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The rapid advancement of urbanization and industrialization in China has
gradually spread to the poor mountainous areas, which has not only brought
about rapid economic development but has also caused the increasing
competition for production-living-ecological spaces (PLES) and many
ecological and environmental problems, carbon emissions have also
increased. As an economically less developed and ecologically fragile area in
China, whether the transition of the PLES in themountain poverty belt has unique
characteristics? How the PLES transition in mountainous areas affects carbon
emissions and what are the important factors affecting carbon emissions? To
explore these issues in depth, we studied the Taihang Mountain area in
Shijiazhuang (TMS) using remote sensing image interpretation data from 2000,
2010, and 2020, and we analyzed the PLES evolution characteristics, carbon
emission changes, carbon emission effects and its influencing factors of PLES.
The results are as follows: 1) The TMS was dominated by ecological and
production space. From 2000 to 2020, the production space decreased by
384.66 km2, the ecological space increased by 123.80 km2, and the living
space increased by 260.86 km2. Agricultural production space was mainly
converted to ecological and rural living space. Industrial and mining
productive space was mainly converted to agricultural productive space and
urban living space. 2) The study area was in a state of carbon deficit, the transition
of ecological space and agricultural productive space to industrial and mining
productive space and living space were the main transition types caused the
carbon emissions increasing, and that of industrial and mining productive space
to agricultural productive space was the main type caused the carbon emissions
decreasing. 3) The proportion of construction land, urbanization rate and
proportion of secondary industry are the main factors leading to the increase
of carbon emissions. Per capita energy consumption, forest coverage and
proportion of tertiary industry are the main factors leading to the decrease of
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carbon emissions. This can provide new ideas for research on carbon emissions
from land-use changes and a theoretical basis for the optimization of territorial
space in the mountainous areas of China.
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neutralization, transition

1 Introduction

Recently, China has made significant progress in its economic
development. Simultaneously, rapid urbanization and industrialization
have led to man–land and production–living–ecological spaces (PLES)
conflicts, which have caused many ecological and environmental
problems, including rapid increases in carbon emissions. The
carbon emissions of China account for about 25% of the global
total (Zhou, et al., 2023). The Chinese government has been
committed to achieve carbon peak and carbon neutrality by
2030 and 2060. With the implementation of Chinese territorial
spatial planning, the priority of China’s land management strategy
has shifted from land-use patterns to space regulation, that is, the PLES
mode (Zhang et al., 2021). PLES transition is a deepening application of
land-use transition in the new era. Many studies have shown that land-
use transition is an important cause of carbon emissions (Houghton,
2018). It is unknown how the PLES transition affect carbon emissions.
Mountainous areas in China are economically less developed and
ecologically fragile, as well as important ecological environment
protection areas and carbon sink sources. Recently, these areas have
faced the dual tasks of economic development and ecological
protection, causing a complicated land-use transition (Zhang et al.,
2018) and the conflict of PLES, which has induced a series of social,
economic, and ecological effects. Therefore, it is important to study
PLES transition and its carbon emission effect.

Land use is a hotspot issue facing mankind (Arrow, et al., 1995),
and many studies have been carried out on the issue, focusing on
land-use transitions (Drummond et al., 2017), land use/cover
changes (LUCCs) (Goldewijk, 2001; Winkler et al., 2021), the
effects of land use/cover changes on biodiversity (Newbold et al.,
2015), ecosystem services (Balthazar et al., 2014), greenhouse gases
(de Sousa-Neto et al., 2018), nitrogen (Ojoyi et al., 2017), and the
influencing factors of land use change (Weber et al., 2001; Deslatte
et al., 2022; Lambin et al., 2011). With the introduction of PLES in
China and its gradual evolution into an important theoretical
direction land use, many studies have been conducted under the
framework of PLES, such as the functional identification and spatial
division (Duan et al., 2021; Bai et al., 2022), coupling coordination
analysis (Yang et al., 2020; Cui et al., 2022), spatial conflict (Zhao
et al., 2022), and spatial pattern optimization (Tian et al., 2020; Liao
et al., 2022).Among them, research on the transition of PLES and
ecological effects is currently a very important research aspect,
involving research on ecosystem service value (Wang et al.,
2022), eco-environment quality (Yang et al., 2018), and study
areas covering China (Kong et al., 2021), provinces (Chen et al.,
2022), and cities (Jiang et al., 2022). As an economically less
developed and ecologically fragile area in China, it is worth
studying further whether the transition of the PLES in the
mountain poverty belt has unique characteristics.

