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The impact of ecosystem conservation and restoration activities are rarely
monitored from a global, multidimensional and multivariable perspective. Here
we present an approach to quantify the environmental impact of landscape
restoration using long-term and high-resolution satellite observations. For two
restoration areas in Tanzania, we can likely attribute an increase in the amount of
water retained by the soil (~0.01 m³ m⁻³, ~13% average increase), a soil
temperature drop (~-0.5°C) and an increase in surface greenness (~50%
average increase) in 3.5 years. These datasets illuminate the impact of
restoration initiatives on the landscape and support the reporting of
comprehensive metrics to donors and partners. Satellite observations from
commercial providers and space agencies are now achieving the frequency,
resolution, and accuracy that can allow for the effective evaluation of restoration
activities.
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1 Introduction

Conservation and restoration activities, together with targeted climate adaptation
management, are critical to reduce the vulnerability of biodiversity to climate change
(Atkinson et al., 2022). The restoration of degraded lands and the reduction of non-
climatic stressors are specifically important for the resilience of species and ecosystem
health (IPCC, 2022). However, there has been a lack of meaningful and long-term
assessments of such conservation and restoration efforts, which has slowed progress
towards more effective restoration practices (Young and Schwartz, 2019;
Lindenmayer, 2020).

The monitoring of interventions can be challenging for large and remote areas
(Pettorelli et al., 2014; Ockendon et al., 2018; del Río-Mena et al., 2020). Satellite
remote sensing offers a consistent and cost-efficient tool for observing ecosystems and
drivers for ecosystem change at multiple scales (Secades et al., 2014; Stephenson et al., 2015;
IPBES, 2018; von Holle et al., 2020). Currently, we are witnessing an ever increasing pace of
innovation in Earth observation satellite systems (e.g., hyperspectral sensors, enhanced
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temporal and spatial resolution, and advances in data fusion
solutions) driven by both the public and private sector (de
Almeida et al., 2020). With the increasing role of machine
learning in combination with the growing expertise in natural
ecosystems, the potential for ecosystem monitoring is only
expected to accelerate (Nagendra et al., 2013; Pereira et al., 2013;
Pettorelli et al., 2014; Stephenson et al., 2015). Satellite-based climate
data records have been available since the early 1970s (e.g., Landsat
mission of 1972) and offer the capability to determine the baseline
conditions required to detect ecosystem changes (Hansen et al.,
2008; Eva et al., 2010; Nagendra et al., 2013; Gann et al., 2019). Next
to a sufficient observation record and cadence, the spatial resolution
of satellite data needs to be high enough to track conservation
measures at the intervention level (IPBES, 2018). Whereas this used
to be a significant constraint in the usability and uptake of satellite-
based remote sensing for small-sized conservation activities, the
emergence of centimeter and meter scale satellite sensor resolutions
allows for capturing the effects of smaller-sized conservation and
restoration activities. However, few asset managers are able to use
remote sensing data because they lack technical skills and domain
knowledge to process and correctly convert the data into valuable
information (McDermid et al., 2005; Gross et al., 2009; Nagendra
et al., 2013).

Recently, an increasing number of studies have focused on
assessing restoration interventions based primarily on remote
sensing (del Río-Mena et al., 2020; Meroni et al., 2017; Andres
et al., 2018; Sacande et al., 2021; Gumma et al., 2022; Meroni et al.,
2017 analyzed the temporal variations before and after the
intervention of the NDVI of 15 intervention areas in comparison
to multiple control sites that were automatically and randomly
selected from a list of areas similar to the intervention area
(Meroni et al., 2017). Excluding the comparison to control areas,
Sacande et al. (2021) also considered NDVI temporal changes, but
then for 111 plots within the Great GreenWall area in Burkina Faso,
Niger, Nigeria and Senegal (Sacande et al., 2021). del Rio-Mena et al.
(2020) evaluated a series of Sentinel-2 derived indices on their ability
to quantify ecosystem services and their change through
interventions.

However, these studies were mainly scoped to individual
initiatives and a specific environmental variable (i.e., Meroni
et al., 2017; Gumma et al., 2022, Sacanda et al., 2022) and/or
data source (i.e., Rio-Mena et al., 2021, Sacanda et al., 2022). To
date, no remote-sensing based studies have analyzed the
effectiveness of restoration interventions across multiple
ecosystem variables from various independent data sources in an
operational context. Ecosystem health can only be monitored
adequately in a multi-facetted way across several ecosystem
variables, as each ecosystem consists of multiple interactive
biophysical and climatic components (Pettorelli et al., 2018;
Capdevila et al., 2021). An increase in one component may come
at the expense of other ecosystem components, such as a
monoculture plantation that increases carbon sequestration might
reduce biodiversity and water availability (von Holle et al., 2020).
Hence in order to investigate the sustainability of for example,
revegetation in a water-limited area evaluating related trends in
water availability is required (Qiu et al., 2021). Verification with
high-quality in situ observations or across multiple satellite data
sources and types increases the reliability of satellite-based

monitoring (Güttler et al., 2013; Chimner et al., 2019). Even in
the forest and carbon sectors, where monitoring is more
harmonized, there is no uniform, comparable, multi-dimensional
and multi-source network for monitoring ecosystem health (Lausch
et al., 2018). However, such a network is required to enable timely
data and process-based decisions to improve the effectiveness of
restoration interventions (IPBES, 2018).

