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This study addresses the critical problem of understanding the changing
dynamics of glacier meltwater in Lake Mertzbakher, a challenge heightened by
ongoing global climate change. Employing the innovative method of the Google
Earth Engine (GEE) platform, this research meticulously extracted surface water
data at 60 time points during the years 2000, 2005, 2010, 2015, and 2021. This
approach represents a significant advancement over previous methods by
offering more frequent and precise data analysis. We incorporated
meteorological factors such as temperature and precipitation to assess their
influence on the monthly changes in the glacier lake area. Our findings indicate a
pronounced outburst in July, leading to a substantial decrease in the lake’s area,
which reaches its lowest in September. Through detailed partial regression
analysis, we established a hierarchy of meteorological influences on the lake’s
area, identifying minimum temperature (r = 0.245), mean temperature
(r = −0.239), precipitation (r = 0.228), radiation (r = 0.154), and maximum
temperature (r = 0.128) as key factors. Additionally, our use of a structural
equation model unveiled the most impactful elements, with mean
temperature (r = −3.320), minimum temperature (r = 2.870), radiation (r =
0.480), and precipitation (r = 0.470) leading the effects. These insights mark a
substantial contribution to our understanding of glacier lake dynamics, offering
crucial data for predicting and managing glacier lake floods. This study’s novel
methodology and comprehensive analysis underscore its significance in
enhancing disaster prevention and preparedness strategies amidst the
challenges of global climate change.
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1 Introduction

Lake Mertzbakher, located in Kyrgyzstan near the upper reaches of the Kunmalike
River, a tributary of the Aksu River in China, is situated approximately 100 km from the
Sino-Kyrgyz border. Between 1932 and 2011, Lake Mertzbakher has experienced 65 floods,
demonstrating a frequency exceeding 92.5% (Pekel J. et al., 2016; Donchyts et al., 2016;
Zheng et al., 2019; Araujo et al., 2021; Chen et al., 2021). The escalation in global
temperatures is anticipated to further increase the frequency of extreme climate events,

OPEN ACCESS

EDITED BY

Fan Mo,
Ministry of Natural Resources of the People’s
Republic of China, China

REVIEWED BY

Yahui Guo,
Central China Normal University, China
Zhichao Li,
Institute of Geographic Sciences and Natural
Resources Research (CAS), China
Nan Xu,
Hohai University, China

*CORRESPONDENCE

Jie Zhu,
zhujie03@caas.cn

RECEIVED 07 December 2023
ACCEPTED 06 February 2024
PUBLISHED 29 February 2024

CITATION

Zhang X, Tang Z, Zhou Y, Zhu J, Sun G and
Huang C (2024), Beyond the ice: decoding Lake
Mertzbakher’s response to global climate shifts.
Front. Environ. Sci. 12:1351872.
doi: 10.3389/fenvs.2024.1351872

COPYRIGHT

© 2024 Zhang, Tang, Zhou, Zhu, Sun and
Huang. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Environmental Science frontiersin.org01

TYPE Original Research
PUBLISHED 29 February 2024
DOI 10.3389/fenvs.2024.1351872

https://www.frontiersin.org/articles/10.3389/fenvs.2024.1351872/full
https://www.frontiersin.org/articles/10.3389/fenvs.2024.1351872/full
https://www.frontiersin.org/articles/10.3389/fenvs.2024.1351872/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2024.1351872&domain=pdf&date_stamp=2024-02-29
mailto:zhujie03@caas.cn
mailto:zhujie03@caas.cn
https://doi.org/10.3389/fenvs.2024.1351872
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2024.1351872


consequently intensifying the glacier meltwater recharge. This
increase in meltwater influx is poised to augment the water
volume of the glacier lake, thereby reducing its stability (Pekel
J. et al., 2016; Donchyts et al., 2016; Zheng et al., 2019; Araujo
et al., 2021; Chen et al., 2021). The understanding of glacier
meltwater dynamics in Lake Mertzbakher is of paramount
importance, given its susceptibility to the impacts of global
climate change. The accelerated melting of glaciers in this region
due to rising temperatures leads to a substantial increase in
meltwater flow into the lake, potentially altering the lake’s water
level, stability, and frequency of outburst floods. These outburst
floods from Lake Mertzbakher pose a significant threat to the flood
control safety and the security of life and property in the Aksu region
in China. The Aksu River, accounting for approximately 73% of the
total runoff of the Tarim River, is crucial for the economic, social
development, and ecological protection of the Tarim River Basin in
China (Zhou et al., 2021; Wu et al., 2022). Understanding the
dynamics of Lake Mertzbakher’s meltwater outbursts is therefore
critical for both China and Kyrgyzstan. Changes in the glacier
meltwater dynamics directly influence the water resources of the
Aksu-Kashgar River system and the Tarim River, which are vital for
the region’s development and environmental conservation (Zhou
et al., 2021; Wu et al., 2022).