Land-use change is one of the most important causes of carbon
emissions. The net carbon emissions from land-use changes
accounted for 12.5% of total carbon emissions in the world from
1990 to 2010 (Houghton et al., 2012). About 1/4 of anthropogenic
carbon emissions were caused by land-use changes over the past
20 years (Barnett et al., 2005). In tropical Asia, carbon emissions
from land-use change accounted for approximately 75% of total
carbon emissions (Houghton and Hackler, 1999). Land use changes
may emit tens of billions of tons of carbon over the next few
centuries (Schimel, 2010). How does PLES transition affect
China’s carbon emissions? Some researchers pointed out that the
spatial evolution of PLES has a negative impact on carbon emissions
(Liu et al., 2023). Some researchers pointed out that the expansion of
living space leads to an increase in carbon emissions (Li et al., 2023),
and some researchers believed that the transition of ecological space
to production and living spaces was the main reason for the increase
in carbon emissions (Zheng et al., 2022). Mountainous areas in
China are important carbon sink sources and play a vital role in
protecting the regional ecological environment and reducing carbon
emissions. Therefore, the manner in which the PLES transition in
mountainous areas affects regional carbon emissions requires
further study.

Influencing factors of carbon emissions is another significant
research direction of carbon emissions. Many studies point out that
economics, population, technology, industrial structures, and energy
structures significantly affect carbon emissions (Ang et al., 1998;
Chontanawat, 2018; Vujovi et al., 2018). Generally, economic
increase and population growth caused the increasing of energy
demand, therefore resulting in increased carbon emissions
(Henriques and Borowiecki, 2017; Li, 2020). It shows an inverted
U-shaped relationship between economic development and carbon
emissions (Hidemichi et al., 2018; Arshed et al., 2021).
Technological progress and industrial structure optimization are
helpful to decreasing carbon emissions (Wang, et al., 2018).
Urbanization is also an important reason in regard to the
increase in carbon emissions in Asian countries (Shahbaz et al.,
2015; Nosheen et al., 2020). Afforestation increases carbon sinks,
whereas deforestation increases carbon emissions (Woodbury et al.,
2007). Whether the transition of the PLES has a direct impact on
carbon emissions requires further investigation. What are the
important factors affecting carbon emissions in mountainous
areas? It should be noted though that there are few studies on
special regions, especially mountain poverty belts.

Based on this, this study takes the Taihang Mountains area of
Shijiazhuang (TMS) in China as an example, aimed to deeply
analyze the carbon emission effects of the PLES and examine the
influencing factors on carbon emissions. The indicators of
“Contribution rate of PLES transition to carbon emissions” and
“Marginal carbon emissions of PLES” were introduced to describe
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the carbon emission effects, and the Improved STIRPATModel was
used to examine the influencing factors on carbon emissions.
Theoretically, this study can provide new ideas for international
research on land-use change and carbon emissions, and enrich
international research on the factors influencing carbon
emissions. Practically, the results of this study can provide a
theoretical basis for the optimization of land space and low-
carbon development in mountainous areas of China and provide
a reference for the formulation of relevant land space
control policies.

According to the purpose, the remaining elements of the
paper is arranged as follows. The Materials and Methods are
organized in Section 2, and Section 3 is Results analysis. The
final Section 4 concludes Discussion, Conclusion and the Policy
suggestions.

2 Materials and methods

2.1 Study area

The Taihang Mountain area in the west of Shijiazhuang (TMS)
is located in the middle of the Taihang Mountain area in Hebei
Province (Figure 1) between 37° 27′-38° 42′N and 113° 31′- 114°
33′E, and it includes Xingtang County, Lingshou County,
Pingshan County, Jingxing Mining Area, Luquan District,
Jingxing County, Yuanshi County, and Zanhuang County. The
terrain of the TMS is high in the west and low in the east, with an
altitude of 100–2281 m. The geomorphic types vary and are

complicated; there are mid-mountains, low mountains, hills,
intermountain basins, and valleys from east to west. The study
area is ecologically fragile. The land use pattern has undergone
urban expansion, reduction in cultivated land, deforestation to
cultivated land abandonment, and recovery growth of forest land.
It is the epitome of the transition of PLES in mountainous areas
of China.

