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Effective calibration of miniature air quality monitor measurements is an important
task to ensure accuratemeasurements and guarantee sustainable air quality. The aim
of this study is to calibrate the measurement data of miniature air quality monitors
using Stepwise Regression Analysis and Support Vector Regression (SRA-SVR)
combined model. Firstly, a stepwise regression analysis model is used to find a
linear relationship between themeasured data from theminiature air qualitymonitor
and the air pollutant concentration. Secondly, support vector regression is used to
extract the non-linear relationships which affect the pollutant concentrations hidden
in the residuals of the stepwise regression analysis model. Finally, the residual
calibration values of the SVR model outputs are added to the SRA model outputs
to obtain the final outputs of the SRA-SVR combinedmodel for the pollutants. Mean
absolute error, relative mean absolute percent error and root mean square error are
used to compare the effectiveness of the SRA-SVR combinedmodel and someother
commonly used statisticalmodels for the calibrationofminiature air qualitymonitors.
The results show that the SRA-SVR combination model performs optimally on both
the training and test sets, regardless ofwhich pollutant andwhich indicator. The SRA-
SVR combined model not only has the advantages of the SRA model’s strong
interpretability and the SVR model’s high accuracy, but also has higher accuracy
than the single model. By using this model to calibrate the measurements of the
miniature air quality monitor, its accuracy can be improved by 61.33%–87.43%.
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1 Introduction

1.1 Air pollutants and monitoring

Air pollution is one of the serious problems facing the world today. The acceleration of
industrial development, transportation, energy use and urbanization has led to the emission
of large quantities of exhaust gases and harmful substances into the atmosphere, posing a
great threat to human health and the environment. Many studies have shown that long-
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term inhalation of harmful substances in the air can lead to
respiratory diseases, cardiovascular diseases, cancer and so on
(Poloniecki et al., 1997; Akimoto, 2004; Brauer et al., 2012).
Therefore, the need to pay attention to air pollution has become
more and more prominent.

The main pollutants in the air mainly include PM2.5, PM10, CO,
NO2, SO2, O3, and they are often referred to as the two aerosols and
four gases. Atmospheric monitoring stations are often used by many
large cities to realize the monitoring of these pollutants. These
atmospheric monitoring stations are called reference sensor
stations in this study. The advantage of reference sensor stations
is that the monitoring data of air pollutant concentrations are more
accurate (Luo et al., 2022). However, the high cost of constructing
and maintaining a reference sensor station makes it difficult to
achieve grid-based deployment. In addition, the data release of the
reference sensor station is characterized by a lag, so it is also difficult
for it to achieve real-time monitoring of an area.

The emergence and development of miniature air quality
monitors has facilitated the monitoring of air pollutant
concentrations. It collects gas samples from the surrounding
environment through an air inlet and then transmits the
collected gas samples to the sensing area of an electrochemical
sensor. The gas samples come into contact with the working
electrodes in the electrochemical sensors, triggering an
electrochemical reaction. The electrical signals generated by the
electrochemical reaction will be recorded by the sensors and
converted into measurable signal outputs, and the final data
monitoring results will be obtained. The advantages of miniature
air quality monitors are that they are easy to install, less costly, and
can be deployed on a large scale in key areas to enable grid-based
monitoring of the area. In addition, they are easy to read and can
enable real-time monitoring of the concentration of air pollutants
(Masson et al., 2015; Spinelle et al., 2015). Someminiature air quality
monitors can not only monitor the concentration of two aerosols
and four gases, but also realize the monitoring of some
meteorological parameters such as wind speed, pressure,
precipitation, temperature and humidity. The locations where the
miniature air quality monitors are deployed are referred to as
miniature sensor stations in this study.

However, the electrochemical sensors of the miniature air
quality monitors are susceptible to cross-talk from external
factors such as weather factors and changes in the concentration
of other non-conventional gaseous pollutants. In addition, the
electrochemical sensors are susceptible to zero drift and range
drift after prolonged use, which can lead to errors in the
measurement data of the miniature air quality monitor (Castell
et al., 2017; Liu et al., 2021a). Therefore, calibration of miniature
sensor measurements can promote the development and
popularization of miniature air quality monitors and guarantee
the sustainable development of air quality.

1.2 Pollutant concentration
forecasting models

Pollutant concentration forecasting models can be effectively
implemented to calibrate the measurement data of miniature air
quality monitors. Common pollutant concentration prediction

models include mechanistic and statistical models. Mechanistic
models are the use of mathematical methods combined with
meteorological principles to realize the simulation of physico-
chemical processes of pollutants. They typically use physical and
chemical equations to describe the generation and disappearance of
pollutants, taking into account chemical reactions between
pollutants, radiation, turbulent diffusion, etc., in order to predict
pollutant concentrations in the atmosphere and air quality (Tagaris
et al., 2007; Azid et al., 2018). Mechanistic models have some
chemical and physical theoretical basis and can provide an in-
depth understanding of air quality. However, the establishment
of mechanistic models requires rich knowledge in the field of
atmospheric chemistry and meteorology. In addition, the
formation and propagation processes of pollutants are very
complex, resulting in high complexity of mechanistic models and
insufficient prediction accuracy.