Remote sensing technology presents a viable solution to observe
and monitor the area changes of Lake Mertzbakher, particularly
given its remote location and difficult accessibility. Presently, there
are two main water body extraction algorithms based on remote
sensing data: the traditional algorithm, including the water index
and threshold method, and the machine learning classification
algorithm (Chen et al., 2019; Li et al., 2019; Zhou and Dong,
2019). The accuracy of these algorithms in extracting water body
information varies, also influenced by the data used. Consequently,
combining different algorithms and data results in water body
extraction methods with varying degrees of accuracy (Palmer
et al., 2015; Li et al., 2020a; Khandelwal et al., 2022; Zhang et al.,
2022; Guo et al., 2023). Scholars like Yan Zhou, Jinwei Dong, et al.
(Zhou and Dong, 2019) have provided a systematic and
comprehensive analysis and comparative discussion of these
methods, classifying current machine learning algorithms into
three types: Support Vector Machine (SVM), Random Forest
(RF), and Deep Learning (DL). Researchers such as Shuhui Zhao
et al. (Palmer et al., 2015) and Xufeng Wei et al. (Zhao et al., 2018)
have applied these methods to extract water bodies from various
lakes, demonstrating the applicability and effectiveness of these
techniques. In the era of big data, the study of surface water
changes has shifted from regional-scale studies based on local
computing to global-scale studies utilizing high-performance
cloud computing platforms, such as Google Earth Engine (GEE).
This platform offers several advantages, including low manual
participation, high automation, high classification accuracy, and
efficiency, making it highly suitable for remote sensing applications
(Hansen et al., 2013; Pekel J. F. et al., 2016; Zou et al., 2017; Zou et al.,
2018; Zhou et al., 2019; Wang et al., 2020; Wei et al., 2020; Zhou
et al., 2022). Notable research efforts using GEE include global forest
change maps by Hansen et al. (Wang et al., 2020) and global surface
water coverage data sets by Pekel et al. (Hansen et al., 2013),
exemplifying the platform’s utility in environmental monitoring.
Besides, glacier lake outburst floods, caused by rapid drainage of

glacier lakes or dam collapses, are a focus of ongoing research.
Scholars have begun analyzing changes in glacier lake areas, with
studies like those by Xin Wang et al. (Qi et al.) and Changxian Qi
et al. (Pekel J. F. et al., 2016) highlighting the influence of glacier
recession and increased meltwater due to warming as significant
factors contributing to the expansion of glacier lake areas. The
Mount Tianshan region, in particular, has seen a notable expansion
in glacier lake areas due to rising temperatures, necessitating further
research and analysis to understand these changes and their
implications (Wang et al., 2013; Li, 2019). However, remote
sensing technology has proven to be a viable solution for
observing and monitoring area changes in remote and
inaccessible locations like Lake Mertzbakher, previous studies
have shown certain limitations. For example, the accuracy of
traditional water body extraction algorithms, such as the water
index and threshold method, and machine learning classification
algorithms (including SVM, RF, and DL) varies and is influenced by
the data used (Chen et al., 2019; Li et al., 2019; Zhou and Dong,
2019). This variance has led to inconsistencies in the results obtained
from different algorithms and data combinations (Palmer et al.,
2015; Li et al., 2020a; Khandelwal et al., 2022; Zhang et al., 2022; Guo
et al., 2023). Additionally, while the shift to global-scale studies using
high-performance cloud computing platforms like GEE has brought
several benefits, including low manual participation and high
classification accuracy, there remains a gap in the comprehensive
utilization of these platforms for specific applications such as glacier
lake monitoring (Hansen et al., 2013; Pekel J. F. et al., 2016; Zou
et al., 2017; Zou et al., 2018; Zhou et al., 2019; Wang et al., 2020; Wei
et al., 2020; Zhou et al., 2022). Moreover, despite existing research on
glacier lake outburst floods and their causes, such as glacier recession
and increased meltwater due to warming, there is still a need for
more detailed and region-specific studies (Qi et al. 2023; Wang et al.,
2013; Li, 2019).