The top 100 priority questions for landscape restoration in
Europe identified by Ockendon et al. (2018) included the
question of how emerging technologies can be used to
monitor landscape restoration more effectively (Ockendon
et al., 2018). In this study, we explored the potential of a
globally available, multi-source and multi-dimensional set of
ecosystem variables from remote sensing for landscape
restoration. Although these variables are applicable across
multiple terrestrial ecosystems, we studied their applicability
for monitoring restoration of subtropical grasslands in the
Dodoma region of Tanzania by the non-profit organization
Justdiggit. Justdiggit supports local farmers and pastoralists in
Tanzania and Kenya to use accessible tools, like shovels, to dig
bunds—semi-circular pits that reduce runoff and increase
infiltration (Belayneh et al., 2020; Abiye, 2022) (Figure 1).
Together with a temporary restriction in grazing, this
promotes vegetation growth after seeding of the bunds,
leading to increased soil water retention by plant roots and a
local net decrease in land surface temperature (LST) through
increased transpiration for temperate and tropical vegetation
(Feldman et al., 2023). Within this case study, we investigated
the ability to detect and quantify these ecosystem changes with a
selection of optical, thermal infrared and microwave based
satellite datasets. These insights can support organizations to
assess the impact of their interventions, help to communicate
comprehensive impact metrics (e.g., liters of water retained,
degrees cooling and changes in biomass) to donors, investors
and partners and improve the design of new initiatives
(Buckingham et al., 2019). Likewise, these metrics may help a
local farming community to understand the impact of their work,
so they can better explain how restoration works to the next
community, spreading educational roots through the region and
growing new programs.

In the present work, we investigated the potential of several low
resolution (e.g., 1–25 km), medium resolution (e.g., 100–250 m) and
high resolution satellite data products (e.g., 3–4 m) (Supplementary
Table S1) for detecting restoration effects. As displayed in Figure 2, a
stepwise approach was followed to study this potential for two
restoration intervention areas (Supplementary Figure S1). First, the
optical scanning of the land surface provided a quick feasibility
check to determine whether the expected increase in vegetation
growth is indeed visible at high resolution. Otherwise, water and
temperature effects due to increased vegetation are not likely to be
detectable at low and medium resolution. Second, to study the
baseline conditions and potential changes in soil and vegetation
properties, temporal analysis of differences between intervention
and control areas (see the Methods section and Supplementary
Figure S1 on control area selection) was applied on the long-term
(e.g., 10–44 years) datasets at lower resolution. Third, this temporal
analysis was extended to medium resolution datasets to better
understand and quantify the vegetation-water-temperature
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dynamics and effects of landscape restoration. Lastly, based on a co-
design approach with Justdiggit, a translation of the quantified
changes into user-friendly metrics was explored.

2 Materials and methods

2.1 Data sources

In the current work, we have used the following products over
the case study areas: PlanetScope (PS) daily scenes at 3.7 m
resolution, C3S Passive Soil Moisture (here referred to as C3S
soil water content, C3S SWC) 0.25°, Planet SWC 1 km, Planet
SWC and LST 100 m, ESA CCI MODIS LST 1 km, ESA CCI
Sentinel-3 (S3) LST 100 m, MODIS NDVI 250 m and Sentinel-2

NDVI 10 m and Planet Fusion 3 m (Planet Labs PBC Team, 2023).
The latter was resampled to 100 m for comparison purposes. Please
see Supplementary Table S2 for more details on the datasets’
specifications. Outliers in the datasets that are higher than three
times the standard deviation have been removed. For the moving
averages we applied a 20-days backwards looking window.

The long-term datasets (C3S SWC, CCI MODIS LST 1 km and
MODIS NDVI) have an observation period that is long enough to
establish a reasonable baseline. However, these datasets have either a
low resolution (approximately 1–25 km resolution) or a low
temporal resolution (once every 16 days). On the contrary, PS’s
daily scenes offer the possibility to see daily visible changes with high
spatial detail which allows for monitoring relative vegetation
changes of small-scale interventions and determining the
restoration area extent. The medium-resolution datasets (the

FIGURE 1
(A, B) A locator map (A) showing the location of the two bunds sites of Justdiggit in Pembamoto, Dodoma Region, Tanzania and a photo of several
bunds in one of the two sites. Sources: Natural Earth and Projection Wizard (Šavrič et al., 2016) (A) and Justdiggit (B).

FIGURE 2
Workflow of the stepwise approach and the datasets considered per step. All dataset abbreviations are explained in Section 2.1.
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downscaled 100 m SWC and LST) can capture more subtle changes
in soil water and surface temperature properties that can be
quantified in absolute values (de Jeu et al., 2017).