Statistical models are primarily based on historical observations
and statistical methods to predict air quality by analyzing and
establishing statistical relationships. Traditional statistical models
have been modeled using techniques such as regression analysis
(Ayers, 2001; Tai et al., 2010; Suriano et al., 2020), grey prediction
(Dun et al., 2020; Wu et al., 2022), hiddenMarkov chain (Oettl et al.,
2003; Sun et al., 2013) and time series analysis (Jian et al., 2012;
Zhang et al., 2018; Koo et al., 2019) to achieve predictions of
pollutant concentrations. Abdullah et al. used air pollution data
from Malaysia from 2005 to 2014 to establish and compare three
stepwise multiple linear regression models using three different
prediction times, and successfully completed the prediction of
local PM10 concentration (Abdullah et al., 2020).

With the continuous development of computer technology, the
application of neural networks and machine learning in pollutant
concentration forecasting has become more extensive and precise.
Neural networks can learn and understand the complex relationship
between different pollution factors through multi-level data
processing and pattern recognition (Reich et al., 1999;
Elangasinghe et al., 2014; Wang et al., 2019). By training neural
network models, the air quality index can be predicted for a future
period of time based on factors such as weather, geographic location,
and pollution sources. In addition to neural networks, machine
learning algorithms are widely used to forecast pollutant
concentrations. For example, algorithms such as random forests
(Yu et al., 2016; Kaminska, 2018; Ding et al., 2020), Support Vector
Regression (SVR) (Deo et al., 2016; Liu et al., 2021b) and deep
learning (Liu et al., 2021c) can be modeled to predict future air
quality conditions by analyzing historical data. Liu et al. realized the
prediction of pollutant concentrations in Nanjing using a
MultiLayer Perceptron neural network (MLP). By comparing
with other commonly used models, it is shown that the model
has high prediction accuracy (Liu et al., 2021d). Based on the
multidimensional air quality information and meteorological
conditions of Beijing, Tianjin and Shijiazhuang, support vector
regression was used by Liu et al. to develop a new collaborative
prediction model for predicting the air quality index of Chinese
cities. The results show that the Mean Absolute Percentage Error
(MAPE) of the multi-city multidimensional regression decreases
when there is a strong interaction and correlation between the air
quality characteristic attributes and the air quality index
(Liu et al., 2017).
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Traditional statistical models are highly interpretable but tend to
be low in accuracy, in addition to having significant limitations in
dealing with complex nonlinear relationships between variables.
Interpretability of neural networks and machine learning models is
still a research area that needs further exploration and improvement.
The aim of this paper is to develop a combined model of Stepwise
Regression Analysis (SRA) and support vector regression, which we
name SRA-SVR combined model. The combined model has both
strong interpretability and high accuracy. Figure 1 shows the
construction process of the SRA-SVR combined model. The
model can not only be used to calibrate the measurement data of
the miniature air quality monitor, but also provide a referenceable
research idea and method for air quality forecasting.

2 Materials and methods

2.1 Data source and preprocessing

The development of miniature air quality monitors has
facilitated real-time and grid-based monitoring of air pollutant
concentrations. However, its measurement accuracy needs to be
improved for various reasons (Masson et al., 2015; Castell et al.,
2017). In order to ensure the accuracy of the measurement data of
the miniature air quality monitor, we chose Nanjing as the study
region for calibration. Nanjing is located in the subtropical monsoon
climate zone, which is characterized by hot and humid summers

with high precipitation, and relatively cold winters with low
precipitation. Due to the basin-like topography, surrounded by
mountains on three sides and water on one side, the atmospheric
diffusion conditions are relatively poor. Under such natural
conditions, various kinds of air pollution are interrelated and
interact with each other, forming the composite characteristics of
heavy air pollution in the region. In addition, heavy air pollution in
Nanjing also shows continuous pollution characteristics, and there
are differences in seasonal distribution.

We collected two sets of measurement data in Nanjing for
statistical modeling to enable calibration of the measurement
data of the miniature air quality monitor. The first set of data
came from the reference sensor station, which recorded the
concentrations of two aerosols and four gases from 14 November
2018 to 11 June 2019 in the area. The reference sensor measurement
data had a total of 4,200 samples, it had a storage interval of 1 h, and
it provided measurements that were recognized as reference values
in this study. The second set of data was derived from a miniature
sensor station that was placed in juxtaposition with the reference
sensor station. It contained a total of 234,717 samples and had a
storage interval of no more than 5 min. The miniature sensor station
not only recorded the concentrations of the two aerosols and four
gases, but also provided five meteorological parameters.

The outliers, missing values and duplicates in the sample set
were processed first. A screening of the data revealed that there were
no missing values or obvious outliers in the sample set (Liu et al.,
2021a). For multiple measurements that occur at the same moment

FIGURE 1
The flow chart of the regression process, where RSS represents the pollutant concentration measured at the Reference Sensor Station and MSS
represents the pollutant concentration measured at the Miniature Sensor Station.
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in the sample set, we used averaging to process them. The next step is
to realize the correspondence between the data from the reference
sensor station and the miniature sensor station. Measurements from
the miniature sensor station were averaged on an hourly basis to
achieve correspondence with the data from the reference sensor
station. For the samples in both datasets where correspondence
could not be realized, we removed them. After data preprocessing, a
total of 4,144 sets of corresponding data were retained for building
the miniature sensor calibration model, as shown in Table 1.