This study addresses the challenge of understanding the
changing dynamics of glacier meltwater in Lake Mertzbakher
under global climate change. Innovatively, it leverages the GEE
cloud computing platform to efficiently analyze the lake’s area
changes from 2000 to 2021 using extensive Landsat data (Landsat
5 TM, Landsat 7 ETM+ and Landsat 8 OLI Collection 1 Tier
1 surface reflectance data). This approach is particularly novel as
satellite data is crucial for studying remote glacier lakes, which have
been largely overlooked in previous research due to their
inaccessibility and lack of observational data. Additionally, the
study offers a comprehensive analysis of the impact of
temperature changes on the lake, laying a groundwork for future
predictions of glacier lake floods and contributing to effective
disaster prevention strategies. Despite some limitations due to
weather-related data accuracy issues, this research marks a
significant step forward in predicting and managing the effects of
climate change on glacier lake floods.

2 Materials and methods

2.1 Study area

The Lake Mertzbakher is situated in Kyrgyzstan, specifically
at the upper reaches of the Kunmalike River. This river is a
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tributary of the Aksu River. The lake is located at the confluence
point of the north and south branches of the Inilchek Glacier,
precisely at coordinates 42°13′N, 79°52′E. The lake is positioned
at an elevation of approximately 3300 m (as shown in Figure 1).
Since 1998, the Lake Mertzbakher has existed as two separate
lakes. The first one is known as the “lower lake,” which is formed
by the South Inilchek Glacier creating a dammed lake. The
second one is called the “upper lake” and is linked to the
terminus of the North Inilchek Glacier. A narrow waterway
connects the upper and lower lakes. Additionally, there are small
lakes scattered sporadically between these two main lakes. The
upstream lake consistently remains filled with water throughout
the year, maintaining a stable area. On the other hand, the
downstream lake only contains water during the water storage
period. After outbursts, it often becomes empty, resulting in
significant inter-annual changes. This fluctuation in water levels
has a more substantial impact on the lower reaches of the river.
Consequently, the primary focus of this study is the downstream
lake for lake area extraction and analysis purposes.

2.2 Data

2.2.1 Landsat remote sensing data
This study utilized all available surface reflectance data from

Landsat 5 TM, Landsat 7 ETM+, and Landsat 8 OLI Collection
1 Tier 1 sensors, covering the study area from 2000 to 2021. The data
was obtained from the United States Geological Survey (USGS). To
ensure accuracy, all Landsat data underwent geometric and

atmospheric calibration and cross-calibration between different
sensors. To access and process the Landsat data, we utilized the
GEE remote sensing cloud computing platform, which includes
Landsat data in its data archives. Initially, for each Landsat 5 TM,
Landsat 7 ETM+, and Landsat 8 OLI image within the study area, we
employed the quality control layer provided by the GEE platform to
identify and filter out invalid observations. Additionally, we detected
and removed terrain shadows using the solar zenith angle
information contained in the images and the SRTM digital
elevation model (DEM). Following the filtering steps mentioned
above, the remaining Landsat image elements represented valid
observations suitable for monitoring changes in surface water
bodies. To synthesize valid observation data on a monthly time
scale, we used the median synthesis method through the GEE cloud
platform. This process involved calculating various remote sensing
spectral indexes (such as mNDWI and EVI) and generating long-
term series remote sensing spectral index datasets. Statistical
analyses revealed that, on average, more than 99.9% of pixels
contained good-quality Landsat observations.

2.2.2 Climatic data
The climatic data used in this study was sourced from ERA5-

land, which is a reanalysis dataset produced through the ECMWF
ERA5 reanalysis model. The spatial resolution of the data is 0.1° ×
0.1°, equivalent to approximately a 9 km × 9 km grid. This dataset
accurately represents the climatic conditions of Lake Mertzbakher.
Monthly meteorological factors selected for analysis include
maximum temperature, mean temperature, minimum
temperature, radiation, and precipitation.