2.2 Study area and control area selection

This study focuses on two intervention areas near Pembamoto in
the Dodoma region in Tanzania, the West Bunds area (centered at
6.2599°S 36.8142°E) and East Bunds area (centered at 6.2527°S
36.8431°E), as displayed by Figure 1 and Supplementary Figure
S1. The bund areas are approximately 60 and 19 ha for theWest and
East Bunds areas, respectively. For both areas bunds have been dug
from October to November 2018, after which grass seeds have been
planted and the grazing restricted for the period studied.

The temporal variability of vegetation is mainly driven by the
seasonal development cycle (one or more) and the inter-annual
climate variability (Meroni et al., 2017). For soil water content and
temperature there is also a very strong daily variation based on
short-term weather conditions. The more types of fluctuations, the
harder to differentiate between the effects of the intervention and
other variations. Assuming that climatic conditions are rather
homogeneous in the direct surroundings of the intervention area,
comparing the conditions of the intervention area before and after
the intervention with those of similar areas nearby helps to attribute
ecosystem changes related to the intervention (Zucca et al., 2015;
Meroni et al., 2017; Gann et al., 2019; Lindenmayer, 2020). Hence
the selection of such control sites is required. For each control area,
there could be project-control differences that are not related to the
restoration interventions, for example, because of differences in
natural variability or the presence of other anthropogenic
interferences in the control areas. To reduce this uncertainty
related to the selection of a single control site, we considered
four different control sites per bunds area and averaged over the
project-control differences. Supplementary Figure S1 displays the
shapes and locations of the bunds and the control sites near
Pembamoto in Tanzania. Control 1 is a randomly selected
control site that is nearby the project area and approximately
similar in size; Control 2 is a buffer of 1 km around the
boundary of the project area; Control 3 is a buffer of 2 km where
the part that overlaps with the 1 km buffer of Control 2 is excluded;
and Control 4 is an expert selected control site selected by Justdiggit
representing an “ideal” control site. Here an “ideal” control site is a
nearby area that has similar conditions and is not perturbed by
anthropogenic interferences. In contrast with control area 4, the
other control areas were chosen to represent a more automated
control area selection that is independent of local information. For
the C3S SWC dataset, the West Bunds control areas fall in the same
pixel as the respective project area. For this dataset the control areas
should ideally be selected farther away from the project area, but for
equal comparison we kept the control area selection the same for
all datasets.

2.3 Impact definition and quantification

Green’s (1979) Before-After Control Impact (BACI) design was
applied, comparing the observations between an intervention area

and a control area, for the period before and after the intervention.
Here multiple control areas were considered. This design helps to
distinguish the impact of the intervention from pre-existing
differences between intervention and control areas, especially when
several control sites were considered (Underwood, 1994; del Río-Mena
et al., 2023). We defined a “before” period: 2017-10-01 to 2018-09-
30 and an “after” period: 2020-10-01 to 2021-09-30. The “before” period
was chosen based on overlap in data availability of the medium-
resolution datasets before the intervention took place and was
limited to 1 year to avoid oversampling in a specific season. The
“after” period was chosen to have the same duration and time of the
year as the “before” period. Please note that for TIR LST no data was
available in 2021, so we used the periods from 2016 to 10-01 to 2017-09-
30 (i.e., before average) and from 2019 to 10-01 to 2020-09-30 (i.e., after
average). To estimate the absolute change (i.e., possible impact) for each
ecosystem variable, we computed the “before” and “after” average
difference between the project area spatial mean and the average of
all control area spatial means, and subtracted the latter from the former.
For the long-term datasets, we computed the “before” average for the
total period available before the bunds digging period and the “after”
average for the total period available after the bunds digging period. To
normalize the data we used

xnorm � x − xmin

xmax − xmin
.

So the normalized change equals:

norm. change � norm xp − xc( )
after

− norm xp − xc( )
before

,

where the bar sign represents the average of that part of the equation.
We computed the relative change as follow:

rel. change% �
xp − xc( )

after
− xp − xc( )

before

xp( )
before

× 100,

where xp are the project area daily values and xc the average control
areas daily values. Please note that the LST changes are computed
relative to the before intervention project average in degrees Celsius.

2.4 Statistical trend analysis

Statistical trend analysis is applied on the complete time series of
absolute daily project-control differences of each variable to study the
sign and significance of trends. See Supplementary Figure S1 for the
available observation period per dataset. Because of the variation in type
of distribution of the project-control differences of the studied variables,
a commonly used non-parametric test was chosen, the Mann-Kendal
test. As these variables have a strong seasonal component, they are
characterized by serial autocorrelation. Without correcting the time
series for autocorrelation, trend test results can be misinterpreted.
Whereas the seasonal Kendall test (Hirsch et al., 1982; Hirsch and
Slack, 1984; Zetterqvist, 1991) eliminates the effect of seasonal
dependence, it does not correct for time dependencies of the
observations within seasons. However, intra-seasonal dependencies
such as the diurnal temperature cycle and stationary weather fronts
are also present in the timeseries. Therefore, the Hamed Rao Modified
Mann Kendall trend test (one-tail, ɑ = 0.05) was applied, which uses
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FIGURE 3
Planet PS images of May 2018 (A), 2020 (B) and 2022 (C) of the Justdiggit West Bunds area in Tanzania. The bunds digging site can be seen outlined
in white.