2.2 Data sources

Land use data (30 m resolution) from 2000, 2010, and
2020 were obtained from the Data Centre for Resources and
Environmental Sciences, Chinese Academy of Sciences (https://
www.resdc.cn). Socio-economic data and energy data were
obtained from the “Shijiazhuang Economic Statistics Yearbook,”
and soil data from the second national soil survey of
Hebei Province.

About the division of PLES, land use types were divided into
single functional types (Chen et al., 2015) and composite functional
types (Zhang et al., 2017). Based on the classification criteria (Data
Center for Resources and Environmental Sciences, 2018), this paper
classifies PLES into 3 primary categories, that is Production space
(PS), Living space (LS), Ecological space (ES); and 8 subcategories,
that is Agricultural productive space (APS), Industrial and mining
productive space (IMPS), Urban living space (ULS), Rural living
space (RLS), Forest ecological space (FES), Meadow ecological space
(MES), Water ecological space (WES) and Other ecological
space (OES).

FIGURE 1
The geographical location of TMS.
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2.3 Methods

2.3.1 Transfer matrix of PLES
The transfer matrix of PLES can not only disclose the PLES

structure but also quantitatively describe the dynamic evolution
of PLES transition from the beginning to the end. The transfer
matrixes of 2000–2010, 2010–2020, and 2000–2020 were obtained
using the spatial overlay function of ArcGIS. As shown in
Formula 1:

Sij �
S11 S12 ... S1n
S21 S22 ... S2n
... ... ... ...
Sm1 Sm2 ... Smn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)

where S is the area of PLES and Sij is the area transferred from type i
to type j. Each row in the matrix represents the flow direction from
type i to other types, and each column represents the source
from other types to type j. The transfer-in and transfer-out
areas of PLES were calculated based on the transfer matrix, and
the percentage of the transferred area was calculated based on
PLES in different periods.

2.3.2 Carbon emission calculation of PLES
2.3.2.1 Calculation of carbon emissions

Carbon emissions are calculated by carbon density and
corresponding land use area, the expression is as follows:

Cs � ∑n
i�1
Si*SDi (2)

where Cs is total carbon emission, Si is the area of PLES, i = 1,2.
n represents the type of PLES, SDi is carbon density, where
“−”represents carbon sink, “+” represents carbon emission.

Referring to the carbon density of different land use types
by relevant research (Zhu et al., 2019; Yang et al., 2020),
we constructed the preliminary carbon density of PLES in
the TMS. On this basis, we modified the soil carbon sink
density referring to the soil carbon density of each soil type in
Hebei Plain (Luan et al., 2011; Gao et al., 2018). The vegetation
carbon sink density was modified based on the carbon density
of different vegetation types in North China (Chen, 2003).
Furthermore, the carbon emissions density was modified
referring to the corresponding relationship between industrial
space and energy consumption (Zhao et al., 2010).
Finally, we determined the carbon density of PLES in the
TMS (Table 1).

2.3.2.2 Contribution rate of PLES transition to
carbon emissions

Referring to the index of “ecological contribution rate of
land use transition (Yang et al., 2018),” we introduce the
index of carbon-emissions contribution rate of PLES transition
as follows:

R � Cb-Ce( )Si/ΔTC (3)
where R is the carbon-emissions contribution rate of the PLES
transition, Cb is the carbon density in the beginning, Ce is the carbon
density in the end, Si is the area of PLES transition, and ΔTC is the
carbon emission changes during the period.

2.3.2.3 Marginal carbon emissions of PLES
Marginal carbon emissions is the change in carbon emissions

caused by the change of per unit PLES, which indicates the
sensitivity of the area to carbon emissions (Hu et al., 2015). The
expression is as follows:

MC � TC/S (4)
where MC is the marginal carbon emissions, TC is carbon emission
changes, and S is area changes.

