 2030s, 2060s, and 2090s.

Period (s)
Blue water resources (mm) Green water resources (mm) Green coefficient (%)

SSP1-2.6 SSP2-4.5 SSP5-8.5 SSP1-2.6 SSP2-4.5 SSP5-8.5 SSP1-2.6 SSP2-4.5 SSP5-8.5

2030 0.48 4.97 18.55 8.08 23.74 61.57 0.05 0.22 −0.43

2060 30.15 49.3 34.43 56.94 97.95 132.69 −1.73 −2.53 −0.12

2090 21.02 54.8 140.51 49.09 140.17 280.81 −1.01 −1.84 −5.34

Note: Shared Socioeconomic Pathway projections include SSP1-2.6, SSP2-4.5, and SSP5-8.5.
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which is less than the historic amounts (<170 mm) predicted for the
2060s (Figure 11C2). However, blue water is predicted to be themost
plentiful in the 2090s, with up to 310 mm in sub-basin 13
(Figure 11C3).

The spatial distribution of green water in the Jing River Basin in
the next three periods is shown in Figure 12. The projected spatial
distribution pattern of green water in the Jing River Basin reveals
that the southeastern region is predicted to be richer in green water,
the northwestern region is predicted to be less rich in green water,
and the area around the sub-basin 20 is predicted to be have the
highest concentration of green water of any sub-basin (Figure 12).
The regional distribution patterns of green water resources
throughout the 2030s are predicted to remain stable, while the
green water quantities for SSP2-4.5 and SSP5-8.5 are predicted to be
very comparable to one another. By contrast, the green water volume
is predicted to be smallest in the SSP1-2.6 scenario, reaching up to
480mm in sub-basin 20 (Figure 12C). The SSP1-2.6 scenario had the
least amount of green water during the 2060s, with levels predicted
to be below 450 mm in sub-basins 1–7 (Figure 12A2); meanwhile,
the SSP5-8.5 scenario is predicted to have the most amount of green

water (>620 mm) in the entire basin (Figure 12C). The SSP1-
2.6 scenario had the lowest predicted amount of green water
during the 2090s (<530 mm) throughout the entire basin
(Figure 12A). The SSP5-8.5 scenario had the highest predicted
amount of green water, with up to 840 mm in sub-basins 26 and
27 (Figure 12C). In the SSP1-2.6 scenario, the 2090s are projected to
have the least amount of predicted green water, at 420 mm
(Figure 12A3).

The predicted green water coefficients of the Jing River Basin in
the next three time periods are shown in Figure 13. The spatial
distribution pattern of future green water coefficients in the Jing
River Basin is predicted to be very different from those of blue water,
with a high north-south pattern overall, low in the central region,
and the lowest green water coefficient in the western region of the
basin (Figure 13). Under the SSP1-2.6 scenario, it was predicted that
the era in the 2030s had the largest green water coefficient, which
was above 77% for the entire basin (Figure 13A1). In comparison,
the SSP5-8.5 scenario is predicted to have the lowest green water
coefficient in the 2090s timeframe, which was below 79.5% for the
entire basin (Figure 13C2).

FIGURE 11
Spatial variations of blue water in the Jing River Basin under three Shared Socioeconomic Pathway projections: columns (A) SSP1-2.6, (B) SSP2-4.5,
and (C) SSP5-8.5; rows (1) 2030s, (2) 2060s, and (3) 2090s.
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5 Discussion

A significant amount of water resources in semi-arid and arid
regions are made up of green water. The process of vegetation
evapotranspiration on the basin’s surface has consumed green water
as green water flow, which is appropriate for the semi-arid and sub-
humid climate features of the Jing River. Our research indicates that
the Jing River Basin has a green water coefficient of 90% or higher,
which is in line with data from the Yellow River Basin headwaters
(Zhang et al., 2014). Additionally, Liu et al. (2021) discovered that
between 2010 and 2018, the Yellow River Basin’s green water
amount was greater than its blue water amount. The patterns
observed in the blue water and precipitation spatial and temporal
distributions align more closely with the conclusions stated by Zhu
et al. (2018). Gao et al. (2018) noted a similar regular trend and
noted that temperature was a significant influencing element for
both blue water and green water resources.