FIGURE 1
Geographical location map of lake Mertzbakher.
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2.3 Methodology

2.3.1 Remote sensing extraction of surface water
This study employed the relationship between water body

indexes and vegetation indexes for the extraction of surface water
bodies. Building on previous researches (Wei et al., 2020; Zou et al.,
2017; Hong et al., 2019; Gu et al. 2023) that analyzed changes in
surface water bodies, we utilized a time series of Landsat data and a
water index and threshold algorithm. The water body and vegetation
indexes utilized in this study include the modified Normal
Difference Water Index (mNDWI) (Wei et al., 2020), the
Enhanced Vegetation Index (EVI), and the Normal Difference
Water Index (NDVI). Cloud-free and snow-free Landsat TM,
ETM+, and OLI surface reflectance data were used to calculate
these indexes using Eqs 1–3 as follows:

mNDWI � ρGreen − ρSWIRI

ρGreen + ρSWIRI

(1)

NDVI � ρNR − ρRed
ρNUR + ρRed

(2)

EVI � 2.5 ×
ρNIR − ρRed

1.0 + ρNR + 6.0ρRed + 7.5ρBlue
(3)

Where “ρ,” “Blue,” “ρ”, “Green,” “ρ”, “Red,” “ρ,” “NIR,” “ρ,” and
“SWIR1” represent the surface reflectance values in the blue light
band (0.45–0.52 μm), green light band (0.52–0.60 μm), red light
band (0.63–0.69 μm), near-infrared band (0.77–0.90 μm), and
short-wave infrared band (1.55–1.75 μm) respectively. The
mNDWI > EVI or mNDWI > NDVI condition was utilized to
identify image elements with a stronger water signal than the
vegetation signal. Additionally, EVI<0.1 was used to remove

vegetation or mixtures of vegetation and water bodies. Therefore,
image elements satisfying the logical relations [(mNDWI > EVI or
mNDWI > NDVI) and (EVI<0.1)] were classified as water bodies,
while the remaining elements were classified as non-water bodies.
Figure 2 illustrates an example of water body extraction using this
method, as reported in previous studies (McFeeters, 1996; Chen
et al., 2017; Zou et al., 2017; Zou et al., 2018).

2.3.2 Meteorology for lake area changes
Attribution studies encompass climate change attribution,

impact attribution, and identification of weather sensitivity.
Previous reports demonstrate that climate change has had a
widespread and profound impact on global terrestrial and marine
ecosystems (Ray et al., 2015; Hope et al., 2016; Huggel et al., 2016; Su
et al., 2022a). In this study, we investigated the relationship between
monthly glacier lake area and meteorological factors in Lake
Mertzbakher from 2000 to 2021, aiming to determine the
attribution of climate change to the lake’s area. Drawing on
previous researches (Yang et al., 2006; Du et al., 2007; Farsi and
Mahjouri, 2019; Sun et al., 2019; Su et al., 2022b; Shi et al., 2023;
Zhang et al., 2023), five meteorological factors were selected:
maximum temperature, mean temperature, minimum
temperature, radiation, and precipitation. Due to the limitation of
the available Landsat observations, it was not feasible to generate
monthly maps of Lake Mertzbakher for all the years from 2000 to
2021. Year 2000, 2005, 2010, 2015, and 2021 were chosen as the
typical years.

The focal techniques employed in this study include linear
regression, partial regression analysis, and a structural equation
model (SEM). SEM is a system of simultaneous equations

FIGURE 2
Remote sensing images and water body extraction data of the Lake Mertzbakher (June 2021).
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comprising two or more structural equations that represent the
interrelationships between variables. The origins of modern SEM
can be traced back to Wright’s work on path analysis (Wright, 1918;
Wright, 1920; Wright, 1921). By obtaining path coefficients through
path analysis, researchers can deconstruct various relationships
within the system and uncover the underlying mechanisms
driving these relationships. SEM enables exploration of the direct
and indirect effects of different factors on the same process, as well as
determination of the relative importance of these factors. It is a
statistical method that analyzes the relationship between variables
based on the covariance matrix of variables. SEM extends general
linear models, incorporates factor models and structural models,
representing the perfect fusion of traditional path analysis and factor
analysis (Muthen, 1984; Sanchez et al., 2005; Wang and Chu, 2011).
Modern SEM encompasses regression, factor analysis, statistical
modeling, model evaluation, and related software (Chen et al.,
2004; Xin et al., 2021; Luo, 2022; Chen et al., 2023; Yuan et al.,
2023). Figure 3 shows the whole methodology in this study.

3 Results

3.1 Glacier lake area

The results of glacier lake area extraction at 60 time points
across 12 months for the years 2000, 2005, 2010, 2015, and
2021 are presented in Figure 4. Except for 2021, the area of

Lake Mertzbakher consistently peaked in July and then
experienced a sharp decline, indicating glacier lake outbursts
and rapid downstream water flow. The minimum area was
observed in September for the years 2000, 2005, 2010, and
2021, and in August for the year 2015. Additionally, the area
exhibited a secondary small peak in September and October for
these 4 years, signifying small-scale outbursts. Except for 2021,
the annual changes were consistent across the remaining 4 years.