2.3.3 Analysis of influencing factors of
carbon emissions
2.3.3.1 Improved STIRPAT model

The STIRPAT model was firstly proposed by York and Dietz
(York et al., 2003) based on the IPAT identity, and it has been
applied widely to examine the influence of population, economy and
technology on ecological environment. It also been used to estimate
the influencing factors of CO2 emissions and has good scalability.
The basic expression is as follows:

I � aPbAcTde (5)

where I represents the environmental effect, P represents the
population, A represents the wealth, T represents technology; a is
the dominant coefficient; b, c, and d are Elasticity coefficients; and e
is error.

We take the logarithm of the two sides and construct an
extended influencing factors, then get Model (6):

ln I � ln a + b lnP + c lnA + d lnT + ln e + f lnO (6)

where I represents CO2 emissions, lna is a constant term, lne is a
random distractor, O is added factor.

TABLE 1 Carbon density of production—living–ecological spaces (PLES) Unit: t/hm2.

Year APS IMPS FES MES WES OES ULS RLS

2000 −0.09* 402.92 −0.6036 −0.205 −0.238 −0.05 26.04 0.31

2010 −0.09 670.51 −0.6036 −0.205 −0.238 −0.05 123.51 1.21

2020 −0.09 377.70 −0.6036 −0.205 −0.238 −0.05 90.96 3.99

*Negative values represent carbon sink, positive values represent carbon emissions.
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2.3.3.2 Variable description
Based on the research of carbon emissions caused by land use

changes (Fahey et al., 2010; Zhang et al., 2021), the land use changes
of forest land and construction land will cause carbon emission
changes, therefore, the paper added the indicators of forest coverage
rate and proportion of construction land. As shown in Table.2.

3 Results

3.1 Evolution characteristics of PLES

PLES in the TMS is dominated by ecological space and
production space, of which agricultural productive space
accounts for the largest proportion, next came forest ecological
space and grassland ecological space; the sum of these three spaces
accounts for more than 90% in the TMS. The evolution
characteristics of PLES are: 1) From 2000 to 2020, the
production space decreased by 384.66 km2, of which agricultural
productive space decreased continuously by a total of 380.19 km2.
Industrial and mining productive space first increased by 8.60 km2

from 2000 to 2010 and then decreased by 13.07 km2 from 2010 to
2020. 2) From 2000 to 2020, ecological space increased slightly by
123.80 km2, of which forest ecological space first increased by
247.22 km2 from 2000 to 2010 and then decreased by 105.99 km2

from 2010 to 2020. Meadow ecological space first decreased by
111.54 km2 from 2000 to 2010 and then increased by 116.18 km2

from 2010 to 2020. 3) From 2000 to 2020, living space significantly
increased by 260.86 km2. Urban and rural living spaces increased
continuously by 71.28 km2 and 189.58 km2, respectively (Table 3).

With the rapid economic development and urbanization of
Shijiazhuang City, urban and rural living spaces increased
rapidly. Also, agricultural productive space was occupied, leading
to serious contradictions between living and production land.
Recently, with the reformation of the energy structure, high-
energy-consumption, high-pollution, and high-emissions
industries were eliminated, and the growth in industrial and
mining productive space was controlled.

As shown in Figure 2, forest and meadow ecological spaces are
mainly distributed in Pingshan, Jingxing, Lingshou, and Zanhuang
County. Water ecological space includes Hutuo River, Gangnan
Reservoir, and Huangbizhuang Reservoir, which are located in

TABLE 2 Indicator of carbon emission influencing.

Target layer Indicator layer Variable Description of independent variables

Population factors Total population P1 10,000 people

Urbanization rate P2 Proportion of urban population (%)

Population density P3 Number of people living on per unit area(person/m2)

Economic
development

Per capita GDP A1 GDP to total population ratio (¥/person)

Proportion of secondary industry A2 Proportion of secondary industry in total GDP (%)

Proportion of tertiary industry A3 Proportion of tertiary industry in total GDP (%)

Foreign direct investment A4 Total amount of foreign direct investment (10,000$)

Technological factors Energy intensity T1 Standardized coal consumption per unit GDP (%)

Per capita energy consumption T2 Energy consumption to total population ratio(t/person)

Other factors Forest coverage rate O1 Proportion of forest land in total area (%)

Proportion of construction land O2 Proportion of construction land in total area (%)

Number of industrial enterprises above
scale

O3 Number of industrial enterprises with annual revenue of more than 20 million ¥
(individual)

Per capita disposable income O4 ¥

TABLE 3 Areas and changes in PLES of the TMS during 2000-2020. Unit: km2.