Standard deviation is a quantity used in statistics to measure the
dispersion of a set of data. It can be seen that among the six types of
pollutants and five meteorological parameters, Precipitation has the
largest standard deviation of 86.92, indicating that the Precipitation
data are the most dispersed, and wind speed has the smallest
standard deviation of 0.347, indicating that the wind speed data
are the most concentrated. Skewness is a quantity used in statistics to
describe the extent to which the distribution pattern of a set of data
deviates from a symmetric distribution. It can be seen that all of the
variables except Humidity and Pressure are positively skewed,
indicating that most of the data in these variables are
concentrated on the left side of the distribution and that there
are some outliers on the right side that pull up the mean and make it
larger than the median. Kurtosis is a statistic that describes the
degree to which the shape of a probability distribution is sharp or
flat. The kurtosis of SO2, CO, and PM10 are greater than 3, indicating
that their data distributions are more sharp than normal, and the
kurtosis of the rest of the variables are near zero, indicating that the
data distributions of these variables are close to normal. Coefficient
of Variation is a statistic used to measure the volatility or variability
of data. It is the ratio between the standard deviation and the mean
of the data. Compared with the standard deviation, the coefficient of
variation eliminates the effect of the data scale and reflects the degree
of dispersion of the data more objectively. Pressure has the lowest
coefficient of variation of 0.009, indicating the least relative
dispersion of the data, and SO2 has the highest coefficient of
variation of 0.995, indicating the greatest relative dispersion
of the data.

2.2 Data exploratory analysis

Exploratory analysis is the first step in data analysis and aims to
understand the characteristics, trends and relationships of the data
(Liu et al., 2014; Xu et al., 2023). Since the six pollutants are studied
in the same way, we randomly select PM2.5 for the study and the
process for the rest of the pollutants can be given similarly. Figure 2
is a line graph of measurements and errors over time for the
reference sensor station and the mini-sensor station. It can be
seen that the trends of the two measurements are more or less
the same, indicating that the miniature air quality monitor has a
good performance in measuring PM2.5 concentration. In addition,
the error plot shows that the error of the measurement value of the
miniature air quality monitor is negative for more than 85% of the
samples. This indicates that the miniature air quality monitor is
measuring a large concentration of PM2.5 in general, and it needs to
be calibrated to obtain better measurement accuracy.

The measurement errors of miniature air quality monitors are
susceptible to many external factors such as meteorological
parameters and other non-conventional gaseous pollutant
concentrations, and these external factors vary significantly from
month to month. We categorize and summarize the measurement
values of the reference sensor station and the miniature sensor
station by month, and plot them into box plots for comparative
analysis (Wang and Lu, 2006; Liu et al., 2021b). It can be seen from
Figure 3 that the concentrations of PM2.5 are obviously different
from month to month. The reference sensor station has the highest
median measurement value of 72 μg/m3 in November, while the
miniature sensor station also has the highest median measurement
value of 94.61 μg/m3 in November. Due to the gradual decrease in
temperature, high humidity, and low wind in the region in
November, this meteorological condition makes it easier for
airborne particles to accumulate and remain in the air, resulting
in higher PM2.5 concentrations. The reference sensor station has the
lowest median measurement value of 35 μg/m3 in May, while the
miniature sensor station also has the lowest median measurement
value of 36.47 μg/m3 in May. The region experienced lower

TABLE 1 Descriptive statistics of pollutant concentrations and meteorological parameters measured by reference sensor station and miniature sensor
station after pretreatment.

Input variable Ranges Mean Standard deviation Skewness Kurtosis Coefficient of variation

PM2.5/(μg/m
3) 1–217.7 64.19 37.33 0.981 0.681 0.582

PM10/(μg/m
3) 2–985 102.8 66.71 1.92 9.7 0.649

CO/(mg/m3) 0.05–3.9 0.863 0.453 1.47 3.17 0.525

NO2/(μg/m
3) 2.02–157.8 45.22 28.39 0.645 −0.279 0.628

SO2/(μg/m
3) 1–834 19.45 19.36 16.31 561.7 0.995

O3/(μg/m
3) 1–259 61.52 40.92 1.09 2.04 0.665

Wind speed/(m/s) 0.133–2.61 0.7 0.347 0.881 0.874 0.495

Pressure/(Pa) 997.2–1,039.9 1,018.8 8.88 −0.092 −0.598 0.009

Precipitation/(mm/m2) 0–312.1 132.1 86.92 0.244 −0.726 0.658

Temperature/(oC) −3.58–37.92 11.88 8.59 0.626 −0.39 0.723

Humidity/(rh%) 10.77–100 68.91 21.93 −0.488 −0.755 0.318
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humidity, higher temperatures, and sunny weather in May, which
facilitated the dispersion and dilution of particulate matter, resulting
in lower PM2.5 concentrations. In addition, the monthly average of
the reference sensor station and the miniature sensor station have
the largest error of −24.43 μg/m3 in January and the smallest error
of −1.77 μg/m3 in May. The measurement errors are larger in the
autumn and winter seasons and smaller in the spring and summer
seasons, indicating that the measurement errors of the miniature air
quality monitor have a certain relationship with the seasons and
meteorological conditions.