In terms of the glacier lake area in July, the maximum value
was 2.70754 km2 in 2000, while the minimum value was
2.4406 km2 in 2015. The area data for 2021 exhibited three
patterns. Firstly, the area throughout the year was relatively
small, with the maximum value occurring in June (1.5135 km2)
and the minimum value in September (0.63327 km2). Secondly,
the month with the maximum value was 1 month earlier
compared to other years. Lastly, the area change was gradual,
particularly with minimal difference between June and July,
indicating a lower volume of outburst water and the absence of
a secondary small peak. We chose year 2005 to show the changes
in 12 months as shown in Figure 5. The typical process for the year
is that, water level increased slowly from January to May due to
the warmer weather, and then increased sharply fromMay to June
with high temperature and some precipitation. The glacier lake
collapsed in August and had the smallest amount of water in
September. After the outburst, glacier lake began to store more
water again. For some of the years, like 2005, there could be a
second but smaller outburst after September.

FIGURE 3
Flowchart depicting the methodology employed in this study.
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3.2 Relationship between meteorological
factors and lake area

3.2.1 Linear regression analysis
The findings of the linear regression analysis are presented in

Figure 6. The results indicated a positive regression between the area
of Lake Mertzbakher and the meteorological factors, although none
of them reached a significant level. The minimum explanatory
degree for the relationship between the meteorological factors
and the glacierlake area change was observed for the maximum
temperature (16.6%), whereas the maximum explanatory degree was
observed for precipitation (26.4%).

3.2.2 Partial regression analysis
The results of the partial regression analysis, as shown in Table 1,

indicate that after controlling for other meteorological factors, there
was a negative correlation between the area of LakeMertzbakher and
the mean temperature. The order of meteorological factors
influencing the lake area from high to low were the minimum
temperature (0.245), mean temperature (−0.239), precipitation
(0.228), radiation (0.154), and maximum temperature (0.128).
Considering the limited sample data, a significance level of
0.1 was used in this study, indicating a significant correlation
between the glacier lake area and the meteorological factors.

3.2.3 Structural equation model
To further investigate the driving factors and influence pathways

of the area change in Lake Mertzbakher under the interactions of
meteorological factors, we constructed a structural equation model
(SEM). In Figure 7, the p-value of the path analysis model was 0.323,
indicating that the model fit was acceptable. The results of the path
analysis were consistent with those of the partial regression analysis,
suggesting a negative contribution of mean temperature to the area
change of LakeMertzbakher and positive contributions of minimum
temperature, radiation, and precipitation to the area change. The
overall explanatory power of the model for the area change in Lake
Mertzbakher was 31%. The order of factors influencing the lake area

from highest to lowest was mean temperature (−3.32), minimum
temperature (2.87), radiation (0.48), and precipitation (0.47). These
findings indicate that the mean temperature has the strongest
negative impact on the area change of Lake Mertzbakher,
followed by the minimum temperature, radiation, and precipitation.

Overall, the structural equation model provides insights into the
driving factors and relationships among meteorological factors in
influencing the area change of Lake Mertzbakher. It demonstrates
the significant role of temperature, radiation, and precipitation in
shaping the variations in lake area.

4 Discussion

4.1 Glacier Lake area dynamics

Lake Mertzbakher typically undergoes thawing from March to
May annually, reaching peak storage in May and June. Consistent
with previous findings, outbursts generally occur in the “lower lake”
during late July and early August, aligning with the maximum lake
area observed in our study in July (Zhou et al., 2019; Zhou et al.,
2022). However, 2021 deviated from this pattern, exhibiting a
significantly smaller area with the peak in June, likely due to
extreme weather conditions. In 2021, many regions, including
China with its highest recorded average surface temperature since
1901 (0.97°C above normal), and Kyrgyzstan, experienced unusual
climatic conditions, adversely affecting crop production and
potentially contributing to the observed decrease in glacier lake
area and reduced outburst intensity (Apaer, 2014; Yu et al., 2021).

4.2 Attribution analysis of glacier lake area

Our linear regression analysis indicated a modest explanatory
power (31%) for the area change of Lake Mertzbakher. This limited
efficacy could stem from the complex interplay among various
influencing factors, which linear regression may not fully capture.