Year APS IMPS FES MES WES OES ULS RLS

2000 3221.16 29.14 2167.36 2131.68 306.08 23.47 48.27 315.15

2010 3032.63 37.74 2414.58 2020.13 219.50 28.34 105.24 384.15

2020 2840.97 24.67 2308.59 2136.31 278.49 29.00 119.56 504.73

2000–2010 −188.53 8.60 247.22 −111.54 −86.58 4.87 56.97 69.00

2010–2020 −191.66 −13.07 −105.99 116.18 58.99 0.66 14.32 120.58

2000–2020 −380.19 −4.47 141.23 4.63 −27.59 5.52 71.28 189.58
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Pingshan County and Luquan District. Agricultural productive
space is mainly located in the east of TMS, such as Xingtang,
Luquan, and Yuanshi County. Urban living space is scattered in
each county (district) and is concentrated in Luquan District and
Jingxing Mining District. Industrial productive space is generally
located in the peripheral areas of urban living space, while rural
living space is scattered in all counties (districts).

3.2 Transition of PLES

To understand the transition of PLES, we calculated the
transition structure and transition rates using Eq. 1, and the
results are as follows:

From Table 4 we can see that from the perspective of the transfer-
in, agricultural productive space wasmainly transferred frommeadow
ecological space, and industrial and mining productive space was
mainly transferred from rural productive land. Forest ecological space
was mainly transferred from rural productive space and meadow
ecological space, water ecological land was mainly transferred from
agricultural productive space, and other ecological space was mainly
transferred from forest ecological space and meadow ecological space.
Urban living space was mainly transferred from agricultural
productive space and rural living space, and rural living space was
mainly transferred from agricultural productive space.

From the perspective of the transfer-out, agricultural productive
space was mainly converted to forest ecological space, meadow
ecological space, and rural living space, and industrial and mining
productive space was converted to agricultural productive space and
urban living space. Forest ecological space was converted to meadow

ecological space, and meadow ecological space was converted to
forest ecological space and agricultural ecological space; water
ecological space was converted to agricultural productive space
and forest ecological space, and other ecological space was
converted to agricultural productive space and water ecological
space. Finally, urban living space was converted to agricultural
productive space, and rural living space was converted to
agricultural productive space.

With the rapid urbanization of Shijiazhuang City, huge amounts
of agricultural productive space and ecological space was occupied
by urban living space. With the implementation of a series of
ecological engineering projects such as forest rehabilitation from
slope agriculture, the cultivated land with serious soil erosion and
obvious ecological vulnerability has gradually transformed into
ecological space, further restoring the latter.

3.3 Carbon emission effects of PLES

3.3.1 Spatial-temporal evolution of
carbon emission

As shown in Table 5, from 2000 to 2020, carbon emissions were
130.96 × 104 t, 387.69 × 104 t, and 222.06 × 104 t, respectively, and
carbon storage was 20.11 × 104 t, 17.33 × 104 t, and 21.55 × 104 t,
respectively. The study area has been in a state of carbon deficit.
From the perspective of the changing trend, carbon emissions first
rapidly increased by 256.73 × 104 t from 2000 to 2010 and then
slowly decreased by 165.63 × 104 t from 2010 to 2020. Carbon
storage first decreased by 2.78 × 104 t from 2000 to 2010 and then
increased by 4.21 × 104 t from 2010 to 2020. The carbon deficit first

FIGURE 2
PLES distribution of the TMS during 2000-2020.
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TABLE 4 Transition matrix and transition rates of PLES during 2000–2020 Unit: km2, %.