Pearson correlation coefficient is employed by us to
quantitatively portray the correlation between air pollutant
concentrations and meteorological parameters (Resquin
et al., 2021; Yang and Zhao, 2023). Equation 1 is its
expression, where xi and yi represent the measured values of
the i-th sample of the two variables. As can be seen from Table 2,
the correlation coefficients between the 11 variables passed the
significance test at the significant level of α � 0.05, except for the
correlation coefficients between NO2 and temperature. This
means that based on the observed data samples, at a 95%
confidence level, we can infer that the correlation between
the variables, except for NO2 and temperature, is not due to
random factors. The correlation coefficient between PM2.5 and
PM10 is the highest at 0.81 and they are highly positively
correlated, while the correlation coefficient between Pressure
and Temperature is the lowest at −0.85 and they are highly

negatively correlated. These findings suggest that the
concentrations of the six pollutants are not only influenced
by meteorological parameters, but they also interact with each
other themselves.

A matrix color block diagram is a graphical form that visually
displays data in different colors or areas based on their value size. In
Figure 4, which is a matrix color block diagram of the variables, the
larger the area of the circle, the stronger the correlation between the
variables, and the smaller the area of the circle, the weaker the
correlation between the variables. Darker colours of the circular
blocks indicate negative correlation and lighter colours indicate
positive correlation, and the correlation coefficient gradually
increases as the colour of the block becomes lighter.

r � ∑n
i�1 xi − �x( ) yi − �y( )�����������∑n

i�1 xi − �x( )2
√

·
�����������∑n

i�1 yi − �y( )2√ (1)

2.3 Principles of sensor calibration model

Stepwise regression is an analytical method that introduces (or
removes) variables into (or from) a regression equation one by one,
according to the significance of the effect of the explanatory variables
on the explained variables. In the case of multivariate screening of
important variables, the use of stepwise regression analysis is a better

FIGURE 2
(A) Comparison of PM2.5 concentration measurements between the reference sensor station and the miniature sensor station; (B) Errors between
the PM2.5 concentration measurements of the reference sensor station and the miniature sensor station. Figures are generated using Matlab (Version
R2021b, https://www.mathworks.com/) [Software].
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way of avoiding multicollinearity between explanatory variables and
eliminates the need for a heavy variable screening process (Duan
et al., 2022).

Equations 2, 3 are the linear overall regression model
containing k explanatory variables and the sample
regression model under ordinary least squares. TSS � ∑n

i�1
(yi − �y)2,

FIGURE 3
(A) Comparison of PM2.5 concentration measurements between the Reference Sensor Station (RSS) and the Miniature Sensor Station (MSS) on a
monthly basis; (B) Comparison of errors for PM2.5 concentration measurements between the RSS and the MSS on a monthly basis.

TABLE 2 Pearson linear correlation coefficient between the concentrations of six types of air pollutants measured at reference sensor station and five
meteorological parameters measured at miniature sensor station (Band * indicates significant correlation at a significant level of 0.05).

Variable PM2.5 PM10 CO NO2 SO2 O3 Wind
speed

Pressure Precipitation Temperature Humidity

PM2.5 1.00 0.81* 0.66* 0.26* 0.29* −0.26* −0.24* 0.09* −0.07* −0.17* 0.18*

PM10 1.00 0.57* 0.31* 0.32* −0.17* −0.18* 0.04* −0.09* −0.04* −0.08*

CO 1.00 0.30* 0.32* −0.27* −0.32* −0.08* 0.08* −0.06* 0.22*

NO2 1.00 −0.34* −0.25* −0.35* −0.11* −0.14* −0.01 −0.11*

SO2 1.00 −0.29* −0.19* 0.19* 0.27* −0.10* 0.11*

O3 1.00 0.40* −0.44* −0.12* 0.68* −0.61*

Wind speed 1.00 0.10* 0.07* 0.06* −0.32*

Pressure 1.00 0.24* −0.85* 0.15*

Precipitation 1.00 −0.14* 0.08*

Temperature 1.00 −0.49*

Humidity 1.00

Frontiers in Environmental Science frontiersin.org06

Wang 10.3389/fenvs.2024.1348794

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1348794


ESS � ∑n
i�1
(ŷi − �y)2, RSS � ∑n

i�1
(yi − ŷi)2 is the expression for the Total

Sum of Squares (TSS), Error Sum of Squares (ESS) and Regression
Sum of Squares (RSS), where ŷi � yi − μ̂i is the fitted value of the
sample, �y is the mean value of the sample and n is the sample size.
Equation 4 is the sample regression model without xk. Let the
error sum of squares of Eq. 4 be ESS* and the regression sum of
squares be RSS*, then the partial error sum of squares of xk is
ESSPk � ESS − ESS*. Similarly the partial regression sum of
squares of the explanatory variables can be defined
as RSSPk � RSS − RSS*.

yi � β0 + β1x1i + β2x2i +/ + βkxki + μi (2)
ŷi � β̂0 + β̂1x1i + β̂2x2i +/ + β̂kxki + μ̂i (3)

ŷi � β̂0 + β̂1x1i + β̂2x2i +/ + β̂k−1x k−1( )i + μ̂i (4)