Talib and Randhir (2017) pointed out that the effects of climate
change will certainly have an impact on both the geographical and
temporal aspects of the hydrological cycle, which will result in

alterations to the seasonality of river ecosystems. SDSM models
suitable for simulating future climate change (Wilby et al., 2002;
Hassan et al., 2014). Many scholars have shown that the SDSM
model simulates temperature with higher accuracy than
precipitation because the processes involved in precipitation are
more complex and consist of several factors, such as atmospheric
pressure and humidity (Phatak et al., 2011; Yan et al., 2017). This
result is in line with the conclusion that was reached by Peng et al.
(2010) as well as the overall pattern of precipitation in China
(Beyene et al., 2010; Xu et al., 2010) concluded that the future
temperatures that were simulated by the SDSM model are in line
with the trend of predicted temperature change in the twenty-first
century, that the model simulates the temperature better than
precipitation, and that the primary reason for the increase in
future temperatures will be the consistent increase in greenhouse
gas concentrations that have been observed since the 1960s (IPCC)
(Jankó et al., 2014). The validation results of the SDSMmodel (Khan
et al., 2006) in the present study showed a relatively good empirical
statistical relationship in the multilinear regression model between
forecast quantities and predictors, with higher R2 values for

FIGURE 12
Spatial differences of green water in the Jing River Basin under three Shared Socioeconomic Pathway projections: columns (A) SSP1-2.6, (B) SSP2-
4.5, and (C) SSP5-8.5; rows (1) 2030s, (2) 2060s, and (3) 2090s.
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temperature predictions when compared with similar studies
(Gulacha and Mulungu, 2017; Chim et al., 2021). The predicted
precipitation results are better than the findings of similar studies
(Wilby et al., 2002) with better simulation results. The Jing River
Basin’s future temperature and precipitation are examined in this
study. The results demonstrate that the simulation is accurate and
that the conclusions of Zhao et al. (2020) about the future climate are
consistent, indicating a large increase in future temperatures. The
Jing River Basin is better suited for the SDSM model, which
performed better at replicating precipitation in the arid zone
than in the wet zone (Sigdel and Ma, 2016).

The Jing River Basin has somewhat more precipitation than
blue and green water. The relative error between the two types of
water resources—blue and green water—and precipitation is
1.51%, with one of the mistakes being related to the SWAT
model’s parameter settings (Wu et al., 2021). CN2 is the
number of SCS runoff curves under soil moisture condition II,
which is a combination of soil infiltration characteristics, land use
type, and pre-existing soil moisture conditions; the larger the
CN2, the greater the yield (Liu et al., 2017; Zhang et al., 2024).

The land cover, soil type, and management condition in the
Yellow River basin are particularly sensitive to the setting of CN2
(Jin et al., 2023). The Jing River basin is hilly and mountainous,
rainfall is easy to forms surface runoff, and the soil and vegetation
cover conditions directly affect the runoff volume (Gao et al.,
2020). The SWAT calibration and uncertainty analysis software
has been widely used in SWAT model-related studies to combine
automatic and manual calibration (Schuol et al., 2008). The
present study of the Jing River Basin referred to previous
knowledge and experience and assigned values to the model
parameters or limits the range of parameter calibration to the
actual situation of the study region (Hu et al., 2007; Li et al., 2010;
Ng et al., 2010). Abbaspour et al. (2017) stated that a model is
more accurate if the values it predicts match the observed values.
Krause et al. (2005) found that the daily runoff simulation for the
Wilde Gera watershed in Germany was calibrated based on R2

alone, and the calibrated R2 increased from 0.23 to 0.93. However,
the calibrated model value underestimated the observed value,
with an NSE of −1.66. Applying a single evaluation metric to
calibrate the model increases model uncertainty of the model

FIGURE 13
Spatial changes of green coefficient in the Jing River Basin under various three Shared Socioeconomic Pathway projections: columns (A) SSP1-2.6,
(B) SSP2-4.5, and (C) SSP5-8.5; rows (1) 2030s, (2) 2060s, and (3) 2090s.
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results and results in a significant error (Gan et al., 1997;
Uhlenbrook et al., 2004; Moriasi et al., 2007), so multiple
metrics should be selected for evaluation (Arnold et al., 2012).
The present study used a combination of R2, NSE, PBIAS, and
RSR as model evaluation metrics to reduce model error. The
quality of calibrated observational data also determines the
accuracy of model simulations (Nair et al., 2011; Krysanova
and White, 2015; Vigiak et al., 2015). The data source must be
authentic and reliable; for the present study, the data acquired
from the Zhangjiashan Hydrological Station in the Jing River
Basin were obtained from hydrological observations, which
reduced the simulation error caused by poor data quality.
When dividing the rating and validation periods, both should
contain similar hydrological conditions to facilitate the data’s
typicality (Masih et al., 2011).