Year 2020

Increase or
decrease rate

APS IMPS FES MES WES OES ULS RLS

2010 APS Area — 12.06 153.24 316 99.9 6.88 9.71 134.94

in — 0.4 5.4 11.1 3.5 0.2 0.3 4.7

out — 0.6 11.2 9.3 2.6 0.1 1.6 9.1

IMPS Area 18.59 — 0 0 0 0 0 0

in 0.6 — 0.0 0.0 0.0 0.0 0.0 0.0

out 41.4 — 4.8 11.7 0.0 0.0 14.6 6.7

FES Area 361.35 1.39 — 660.2 34.05 2.65 0 11.75

in 15.7 0.1 — 28.6 1.5 0.1 0.0 0.5

out 7.1 0.0 — 33.9 0.5 0.7 0.0 0.7

MES Area 300.32 3.4 735.21 — 14.3 3.86 0 8.62

in 14.1 0.2 34.4 — 0.7 0.2 0.0 0.4

out 11.1 0.0 28.6 — 10.7 28.7 4.8 8.1

WES Area 83.53 0 11.49 29.76 — 5.75 0 0

in 30.0 0.0 4.1 10.7 — 2.1 0.0 0.0

out 3.5 0.0 1.5 0.7 — 0.0 0.0 2.0

OES Area 3.9 0 15.58 8.33 0 — 0 0

in 13.4 0.0 53.7 28.7 0.0 — 0.0 0.0

out 0.2 0.0 0.1 0.2 2.1 — 1.5 0.3

ULS Area 53.05 4.25 0 5.77 0 1.75 — 21.34

in 44.4 3.6 0.0 4.8 0.0 1.5 — 17.9

out 0.3 0.0 0.0 0.0 0.0 0.0 — 1.0

RLS Area 292.18 1.96 14.64 41 9.88 1.39 5.17 —

in 57.9 0.4 2.9 8.1 2.0 0.3 1.0 —

out 4.7 0.0 0.5 0.4 0.0 0.0 17.9 —

* “in” represent Transfer-in rate, “out” represent Transfer-out rate.
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increased by 255.84 × 104 t from 2000 to 2010 and then decreased by
165.20 × 104 t from 2010 to 2020.

From the perspective of PLES types, agricultural productive
space, as well as forest, meadow, water, and other ecological space
were carbon sinks, and industrial and mining productive space,
urban living space, and rural living space were carbon sources.
From 2000 to 2020, the carbon storage of agricultural productive
space has been decreasing, with a total reduction of 0.34 × 104 t.
The carbon storage of ecological space first increased by 1.06 ×
104 t from 2000 to 2010 and then decreased by 0.26 × 104 t from
2000 to 2020, with a total increase of 0.80 × 104 t. The carbon
emissions of industrial and mining space first increased by
135.65 × 104 t from 2000 to 2010 and then decreased by
159.89 × 104 t from 2010 to 2020, with a total reduction of
24.24 × 104 t. The carbon emissions of urban living space
first increased by 117.41 × 104 t from 2000 to 2010 and then
decreased by 21.23 × 104 t from 2010 to 2020, with a total increase
of 96.18 × 104 t. The emissions of rural residential land increased
gradually, with a total increase of 19.16 × 104 t. Thus, the carbon
emissions have shifted from “high pollution, high emissions” to
“low pollution, low emissions.” With the implementation of a
series of energy conservation policies, coal consumption has
dropped significantly and has been replaced by clean energy
such as electricity and natural gas, thereby leading to a
obviously decrease in carbon emissions.

The data of PLES and carbon density were input into the
ArcGIS 10.8 to obtain the carbon emissions pattern (Figure 3).
Carbon emissions were divided into high, medium-high,
medium, low-medium, and low levels following the equal-
interval method by the means of Nature break Point. As shown
in Figure 3, low and low-medium levels of carbon emissions
belonging to carbon surplus areas were distributed in
agricultural productive space and ecological space, mainly in
Xingtang, Lingshou, Pingshan, Jingxin, and Zanhuang County.
The medium, medium-high, and high levels belonging to carbon
emission areas were distributed in industrial and mining
productive space, urban living space, and rural living space,
mainly in Luquan District, Jingxing Mining District, Yuanshi
County. From the perspective of spatial pattern changes, from
2000 to 2010, the low and low-medium levels decreased
significantly, whereas the medium level increased obviously.
From 2010 to 2020, the low and low-medium levels were
further reduced, and the high-level areas increased.