F � ESSPk

RSS/ n − k − 1( ) �
ESS − ESS*

RSS/ n − k − 1( ) ~ F 1, n − k − 1( ) (5)

The stepwise regression method introduces (excludes) the
independent variables with the criterion of maximum
(minimum) partial regression sum of squares. In the introduction
(exclusion) step, assuming that the model already contains k − 1 (k)
all significant explanatory variables, after the introduction of the
k-th (exclusion of one) explanatory variable, the original model and
the sample model after the introduction (exclusion) of the variables
can be expressed as Eqs 2, 3. The F-test is used to determine whether
the explanatory variables should be introduced into the regression
model. Equatio. 5 is the F-statistic obtained from the partial
regression sum of squares of xk.

f x( ) � ωΦ x( ) + b (6)

FIGURE 4
Pearson correlation coefficient matrix color block diagram between the concentration of two aerosols and four gases and climate factors.
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min
1
2
ω‖ ‖2 + C

l
∑l
i�1

ξ i + ξ*i( ) (7)

s.t.
yi − ωΦ x( ) − b≤ ε + ξi
ωΦ x( ) + b − yi ≤ ε + ξ*i
ξ i ≥ 0, ξ

*
i ≥ 0, i � 1, 2,/, l

⎧⎪⎨⎪⎩ (8)

Support vector regression is based on the support vector
machine model. It is an algorithm that achieves the optimal
generalization ability of the model with less information about
the samples, and introduces a kernel function to find high-
dimensional hypersurfaces to achieve the optimal solution
(Vergara et al., 2013). Unlike traditional regression models,
support vector regression assumes the construction of an
interval band with a width of 2ε. It is centre on f(x), and if
the sample points fall into the interval band, it shows that the
values are reasonable.

max ai, a
*
i( ) � 1

2
∑l
i,j�1

ai − a*i( ) aj − a*j( ) × Φ xi( )Φ xj( )
−∑l

i�1
ai ε − yi( ) −∑l

i�1
a*i ε + yi( )K xi, xj( ) � Φ xi( )Φ xj( ) (9)

s.t.
∑l
i�1

ai − a*i( ) � 0

0≤ ai, a*i ≤C, i � 1, 2,/, l

⎧⎪⎪⎨⎪⎪⎩ (10)

f x( ) � ∑l
i�1

ai − a*i( )K xi, xj( ) + b (11)

Suppose the training set X � {(x1, y1), (x2, y2),/(xi, yi)},
where xi ∈ Rn, yi ∈ R, and the function f(x) is the regression
function. Equatio. 6 is the expression for f(x), where ω is a linear
combination of the mapping Φ(x), reflecting the complexity of

the function, Φ(x) is a nonlinear mapping from the input space
to a higher dimensional space, and b is the bias. Introducing the
accuracy ε, the penalty factor C, the loss function Lε and the slack
variables ξi, ξ

*
i , the optimisation objective can be expressed as Eq.

7 and the conditions to be satisfied are Eq. 8.

K xi, xj( ) � xT
i xj + C (12)

K xi, xj( ) � x( T
i xj)d + C (13)

K xi, xj( ) � exp − xi − xj

���� ����2
2σ2

⎛⎝ ⎞⎠, σ > 0 (14)

It is solved by the Lagrange multiplier method, and its dual
forms Eqs 9, 10 can be obtained by introducing the Lagrange
function. The dot product operation in high dimensional space is
used to make K(xi, xj) � Φ(xi)Φ(xj), where K(xi, xj) is a kernel
function introduced to satisfy the Mercer’s condition, and the
regression fit function is obtained as Eqn 11, and Eqn 9 is used
to solve ai and a*i . Equations 12–14 are common kernel functions,
including linear kernel, polynomial kernel and Gaussian kernel, etc.

E′ �
���������������������
1
n
∑n
i�1

(y[ i − �y)−(wi − �w)]2
√

(15)

σ �
������������
1
n
∑n
i�1

wi − �w( )2
√

(16)

The Taylor diagramwas first proposed in 2001 by Karl E. Taylor,
an American atmospheric scientist, as a graph for comparing the
differences between several models or observations and a reference
model. It provides an intuitive way to compare the strengths and
weaknesses of various model performances. The scatter in the Taylor
diagram represents the different models, the radial line represents

TABLE 3 Stepwise regression analysis model of six types of air pollutant concentrations. In themodel, the dependent variable is the concentration of the six
pollutants at the reference sensor station, and the independent variables are themeasurements of theminiature sensor station (”—” represents the variables
eliminated in the model).