FIGURE 4
The differences in 20-day backward moving average MODIS NDVI (A) and CCI MODIS LST (B) between the West Bunds and the control area mean.
The period of bunds digging (Oct-November 2018) is marked by the purple bar.
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variance correction to correct for serial autocorrelation (Hamed and
Rao, 1998). The Hamed Rao Modified Mann Kendall test takes into
account all significant lags with respect to autocorrelation.

3 Results

3.1 Scanning the surface for visible changes
of ecosystem restoration

By studying Planet’s PlanetScope (Planet PS) images in May
2018, 2020 and 2022, regreening is clearly noticeable for the two case
study areas. Figure 3 shows the growth of vegetation for one of the
bunds areas near Pembamoto.

3.2 Long-term satellite observations for
baseline and change assessment

In the low resolution soil water content datasets, the EU’s
Copernicus Climate Services Soil Water Content (C3S SWC) and
Planet Soil Water Content 1 km (Planet SWC 1 km) datasets, there
are no clear changes visible or found statistically significant (p >
0.10) for the project-control differences between the before and after
bunds digging periods (see Supplementary Table S1). Please note
that the West Bunds and East Bunds areas equal 0.001 and
0.0003 pixel of the C3S SWC dataset respectively. For the West
Bunds area there are no differences observed at all, because the
control areas fall in the same pixel as the project area. A distinct
change in the Moderate Resolution Imaging Spectroradiometer
Normalized Difference Vegetation Index (MODIS NDVI) at
250 m resolution is clear from Figure 4 and when looking more
carefully also in the European Space Agency’s (ESA) Climate
Change Initiative (CCI) MODIS LST at 1 km resolution. For
MODIS NDVI the observed change is significant at the 95%
confidence level for both bunds areas (Supplementary Table S1).
The average increase in project-control differences of MODIS NDVI
is 23%–30% with respect to the climatological average before bunds
digging for the two bunds areas. For CCI MODIS LST the change is
still statistically significant for the West Bunds area (p < 0.01), but
not for the East Bunds area (p = 0.087). For theWest Bunds area, the
average increase in project-control differences of CCI MODIS LST
is −13% with respect to the climatological average before
bunds digging.

3.3 Vegetation-water-temperature
dynamics at medium resolution

We found that the bunds areas stay mainly wetter and cooler
than the average of the control sites after the bunds digging (Figures
3, 4 for the West Bunds area). When comparing the project-control
average differences of the before-digging period and the after-bunds
digging period, the East and West Bunds areas are 15% and 11%
wetter than the control average respectively relative to the before
intervention Planet SWC 100 m (here abbreviated as SWC) average
corresponding to 0.009 and 0.007 m³ m⁻³ absolute average change.
We found an average cooldown of 0.5°C and 0.4 °C for the East and

the West Bunds area, which equals 1.5% and 1.1% cooldown with
respect to control area average and relative to the average Planet
microwave (MW) based LST of each bunds before the bunds
digging. For the thermal-infrared (TIR) based LST, the absolute
change detected is −0.15 °C and −0.33 °C with relative average
change of −0.5% and −0.9% for the East and West Bunds areas
respectively. For Sentinel-2 (S2) NDVI, we found that the East
Bunds and West Bunds areas are on average 34%–37% greener than
the reference for the period after bunds digging compared to the
period before bunds digging. The highest relative average change,
55%–72% increase, was observed for Planet Fusion (PF) NDVI. The
average spread between control area comparisons in SWC and MW
LST has a similar order of magnitude as the average differences,
0.010–0.013 m³ m⁻³ (14%–16% relative the average SWC) and
0.65°C–0.82°C for the East and West Bunds respectively.
However, the spread in project-control area comparisons
continues to increase above (below) the zero-difference line in
time for SWC (LST) for the West Bunds area, as seen in Figures
5, 6, and this has also been observed for the East Bunds area. Both the
magnitude of the differences and the spread in control area
comparisons vary seasonally, likely related to precipitation and
vegetation patterns. Only for PF the mean spread in project-
control area comparisons is about half of the absolute change,
whereas for TIR LST this spread is six to 10 times larger than
the absolute change. The largest positive differences in SWC
associated with negative differences in MW LST are found for
higher NDVI values (Figure 7).

The seasonal dynamics, inter-control spread and trends of the
project-control differences in the different variables are coherent
in time across the datasets of different temporal and spatial
resolutions (Figure 8). Whereas indications of change could
not be detected in the low resolution datasets of SWC (C3S
SWC, Planet SWC 1 km) and LST (MODIS and Planet 1 km), the
medium resolution datasets of SWC and LST do capture
noticeable change that is comparable in dynamics to the
observed MODIS and Sentinel NDVI change. Although the
MODIS NDVI picks up the restoration effects on vegetation
greenness, suggesting that the 250 m resolution is sufficient here,
we do see it is less sensitive than PF NDVI.