3.3.2 Carbon-emissions contribution rate of PLES
The carbon-emissions contribution rate of PLES was calculated

based on Formula 2 (Table 6).
Themain transition types of carbon emissions were in agricultural

productive space, industrial and mining productive space, urban
living space, and rural living space. In the transition types caused
the carbon emissions increasing, there are two transition directions.
One is from carbon sink to carbon source, such as agricultural
production space to industrial and mining productive space, urban
living space and rural living space, and meadow ecological space to
industrial and mining productive space, accounting for 52.8% of the
increase in total carbon emissions. The second is from low-to high-
density carbon emissions, such as urban living space to industrial and
mining productive space, rural living space to urban living space, and
urban living space to urban living space, accounting for 31.9% of the
increase in total carbon emissions. In the main transition types caused
the carbon emissions reduction, the contribution rate of industrial and
mining productive space to agricultural productive space was the
highest, followed by industrial and mining productive space to itself,
and the third is urban living space to agricultural living space. All three
account for 91.5% of the total reduction in carbon emissions.

3.3.3 Marginal change in carbon emissions
The marginal change in carbon emissions can reflect the influence

of areas on carbon emissions or sink. Themarginal carbon emissions of
industrial and mining productive space were the highest at 54231.40 t,
followed by urban living space at 13493.02 t; those of rural living space
were the lowest at 1010.74 t, indicating that the three PLES types were
the main carbon emission sources. The marginal carbon sink of forest
ecological space was the highest at 60.36 t, followed by water ecological
space and water ecological space at 20.52 t and 23.80 t, respectively,
whereas those of agricultural productive space and other ecological
space were the lowest at 9.002 t and 5.00 t, indicating that the three
PLES types were the main carbon sink sources.

3.4 Influencing factors of carbon emissions

3.4.1 Parameter estimation results of panel
data model

Based on panel data from 2000 to 2020, this paper used the
improved STIRPAT model to analyze the influencing factors using
Stata12.0 software. The results were shown in Table 7.

TABLE 5 Carbon emission structure and changes in PLES. Unit: 104 t.

Year APS IMPS FES MES WES OES ULS RLS Total

2000a −2.90 117.41 −13.08 −4.37 −0.73 −0.01 12.57 0.98 109.87

2010a −2.73 253.07 −14.57 −4.14 −0.52 −0.01 129.98 4.65 365.71

2020a −2.56 93.17 −13.93 −4.38 −0.66 −0.01 108.75 20.14 200.51

2000–2010b 0.17 135.65 −1.49 0.23 0.21 0.00 117.41 3.67 255.84

2010–2020b 0.17 −159.89 0.64 −0.24 −0.14 0.00 −21.23 15.49 −165.20

2000–2020b 0.34 −24.24 −0.85 −0.01 0.07 0.00 96.18 19.16 90.64

aNegative values represent carbon sink and positive values represent carbon source.
bNegative values represent a decrease and positive values represent an increase.
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It can be seen from Table 7, the coefficient of Total population,
Population density, Per capita GDP, Foreign direct investment, Per
capita energy consumption, Number of industrial enterprises above
scale, Per capita disposable income did not pass the t-test, which
showed that these indicators did not conform to the Kuznets
hypothesis. All the other coefficients passed the t-test under the
given condition. The baseline regression equation was:

lnCit � 9.535 + 0.956 lnP2 + 0.191 lnA2 − 0.205 lnA3 − 0.986 lnT2

− 0.882 lnO1 + 0.975 lnO2

(7)

3.4.2 Analysis of influencing factors
The improved STIRPAT model obtained from the results

is shown in Eq. 7. From the fitting results of the model,
the order of the effects of the influencing factors was as follows:
O2>P2>A2>A3>O1>T2. Among these, the proportion of
construction (O2), land urbanization rate (P2), and proportion
of secondary industry (A2) were positively correlated with total
carbon emissions, while the proportion of tertiary industry (A3),
forest coverage rate (O1), and per capita energy consumption (T2)
were negatively correlated.

The proportion of construction land (O2) was the strongest
factor for the increase of carbon emissions in the TMS, and the
elasticity coefficient was found to be 0.975%, indicating that for
every 1% increase in the proportion of construction land, the total
carbon emissions will increase by 0.975%. This indicates that the

transition of the PLES has a direct impact on carbon emissions. For
every 1% increase in urbanization rate (P2), the proportion of
secondary industries (A2), total carbon emissions will increase by
0.956% and 0.191%, respectively. The study area is located in the
poverty belt of the Taihang Mountains, and its economic
development had low and late starting points. By accelerating
industrialization, the economic level has improved, resulting in
excessive energy consumption and high carbon emissions.