Independent variable PM2.5 PM10 CO(× 10−2) NO2 SO2 O3

Constant 521.3 1,380.3 2795 1,333.1 −425.8 −1,020.7

PM2.5 0.739 0.682 0.67 0.392 −0.116 1.01

PM10 0.057 0.16 — −0.166 0.092 −0.587

CO 7.58 29.15 36.54 −13.86 36.55 −10.75

NO2 0.069 0.302 0.187 0.385 0.059 −0.526

SO2 — 0.178 0.202 0.079 — —

O3 — — 0.099 −0.088 0.114 0.489

Wind speed −2.637 — −15.32 −17.79 −6.04 18.92

Pressure −0.491 −1.28 −2.67 −1.22 0.407 1.02

Precipitation −0.03 −0.071 0.045 −0.026 0.017 —

Temperature −0.237 −1.23 −2.21 −1.51 — 2.99

Humidity −0.363 −1.15 −0.357 −0.627 — −0.191

F value 2916.4 513 28,095.6 265.5 262 1,056.8

R2 0.901 0.615 49.29 0.503 0.42 0.767
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the Pearson correlation coefficient, the dashed line represents the
centered root mean square difference, and the horizontal and
vertical axes represent the standard deviation. Equations 15, 16
are the expressions for centered root mean square difference and
standard deviation, where yi is the reference sensor measurement, �y
is the mean value of yi, wi is the output value of the current model,
and �w is the mean value of wi. Equations 17–19 are the expressions
for Mean Absolute Error (MAE), MAPE and Root Mean Square
Error (RMSE). Because these three evaluation indicators are simple
to calculate, easy to interpret, and reflect the model’s performance
over the entire sample, they are often used to quantitatively evaluate
the performance of the models.

MAE � 1
n
∑n
i�1

yi − wi

∣∣∣∣ ∣∣∣∣ (17)

MAPE � 1
n
∑n
i�1

yi − wi

yi

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ (18)

RMSE �
������������
1
n
∑n
i�1

yi − wi( )2√
(19)

3 Results

3.1 Results of SRA calibration model

There are many factors that influence the concentrations of the
two aerosols and four gases, and multiple linear regression
modelling is often used to find a linear relationship between
these influences and the concentrations of the two aerosols and
four gases. The key to amultiple linear regressionmodel is the choice
of independent variables. Too much or too little selection of
independent variables can adversely affect the stability and
usefulness of the model. The commonly used methods of
independent variable selection include forward selection,
backward elimination and stepwise regression. Among them,
stepwise regression is a widely respected method of independent
variable selection (Liu et al., 2021d). The stepwise regression method
combines the ideas of forward selection and backward elimination,
where the choice of adding or deleting independent variables is
made at each step based on statistical significance in order to
progressively optimise the model.

FIGURE 5
(A)Residuals of the SRA calibrationmodel on the training set; (B)Residuals of the SRA calibrationmodel on the test set; (C) Themeasurement error of
the miniature sensor at the number corresponding to the training set of the SRA calibrationmodel; (D) Themeasurement error of the miniature sensor at
the number corresponding to the test set of the SRA calibration model.
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We randomly select 70% of the 4,144 data samples as a training
set to train the parameters and weights of the model, and the
remaining 30% of the data is used as a test set to evaluate the
generalization ability of the model after the model training is
completed. The PM2.5 concentration measured by the reference

sensor is used as the dependent variable, and the 11 variables
measured by the miniature air quality monitor are used as the
independent variables to build the SRA model for PM2.5 using SPSS
26. At the significant level α = 0.05, the miniature sensor measured
the remaining 9 variables except SO2 and O3 are introduced into the

FIGURE 6
(A) The fitting effect of PM2.5’s SRA-SVR model on the training set; (B) The calibration effect of PM2.5’s SRA-SVR model on the test set.

FIGURE 7
(A) The residual histogram of the SRA-SVR model; (B) The residual plot of the SRA-SVR model.
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SRA model, indicating that they all have a significant effect on the
PM2.5 concentration reference value. The F-value of the SRA model
for PM2.5 is 2916.4, corresponding to a probability p-value of 0.000,
indicating that the variables introduced into the model have a
significant effect on the reference value of PM2.5 concentration as
a whole. The Coefficient of Determination of the model is 0.901,
indicating that 90.1% of the total variation in the dependent variable
can be explained by the regression model (Xiang et al., 2023).
Similarly, the SRA model results for the other five pollutants are
shown in Table 3.

Figure 5 demonstrates the effect of the SRA model for PM2.5 on
the calibration of the measured data from the miniature air quality
monitor. It can be seen that the miniature sensor measurement error
is concentrated in [−40, 20], while the residuals of the SRAmodel are
concentrated in [−20, 20]. In addition, the residuals of the SRA
model are randomly concentrated near the zero point regardless of
the training and test sets, indicating that the SRA model can satisfy
the requirements for the error term. The residuals of the SRA model
perform consistently in the test set and the training set, indicating
that the model has good generalization ability.

3.2 Results of SRA-SVR combined
calibration model

The SRA model has extracted linear relationships between the
two aerosols and four gases and the various influencing factors.
However, the factors affecting the concentration of pollutants are
very complex and there are still some non-linear relationships
hidden in the residuals (Liu and Li, 2015). The SVR model has
strong nonlinear modelling capability, robustness, ability to adapt to
high dimensional data and also performs well in small sample
situations. It is used in this study to find the nonlinear

relationship between the six types of pollutants and the
influencing factors.

The residuals of the SRAmodel for PM2.5 are used as response
variables, the data measured by the miniature sensor are used as
predictor variables, and the SVR model for residual calibration of
six pollutants is built using the regression learner in Matlab. The
default 5-fold cross-validation of the software is used in the
experiments to prevent the SVR model from overfitting. The
original dataset is divided into five equal-sized subsets, and from
these five subsets, one of them is selected as the validation set and
the remaining four subsets are used as the training set. The model
is trained on the training set and the performance is evaluated
using the RMSE on the validation set. Repeat the previous steps
until each subset is used as a validation set and calculated to get
five performance evaluations. Averaging these five performance
evaluation results gives the final average performance evaluation
result of the model.