Modified Mann Kendall trend analysis was applied on the
project-control mean differences of each variable for the period
after bunds digging. Significant trends were found at the p =
0.001–0.05 significance levels (Table 1, except for TIR LST for
the East Bunds area) with slopes of approximately 5e−6 m3 m−3 in
SWC, 0.5e−4–0.9e−4 in NDVI and 2e−4–3e−4℃ in MW LST per day.
The sign of the slope was observed positive for SWC and NDVI and
negative for MW and TIR LST. The NDVI trends are the most
significant of all, even for MODIS NDVI where only approximately
170 observations were available. When excluding the before
intervention period in this trend analysis the p values increase
generally (Supplementary Table S3). Trends are then observed at
0.01%–10% significance levels with slopes that are approximately
twice as small for the East Bunds while staying approximately the
same for the West Bunds. The only deviating finding here is for TIR
LST for the East Bunds where the p-value decreases to 0.11 and the
slope becomes three times as big. In terms of relative average
changes of the project-control differences between the before and
after intervention period, we find 11% and 15% increases in SWC,
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FIGURE 5
The top graph (A) visualizes the 20-day backward moving averages of SWC of the Pembamoto West Bunds site (dark blue) and the mean of the
nearby control sites (light blue line) in time. The bottom graph (B) shows the differences in SWC with respect to the control area mean (solid green line)
over the years. The minimum-maximum range of all project-control area comparisons is marked by the half-transparent light green color.

FIGURE 6
The top graph (A) visualizes the 20-day backward moving averages of daytime MW LST of the Pembamoto West Bunds site (blue) and the mean of
the control sites (orange) over the years. The bottom graph (B) shows the differences in MW LST with respect to the control area mean (solid light blue
line) in time. The minimum-maximum range of all project-control area comparisons is marked by the half-transparent light blue color.
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37% and 34% increases in S2 NDVI, 72% and 55% increases in PF
NDVI, −1.1% and −1.5% decreases in MW LST and −0.9%
and −0.5% decreases in TIR LST for the West and the East
Bunds areas respectively. To compare the magnitude of the
changes between the variables, the normalized changes were
considered. The order of magnitude for the MW SWC, MW LST
and S2 NDVI normalized changes is equal (e.g., ~0.20). For PF
NDVI the order of magnitude is similar, but twice as big (e.g., ~0.4),
whereas for the TIR LST we find normalized changes that are one
order lower in magnitude (e.g., ~0.02).

3.4 From data to insights

The bunds-control area mean differences in microwave-based
daytime temperature demonstrate that the bunds have the potential

to cool down the topsoil 0.4°C–0.5°C on average over the observed
period (October 2018 to July 2022, ~3.5 years). Considering the
difference plots of the West and East Bunds we found an average
increase of 0.007–0.009 m³ m⁻³ in 3.5 years. For both bunds areas
combined, the total extra retention of water for the top 10 cm of the
soil as measured by the SWC data was estimated to equal
approximately 615,000 L in 3.5 years. As this satellite-based
analysis captures data from the top 10 cm of the soil only, the
total extra retention number is a conservative estimate as the
retention is expected to increase over a deeper soil layer
(i.e., over the total grass root depth). For NDVI, only relative
numbers can be computed, indicating that on average the bunds
areas became approximately 35% (based on S2 NDVI) to 62% (based
on PF NDVI) greener in 3.5 years. The area that is (partially)
regreened can also be a metric, which is here approximately
80 ha in total.

FIGURE 7
Differences in 10-day centered moving average SWC (A) and MW LST (B) compared to S2 NDVI values for the East Bunds area after bund digging.

FIGURE 8
The differences in MW LST 100 m (solid orange line, inversed), TIR LST 100 m (dotted orange line), SWC 100 m (solid blue line), MODIS NDVI 250 m
(green dots) and PF NDVI 3 m (solid green line) between the West Bunds area and the control area mean in time. The period of bunds digging (Oct-
November 2018) is marked by the purple bar.
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4 Discussion

The increase in greenness visible in PS images of the bunds areas
is in line with the observed trends in SWC, MW LST and S2 NDVI
project-control differences, together demonstrating the effectiveness
of the landscape regreening interventions. An increased infiltration
through the digging of bunds has likely led to increased retention of
soil water content which may have resulted in accelerated vegetation
growth. This vegetation growth is expressed by NDVI and shown by
the visual change of barren soil to green vegetation in PS imagery.
This in turn could have led to cooling down the surface at daytime,
which is represented by MW- and TIR-based daytime LST and in
line with Feldman et al., 2022 through increased transpiration and a
further increase of the soil water retention by plant roots (Wu et al.,
2016; Feldman et al., 2023; He et al., 2023). The latter is reflected by
MW SWC and in line with Wu et al., 2016; He et al., 2023. For the
TIR LST, the trend in project-control differences is less clear, but still
significant for the biggest project area (e.g., the West Bunds area).
Potentially, the level of spatial detail is larger in the MW LST, than
the TIR LST because of differences in downscaling methods. Other
differences between TIR-based and MW-based LST are related to
differences in the type of signal, sensitivity to clouds, retrieval
algorithms, their dependence on auxiliary datasets, and
penetration depth (Li et al., 2013; Zhang et al., 2019). In general,
TIR retrievals are more accurate than MW retrievals (Nie et al.,
2020). This is principally due to a stronger dependence of the
radiance on temperature and smaller variation of surface
emissivities (Zhang et al., 2019).