FIGURE 4
Glacier area extraction results of the Lake Mertzbakher.
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Further research suggests the timing of glacier lake outbursts, closely
linked to mean temperature, significantly impacts area changes.
Temperature increases, as shown in other studies, can escalate
glacier meltwater, expand glacier lake areas and affect dam
stability (Rouse et al., 1974; Jiang et al., 2014; Xin et al., 2019; Li
et al., 2020b; Liu et al., 2020; Niu et al., 2022; Wang et al., 2022;
Huang Z. et al., 2023). Despite a low regression coefficient, mean
temperature remains a pivotal factor in Lake Mertzbakher’s area
changes, underscoring the need for more intricate analyses to
unravel the multifaceted impacts of mean temperature on
the lake area.

4.3 Enlightenment for flood control and
disaster reduction

To mitigate flood risks in Aksu and surrounding regions and
safeguard economic and social stability, several strategies are
proposed. Enhancing international collaboration for monitoring
glacier lakes in Kyrgyzstan’s upper reaches and integrating efforts

with Aksu’s water conservancy projects can significantly reduce
flood damages. Accelerating the development and utilization of
water resources in the Aksu River Basin, coupled with
comprehensive basin-wide project planning, can strike a balance
between disaster prevention and water resource utilization. Further
investigation into glacier lake outburst flood mechanisms is crucial
for improving flood warning and forecasting systems, thereby
bolstering flood control, disaster reduction, and socio-economic
progress in Xinjiang.

4.4 Limitations and prospects

This study faces limitations, notably the reliance on mean
monthly area data due to weather constraints, potentially
introducing analytical errors and impacting regression results.
Future research should prioritize acquiring high-quality,
frequent imagery data for more precise analyses. Additionally,
employing machine learning and deep learning techniques for
water body extraction could enhance natural disaster monitoring

FIGURE 5
Glacier lake area change in 2005.
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FIGURE 6
Linear regression results between the area of Lake Mertzbakher and the meteorological factors (A) glacier lake area and maximum temperature (B)
glacier lake area and mean temperature (C) glacier lake area and minimum temperature (D) glacier lake area and radiation (E) glacier lake area and
precipitation.

TABLE 1 Partial regression coefficients between the area of the Lake Mertzbakher and the meteorological factors.

Area of the
glacier lake

The maximum
temperature

Mean
temperature

The minimum
temperature

Radiation Precipitation

The glacier lake
area

1

The maximum
temperature

0.128217 1

Mean temperature −0.23867 (*) 0.82746 (*) 1

The minimum
temperature

0.244501 (*) −0.57624 (*) 0.923076 (*) 1

Radiation 0.154489 −0.10306 0.29408 (*) −0.21309 1

Precipitation 0.227726 (*) −0.00184 −0.11981 0.233782 (*) 0.265354 (*) 1

Note: * stands for the significance level of 0.1.
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and warning, particularly for glacier lake outburst floods,
improving accuracy and efficacy in disaster prevention efforts
(Guo et al., 2021).

5 Conclusion

In addressing the critical challenge of deciphering the changing
dynamics of glacier meltwater in Lake Mertzbakher, particularly
under the escalating influence of climate change, this study has
made significant strides. Utilizing the advanced capabilities of the
GEE platform, we conducted a comprehensive analysis of the lake’s
surface water body, tracking its area changes at numerous time
points. This innovative approach not only enabled a more precise
and frequent assessment compared to previous methods but also
facilitated a detailed exploration of the correlation between lake
area and various meteorological factors. Our findings reveal a
pronounced outburst in Lake Mertzbakher occurring in July,
culminating in a notable decrease in the lake’s area by
September. The study meticulously quantifies the impact of
meteorological factors on the lake area, identifying minimum
temperature as having the most substantial influence, followed
by mean temperature, precipitation, radiation, and maximum
temperature. This nuanced understanding of the relationship
between these factors and the lake area is a testament to the
study’s methodological rigor and analytical depth. The
significance of this research extends beyond the academic

realm, offering crucial insights for the prediction and
management of glacier lake floods. By establishing a clear
connection between climate change-related factors and glacier
lake dynamics, the study makes a substantial contribution to
the field of disaster prevention and preparedness. In an era of
increasing climate variability, these findings are invaluable for
developing effective strategies to mitigate the impacts of climate
change on vulnerable glacier lakes like Mertzbakher (Sun et al.,
2013; Li et al., 2022; Huang S. et al., 2023).
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