The SVR model in the regression learner has three main
parameters, box constraint mode, epsilon mode and kernel scale
mode. The box constraint controls the penalty imposed on
observations with large residuals. A larger box constraint gives a
more flexible model. A smaller value gives a more rigid model, less
sensitive to overfitting. Prediction errors that are smaller than the
epsilon value are ignored and treated as equal to zero. A smaller
epsilon value gives a more flexible model. The kernel scale controls
the scale of the predictors on which the kernel varies significantly. A
smaller kernel scale gives a more flexible model. For the kernel
function mainly include linear kernel, quadratic kernel, cubic kernel
and Gaussian kernel.

The selection of the three parameters is set to automatic and the
software uses a heuristic procedure to automatically assign values to
them. For the selection of the kernel function, it is determined by
comparing the performance of each kernel function in the validation

FIGURE 8
(A) Taylor diagram of the fitted PM2.5 concentration values for the five calibration models on the training set; (B) Taylor diagram of the calibrated
PM2.5 concentration values for the five calibrationmodels on the test set. HereMSS represents themeasured values of theminiature sensor station on the
corresponding set.
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set. Finally, the Box constraint mode, Epsilon mode and Kernel scale
mode of the SVR model for PM2.5 are set to 7.6, 0.76 and
0.83 respectively, and the kernel function is determined as
Gaussian kernel. The final output of the combined SRA-SVR
model for PM2.5 is obtained by adding the residual calibration
values of the output values of the SVR model to the output
values of the SRA model. The SRA-SVR combined calibration
models for the other five pollutants can be obtained similarly.

In order to measure the regression effect of the SRA-SVR
combined model for PM2.5, a one-dimensional linear regression
model is established for PM2.5 concentration measured by the

reference sensor as the independent variable and the output value
of the SRA-SVR combined model as the dependent variable. As
can be seen from Figure 6, the regression of the SRA-SVR
combination model performs well in both the training set and
the test set, indicating that the model has a strong generalization
ability. The correlation coefficients between the output values of
the SRA-SVR combined model and the target values are all
greater than 0.96, and the regression coefficients of the two
regression models are close to 1, which indicates that the
output values of the SRA-SVR combined model are very close
to the measured values of the reference sensor.

TABLE 4 The MAE of miniature sensor station and various air quality calibration models, in which reference sensor station is used as comparison object.

Pollutant MSS SRA SVR DTR MLP SRA-SVR

Training Test Training Test Training Test Training Test Training Test Training Test

PM2.5 18.338 18.307 7.335 7.312 5.314 6.008 5.448 7.393 7.449 7.47 3.047 5.766

PM10 50.666 50.913 15.196 14.372 10.485 10.555 14.943 16.255 15.153 14.132 5.892 9.742

CO 0.555 0.545 0.268 0.269 0.155 0.18 0.088 0.191 0.248 0.25 0.044 0.152

NO2 30.456 30.607 12.997 13.399 6.887 8.076 6.076 8.511 10.213 11.154 3.149 7.455

SO2 12.728 13.447 10.38 10.531 4.314 4.766 4.829 5.517 7.196 7.51 3.841 4.494

O3 37.092 38.688 17.644 17.84 9.637 11.416 6.46 14.092 16.079 16.641 3.825 10.537

TABLE 5 The MAPE of miniature sensor station and various air quality calibration models, in which reference sensor station is used as comparison object.

Pollutant MSS SRA SVR DTR MLP SRA-SVR

Training Test Training Test Training Test Training Test Training Test Training Test

PM2.5 0.45 0.447 0.172 0.171 0.12 0.141 0.121 0.165 0.176 0.176 0.065 0.134

PM10 0.87 0.918 0.233 0.244 0.136 0.151 0.213 0.248 0.25 0.266 0.069 0.145

CO 0.479 0.48 0.319 0.327 0.163 0.194 0.09 0.191 0.297 0.304 0.046 0.165

NO2 2.152 2.187 0.644 0.669 0.252 0.293 0.208 0.298 0.494 0.539 0.113 0.287

SO2 0.665 0.741 0.756 0.769 0.271 0.3 0.318 0.37 0.531 0.537 0.249 0.287

O3 4.37 4.47 1.298 1.288 0.47 0.632 0.259 0.6 1.085 1.208 0.213 0.562

TABLE 6 The RMSE of miniature sensor station and various air quality calibration models, in which reference sensor station is used as comparison object.