Whereas the long-term low resolution datasets are required to
establish a baseline, medium to high resolution satellite-derived
datasets capture enhanced spatial detail to help differentiate subtle
spatial variation in vegetation-water-temperature dynamics and
effects of landscape restoration. The available 1 km datasets of
SWC and MW LST are not sensitive enough to determine the
changes for this type and spatial scale of landscape restoration and a
resolution of 100 m was a necessity to capture these changes. The
medium resolution SWC, MW LST and S2 NDVI datasets made it
possible to study the interaction between water, temperature and
vegetation growth within restored landscapes, which gave a better
understanding of the mechanisms and uncertainties. Hence, this
study demonstrated the necessity for medium to high resolution
satellite observations. The biggest differences in SWC and MW LST
are found for higher S2 NDVI values, which matches the proposed
relationship between an increase in plant growth (expressed by an
increase in plant greenness) and an increase in the water holding
capacity of the soil (represented by SWC) and higher transpiration
leading to lower LST values.

When comparing the normalized changes, we see that those of
PF NDVI at 3 m resolution are two times as big as those of the other
datasets at 100–250 m resolution. This might indicate that higher
spatial resolution more fully captures the restoration effects. In
addition, when comparing the NDVI changes at 250 m and the
SWC and LST changes at 100 m resolution, the order of magnitude
of change is similar. This could imply that the vegetation effects are
more easy to detect than the SWC and LST effects (similar order of
magnitude for 100 m vs. 250 m resolution datasets), which might be
explained by the differences in physical dynamics of the variables.
For example, the main changes in vegetation greenness are driven byT

A
B
LE

1
T
ab

le
in
cl
u
d
in
g
th
e
H
am

e
d
R
ao

M
o
d
ifi
e
d
M
an

n
-K

e
n
d
al
l
tr
e
n
d
re
su

lt
s
fo
r
th
e
m
e
d
iu
m

an
d
h
ig
h
re
so

lu
ti
o
n
d
at
as
e
ts

o
ve

r
th
e
to

ta
l
av

ai
la
b
le

p
e
ri
o
d
an

d
th
e
ch

an
g
e
s
in

b
e
fo
re
—
af
te
r
av

e
ra
g
e
s,

b
o
th

fo
r
th
e

p
ro

je
ct
—
co

n
tr
o
l
m
e
an

d
if
fe
re
n
ce

s
o
f
m
u
lt
ip
le

d
at
a
p
ro

d
u
ct
s
an

d
th
e
tw

o
b
u
n
d
s
ar
e
as
.
T
h
e
sl
o
p
e
is

th
e
tr
e
n
d
sl
o
p
e
(a
ve

ra
g
e
ch

an
g
e
p
e
r
d
ay

).

p
-v
al
u
e

Sl
o
p
e
(1
0
-4
)

N
o
.
o
b
s

M
e
an

sp
re
ad

A
b
s.