The most significant factor that is having an impact on the
hydrological water supply in arid sections of the Jing River Basin
is climate change. Precipitation and temperature are the most
important hydrothermal combinations of climate factors that
affect blue–green water (Liang et al., 2020; Serur, 2020; Cooper
et al., 2022). The CMIP6 climatic models are generally better at
simulating temperature and precipitation than earlier models
and also have better applicability (Chen and Sun, 2022; Huang
et al., 2022; Li et al., 2022). The present study demonstrates that
the geographical extent of blue–green water is consistent with the
distribution of precipitation and that meteorological changes
alter precipitation patterns and temperature distribution
patterns in the Jing River Basin; these, in turn, result in shifts
in the yield as well as the geographical and temporal
characteristics of blue–green water resources in the basin
(Worku et al., 2020), which is in line with the results of the
present study; both of these studies confirm that the main cause
of these changes is the alteration of precipitation patterns and
temperature distribution patterns.

The climatic factor contributes 96% to green water variability
in the Jing River Basin (Zhao et al., 2016), while
evapotranspiration also plays a relatively critical role in
climate-driven green water variability. Temperature is an
important factor affecting the green water coefficient
(Mengistu et al., 2021). Increased temperatures are predicted
to result in a shift from blue water to green water, which causes
the green water coefficient to decrease. As a result of this
transition, the amount of subsurface water storage increases in
dry and semi-arid regions, which is an important factor in the
region’s capacity to sustain its water supplies (Zhao et al., 2016).
The discovery that blue–green water is mostly obtained from
precipitation remains true for the Wei River Basin as well, despite
the fact that temperature has a significant role in regulating the
proportion of blue–green water (Xie et al., 2020).

The present study investigated the formation of blue–green water
in the past and future, as well as its regional and temporal distribution.
However, even though the distribution of blue and green water has
been mapped out, the mechanism and regulation of blue–green water
interconversion are not yet understood. Thus, additional research is
required to alleviate the problem of insufficient food crop production
more rationally and effectively when caused by water shortages
(Huang and Li, 2010). In particular, the study of green water and
its use in the Jing River Basin in the arid areas of the Loess Plateau is

beneficial to alleviating the water scarcity crisis and the pressure on
ecosystem balance in these areas (Zang and Liu, 2013). Following this,
it becomes critical to undertake a more comprehensive analysis of the
geographic dispersion and evolving trends of blue and green water
within the Jing River Basin. Simultaneously, there’s a pressing need to
address the scientific complexities linked with pivotal water cycles and
ecosystems in arid regions. Moreover, a thorough exploration of
methods for sustainable utilization and efficient management of
water resources within the basin is warranted. The ultimate
objective is to achieve environmental sustainability within the
basin, supported by a robust theoretical framework and practical
applicability.

6 Summary and conclusion

The Jing River Basin served as the research object in this study.
The climate data-driven SWAT model included in the
CanESM5 model was used to simulate the hydrological cycle
processes in the basin between 1979 and 2014 as well as the
predicted climate change from 2015 to 2100. This permitted a
deeper investigation of the regional and temporal variability
characteristics of the basin’s present and future blue–green water
resources, leading to the following conclusions.

(1) The SWAT model, when fueled by historical meteorological
data, produced commendable simulation outcomes, yielding
an r-squared (R2) coefficient of 0.74 and a Nash-Sutcliffe
Efficiency (NSE) value of 0.71 during the calibration period.
In the validation period, the model continued to perform well,
yielding an r-squared (R2) coefficient of 0.8 and an NSE
value of 0.8.

(2) Compared to the base period (1979–2014), the future
CanESM5 model under the SSP1-2.6, SSP2-4.5, and SSP5-
8.5 scenarios predicted 0.27, 0.44, and 0.66 mm more
precipitation, respectively, and 1.62°C, 2.1°C, and 3.36°C
higher mean temperatures, respectively. With the increase
in the total relative area of radiative emissions in these three
scenarios, the precipitation and temperature of the Jing River
Basin were predicted to continue increasing.

(3) During the reference period (1979–2014), the average
multi-year blue and green water resources in the Jing
River Basin were 109 and 433 mm, respectively.
Compared with the base period, during 2015–2100, the
predicted blue water resources in the SSP1-2.6, SSP2-4.5,
and SSP5-8.5 scenarios were 17, 36, and 34 mm,
respectively, and the predicted green water resources
were 38, 79, and 101 mm more, respectively.

(4) The general spatial distribution of future blue water in the Jing
River Basin was richer in the central region than the northern
and southern regions, with the greatest concentration of blue
water in the western region. The future geographical
distribution pattern of green water was predicted to have a
higher concentration of blue in the southeastern region than
the northwestern region; the area around sub-basin 20 was
predicted to have the highest concentration of green water. We
concluded that the future spatial distribution pattern of the
green water coefficient would be high overall in the northern
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and southern regions and low in the central and western
regions, thereby differing considerably from blue water.
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