Pollutant MSS SRA SVR DTR MLP SRA-SVR

Training Test Training Test Training Test Training Test Training Test Training Test

PM2.5 22.601 22.478 10.6 10.247 7.95 8.563 7.824 10.233 10.384 10.293 5.944 8.4

PM10 70.051 66.862 32.17 20.325 29.068 16.438 30.457 22.515 31.688 19.291 27.07 16.006

CO 0.684 0.683 0.347 0.366 0.22 0.269 0.13 0.298 0.319 0.337 0.087 0.261

NO2 37.854 38.067 16.963 17.902 10.834 12.978 9.661 14.318 13.662 15.189 6.398 11.861

SO2 22.478 35.898 15.624 15.214 7.455 8.028 8.27 9.118 9.947 10.505 6.725 7.669

O3 46.279 47.669 22.763 23.717 14.276 17.417 9.778 21.625 20.979 22.32 7.202 16.591
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Figure 7 shows the residual test plot of the SRA-SVR combined
model for PM2.5. It can be seen that a total of 3,746 residuals are
located in [−10, 10], accounting for 90.4%, a total of 4,052 residuals
are located in [−20, 20], accounting for 97.78%, and only 13 residuals
have an absolute value over 40, accounting for 0.31%. In the test set,
a total of 1,044 residuals are located in [−10, 10], accounting for
83.99%, a total of 1,208 residuals are located in [−20, 20], accounting
for 97.18%, and only 6 residuals have an absolute value over 40,
accounting for 0.48%. Overall, the residuals roughly follow a normal
distribution and are randomly and symmetrically distributed
around the value of zero.

4 Discussion

The SRA-SVR combined model enables calibration of PM2.5

concentrations measured by the miniature air quality monitor. In
addition, separate SRA or SVR models, as well as models such as
Decision Tree Regression (DTR) and multilayer perceptron neural
network can also be implemented to calibrate PM2.5 concentrations
measured by the miniature air quality monitor (Abdullah et al.,
2020; Resquin et al., 2021; Balogun and Tella, 2022). The calibration
effects for the models are measured by their performance on the
training and test sets. In order to visualize the performance of each
model, Taylor diagrams are used in this study to complete the
comparison of each model.

As can be seen in Figure 8, the SRA and SVR models alone, as
well as models such as DTR and MLP, enable the calibration of
PM2.5 concentrations measured by the miniature air quality
monitor. In the training set, SRA and MLP can achieve fitting
to the data but the accuracy needs to be improved, DTR and SVR
have high fitting accuracy to the data, and the SRA-SVR
combination model given in this study has the strongest
ability to fit the data. Comparing the performance of different
models in the training set can provide some preliminary
information about model performance and fitting ability.
However, evaluating models based on performance in the
training set alone is not sufficient. In order to more
accurately evaluate model performance, it is critically
necessary to evaluate model performance in the test set. It
can be seen that in the test set, SRA, MLP and DTR models
can achieve the prediction of the data, but the accuracy needs to
be improved, the SVR and SRA-SVR combined models have a
stronger prediction of the data. No matter the training set or test
set, the SRA-SVR combined model performs the best compared
to other given models.

The SRA-SVR combined model has a good calibration for
PM2.5 concentrations measured by the miniature sensors, and it
needs to be evaluated whether it can also have a good calibration
for other pollutants as well. MAE, MAPE and RMSE are used in
this study to quantitatively evaluate the performance of each
model (Liu et al., 2017; Ratkovic et al., 2023). As can be seen in
Tables 4–6, except for the MAPE of the SRA model for SO2, the
miniature air quality monitor has the maximum of the rest of the
indicators, indicating that its measurements need to be
calibrated. The SRA-SVR combined model proposed in this
study has the best performance in all evaluation indicators.
For the MAE indicator, the SRA-SVR models for CO and

PM10 perform best on the training set and test set,
respectively, with 92.1% and 80.87% improvement in accuracy,
respectively. For the MAPE indicator, the SRA-SVR model for O3

performs best on the training and test sets with 95.13% and
87.43% improvement in accuracy, respectively. For the RMSE
indicator, the SRA-SVR models for CO and SO2 perform best on
the training set and test set, respectively, with 87.26% and 78.64%
improvement in accuracy, respectively.

5 Conclusion

In the current context of increasingly serious environmental
problems, monitoring and assessment of air quality has become
increasingly important. Miniature air quality monitors, as a
rapid, real-time monitoring tool, are important for
environmental protection, public health and urban planning
in terms of their accuracy and reliability. However, its
measurement accuracy needs to be improved for various
reasons. The SRA-SVR combined model proposed in this
study successfully improves its measurement accuracy by
61.33%–87.43%. This is very helpful for the development and
promotion of miniature air quality monitors to ensure the
sustainability of air quality. The SRA-SVR combined model
has both the interpretability of the SRA model and the high
accuracy of the SVR model, and it has been empirically
demonstrated that the accuracy of this combined model is
better than that of a single model. The SRA-SVR combined
model is based on a study of 4,144 data sets for a total of
206 days in the time period from November 2018 to June 2019,
covering four seasons across years. This indicates that the
model is able to maintain strong stability across time periods
and seasons. By comparing the experimental results of the
training and test sets, the SRA-SVR combination model
proposed in this study has a strong generalization ability.
This further validates the scientific value and practical
application prospects of calibrating miniature air quality
monitors using the SRA-SVR model. However, factors such
as climatic conditions, geographic features and population
density in different regions may have an impact on air
quality. Although the SRA-SVR combined model showed
better performance in this study, its applicability to other
regions still needs to be verified in practice. Further studies
may consider expanding the sample coverage and incorporating
other environmental factors to further validate and refine the
applicability of the model.
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