C
h
an

g
e

R
e
l.
C
h
an

g
e
(%

)
N
o
rm

.
C
h
an

g
e

M
W

SW
C
10
0
m

E
as
t
B
un

ds
0.
00
0

0.
07
7

54
9

0.
01
0

0.
00
94

14
.4
8

0.
18
2

W
es
t
B
un

ds
0.
01
6

0.
04
4

54
9

0.
01
3

0.
00
73

10
.5
4

0.
17
5

M
W

LS
T
10
0
m

E
as
t
B
un

ds
0.
00
0

−
3.
70
8

1,
12
8

0.
64
8

−
0.
51
03

−
1.
48

−
0.
19
4

W
es
t
B
un

ds
0.
03
8

−
2.
03
0

1,
12
7

0.
81
9

−
0.
37
50

−
1.
09

−
0.
15
6

T
IR

LS
T
10
0
m

E
as
t
B
un

ds
0.
49
6

−
0.
47
0

50
0

1.
46
2

−
0.
14
68

−
0.
43

−
0.
01
0

W
es
t
B
un

ds
0.
00
8

−
2.
45
4

52
9

1.
98
4

−
0.
32
83

−
0.
93

−
0.
02
4

S2
N
D
V
I
10
0
m

E
as
t
B
un

ds
0.
00
0

0.
62
7

16
5

0.
06
6

0.
05
70

37
.2
3

0.
17
2

W
es
t
B
un

ds
0.
00
0

0.
39
3

16
9

0.
06
1

0.
05
68

34
.1
4

0.
23
8

P
F
N
D
V
I
3
m

E
as
t
B
un

ds
0.
00
1

0.
89
5

17
82

0.
08
3

0.
16
63

72
.4
4

0.
40
6

W
es
t
B
un

ds
0.
00
0

0.
84
2

17
72

0.
07
5

0.
14
14

55
.4
1

0.
45
6

Frontiers in Environmental Science frontiersin.org09

van der Vliet et al. 10.3389/fenvs.2024.1352058

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1352058


the availability of water, which is improved due to the intervention
and varies seasonally based on precipitation patterns and the
amount of evapo-transpiration (Jia and Shao, 2014). For the
SWC and LST also other processes play a role in the short- and
long-term variations, likely explaining why these variations are a bit
harder to detect. For example, some of the increased SWC is
immediately used by the grasses to grow (Jia and Shao, 2014).
Similarly for temperature, there is a balance between a warming
effect through decreased albedo and a cooling effect through
increased transpiration and wetter soils with more (wet)
vegetation that will be sensed cooler (Chapin et al., 2008; Zhang
et al., 2013). Here we observe a net cooling effect of the regreening
intervention, which is in line with the findings of Feldman et al.,
2022 for temperate vegetation (Feldman et al., 2023). As it has not
been determined how long the intervention is still affecting the
observed dynamics, please note that the change numbers computed
in this study do not reflect the total before-after change.

The lowest resolution dataset for which a significant change
was detected for the West Bunds area, is the 1 km resolution (e.g.,
CCI MODIS LST) corresponding to a spatial coverage of 0.6 pixels
of the project area. Although no significant changes were found for
the East Bunds area with the 1 km resolution datasets, which cover
0.3 pixels of the project area, significant changes were detected for
resolutions of 250 m or higher, corresponding to a coverage of 3 or
more pixels of the project area. This might suggest that the
restoration area size needs to equal at least half a pixel of
spatial data coverage for the dataset to be able to detect any
restoration effects. This corresponds to Cowen et al. (1995),
which states that it also depends on the pixel alignment with
respect to the object to be identified and the actual level of spatial
detail in the dataset (Cowen et al., 1995; Myint et al., 2011). In a
study of Thorton et al. (2007) pixel size needed to be bigger than
half a pixel to detect rural land cover objects while using sub-pixel
mapping that adjusts for pixel misalignment (Thornton et al.,
2006). Note that the restoration also included grazing restrictions
which could have led to impact across the border of the
intervention areas, which might have helped in detecting these
trends for areas that cover half a pixel. Differences in the
magnitude and significance of trends between the West and
East Bund areas can be explained by the different area sizes and
potential differences in “before” conditions, type of vegetation,
land use in control areas and the density and size of bunds.

We observed seasonality in the project-control differences before
the bunds digging, which is likely related to the presence of some
vegetation in the control areas before the bunds digging. From this we
can conclude that we do not have a perfect reference that equals the
surface conditions of the project area before the bunds digging. A
perfect reference should also not differ from the project area in terms of
natural variability or perturbation by anthropogenic interferences for
the period after the bunds digging (Meroni et al., 2017). Beyond the
scope of the current study, a more automated control area selection as
described in Meroni et al. (2017) could be adapted in future studies
when extended in the following three manners (Meroni et al., 2017).
Firstly, studying the climatologies of the relevant variables, for example,
SWC, LST, NDVI, to find control areas that have similar natural
variability as the project area before bund digging. Secondly, a non-
visual check whether significant changes occur in the control areas for
the entire before-after period. Thirdly, these studies should include the

requirement that each control area is selected from a different pixel
concerning the dataset of lowest resolution.

Admittedly, a reason for debating the attribution of the observed
differences to the restoration interventions is that the absolute
differences are within the order of the average dataset accuracy
(up to 0.04 m³ m⁻³ RMSE for SWC) or even one order lower
(2°C–3°C RMSE daytime for MW LST and 1°C–2°C RMSE for
TIR LST) (Calvet et al., 2011; Gao et al., 2018; Tan et al., 2019;
Zheng et al., 2019; Yang et al., 2020; Ye et al., 2021). However, as we
are considering the differences between two soil water content
values, one might assume that the error in the difference is
canceled out for a long enough sample size. Moreover, we find
significant trends in the differences and it is unlikely that the
measurement error is time dependent. The likelihood of false
attribution of project-control differences related to the specific
choice of the control area is reduced by taking the average of
four control areas per project area as the reference. Similarly,
false attribution of these differences because of local changes in
weather conditions between the project and control areas for the
period of interest of the medium resolution datasets (e.g.,
2017–2020) can be considered negligible. As the differences are
based on the average of all project-control differences, one might
assume that these changes or trends in small-scale weather
differences are canceled out (Conner et al., 2016). Besides, the
trends observed in the different independent variables are
consistent and in line with the expected effects of landscape
regreening. However, extending the medium resolution datasets
(now starting in 2017) with longer time records (e.g., Landsat,
AMSR2 and/or AMSRE) would help to shed more light on the
robustness of the current findings of the medium resolution datasets,
as it would allow for a better distinction between the natural
variability and restoration impact. However, as the MODIS
NDVI project-control timeseries does provide a good baseline
and is coherent in temporal dynamics, inter-control spread and
trends with the SWC and MW LST differences, it is likely that the
observed SWC and MW LST changes can be attributed as
restoration effects. Whereas a short before period that would be
particularly dry (warm) could have led to false wettening (cooling)
trends, the MODIS NDVI timeseries shows that this was
not the case.

However, Serinaldi et al. (2018) recommended to use trend tests
not to infer nonstationarity, but only as preliminary screening to
identify possible upward or downward processes. For these changes
a clear physical mechanism concerning the predictable evolution of
the properties of the related process is required, to draw any
conclusions about the trend results (Serinaldi et al., 2018). In this
case the significant changes are physically meaningful as they are
related to a well defined physical intervention at a known point in
time justifying causality, here the construction of the bunds. More
research is needed to increase the confidence of the satellite
products’ ability to measure restoration effectiveness in time.
This research should include more research areas in different
hydro-climatic regions at different scales (ranging from 0.1 to
100 km2 when available) and restoration activities of various
restoration types and starting dates (e.g., 2–20 years old).

The current approach uses high-resolution optical imagery to
investigate the likelihood of detecting trends in vegetation, water and
temperature datasets at medium resolution in time. Although many
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restoration activities are likely to result in visible land surface
changes (e.g., bunds, irrigation channels, grass banks), this does
not have to be the case for micro-scale interventions such as
agroforestry applied on a bigger region. In these conditions, it
could still be worthwhile to analyze the temporal changes and
trends. Whereas, the current work focuses mainly on the
temporal component of ecosystem change, it would be interesting
to also analyze associated spatial patterns and their changes in times
as in T. del Rio-Mena et al. (2023) (Río-Mena et al., 2021). This will
give more insights in the underlying processes and provides spatial
validation of the effects of landscape restoration.

Further investigation of the relationship between SWC and
vegetation growth would allow better understanding of the
magnitude of the effects of landscape restoration. This would also
help to better distinguish between seasonal variability and restoration
effects. Deep soil water layers can also be depleted due to revegetation
when the actual evaporation is higher than the precipitation and runoff
is not necessarily decreased because of the revegetation (Jia and Shao,
2014; Qiu et al., 2021). Therefore, the analysis of deep SWC as well as
the amount of water retention by vegetation, would allow for a better
estimation of the total retention of water in the soil and in vegetation in
the bunds areas. Please note that even when water retention at the local
scale is not benefited from restoration, increased evapotranspiration will
induce the cross-continental transport of moisture vapor, and hence
increase precipitation in areas distant from the ocean-based
hydrological cycle (Ellison et al., 2012; von Holle et al., 2020).

Regarding the translation of the results into insights, multi-
disciplinary expertise and further co-designing of usefulness metrics
with stakeholders is required to extend the first attempts presented
here. Thereby investigating which metrics express impact of restoration
in both a scientifically correct and user-friendly way and work across
spatial scales and restoration types. For users like Justdiggit that need to
communicate transparently and regularly to their stakeholders
(Buckingham et al., 2019), operationalization is key, as they currently
face challenges in conducting this in a scalable and cost-effective manner.
An operational monitoring service would require continuity, scalability,
reliability (e.g., accuracy and backup possibilities for satellite outages),
efficient processing to the spatial and temporal resolution necessary and
sufficient latency (IPBES, 2018).Hence, operationalization of the proposed
workflow and the underlying data and insight delivery supports effective
decision and policy making. This paves the way to more effective
restoration encouraging investors, governments and communities to
restore more land (Buckingham et al., 2019).

5 Conclusion

Satellite data observations of different spatial and temporal scales
indicate that the digging of bunds and related grazing restriction has
promoted vegetation growth (~50% greener on average, p ≤ 0.001), top-
layer soil water retention (~13% average increase, p < 0.02) and soil
cooling (~-0.5°C, p < 0.04) over the study regions in Tanzania.
Moving to resolutions higher or equal to 250 m led to more
significant and pronounced trends and made it possible to study
the interaction between water, temperature and vegetation
growth. The presented approach is a cost-effective and
objective method to monitor the effectiveness of landscape
regreening efforts. Repeating this temporal study over more

areas, at different soil depths and extending it with spatial
analysis is needed to further increase our understanding of the
magnitude of regreening effects and the confidence of the satellite
products’ ability to measure restoration effectiveness in time.
When the results are translated to more user-friendly metrics,
operationalized, and complemented with local insights and data,
this method can help to make restoration more effective and
quantifiable. All in all, we conclude that high quality satellite
observations from space agencies and commercial providers are
now achieving the frequency, resolution, and accuracy needed to
evaluate and monitor restoration activities.
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