Per capita energy consumption (T2) is the strongest factor in
regard to the decrease in carbon emissions, and the elasticity
coefficient is −0.986%, indicating that for every 1% increase in
per capita energy consumption, the total carbon emissions will
decrease by 0.986%. Therefore, improvements in technology can
promote improvements in energy-use efficiency, which is an
effective way to reduce total carbon emissions.

The influence coefficient of forest coverage rate (O1), and Per
capita energy consumption (A3) are −0.882% and −0.205%,
respectively, and each increase of 1% will decrease the total
carbon emissions by 0.882% and 0.205%, respectively. From
2000 to 2020, the forest coverage rate in the TMS increased from
52.16% to 53.9%, which caused the carbon sink value to increase and
the net carbon emissions decreased. It can be seen that the
transformation of PLES is an important reason for the decrease
of carbon emissions. The tertiary industry in the study area has
developed rapidly, from 29.75% in 2000 to 52.62% in 2020. Tertiary
industries such as tourism and social services have achieved rapid
development. It has low carbon emission intensities, which cause a
decrease in carbon emissions.

FIGURE 3
Carbon emission pattern of PLES.
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3.4.3 Robustness test
To ensure the reliability of the research results, we conducted a

robustness test on the following aspects:

3.4.3.1 Increasing the control variables
To eliminate the influence of the unobservable factors, this study

increased the indicator of the proportion of local financial
expenditures to GDP and we then conducted a regression
analysis once again. In China, the government’s macro-control
policies can directly affect industrial structure, energy
conservation, and emission reduction technology, thus indirectly
affecting carbon emissions. With reference to the relevant literature
(Zeng et al., 2019), this study selected an indicator of the proportion
of local financial expenditure to GDP as the proxy variable for
government macro control. The test results indicate that increasing
the indicator is consistent with the baseline regression results, which
proves the reliability of the regression results (Table 8).

3.4.3.2 Replace the explained variable
The explanatory variables used in the baseline regression were

based on carbon emissions from land-use changes. This study used
the total carbon emissions of each county obtained from the
Statistical Yearbook as explanatory variables. The test results
indicated whether the explained variable was replaced, which was
consistent with the baseline regression results, thus proving the
reliability of the regression results (Table 9).

4 Conclusion and discussion

4.1 Discussion

4.1.1 Comparisons between this paper and
previous studies

In terms of the transition of the PLES, the PLES in the TMS
experienced the process of first decreasing and then increasing
ecological space and continuing to increase the living space,
which is consistent with the ecological space changes in the
mountainous areas of China (Wang and Liu, 2023) and the
trends of forest change in Asia (Hansen, 2013). Driven by rapid
industrialization and urbanization, the labor force in the

TABLE 6 Carbon-emissions contribution rate of main PLES transition types Unit: 104 t, %.

Types PLES transition Carbon emissions Contribution rate (%)

Increased carbon emissions APS—IMPS 45.56 33.1

ULS—ULS 21.68 15.7

ULS—IMPS 14.95 10.8

MES—IMPS 12.85 9.3

APS—ULS 8.84 6.4

RLS—IMPS 7.4 5.4

APS—RLS 5.51 4.0

Total 116.79 84.7

Decreased carbon emissions IMPS—APS 74.89 50.3

IMPS—IMPS 47.46 31.9

ULS—APS 13.86 9.3

Total 136.21 91.5

TABLE 7 Estimated results of fixed effect model.

Statistics Coefficient Standard error

lnP1 0.105* 0.192

lnP2 0.956*** 12.687

lnP3 0.852* 1.725

lnA1 0.108* 0.215

lnA2 0.191*** 6.775

lnA3 −0.205*** 8.355

lnA4 0.241* 0.441

lnT1 −0.743* 1.345

lnT2 −0.986*** 7.558

lnO1 −0.882*** 5.993

lnO2 0.975*** 7.921

lnO3 0.373* 0.721

lnO4 0.180* 0.354

Time effect YES _

Individual effects YES _

lna(constant) 9.535*** 27.821

R2 0.652 _

Adjusted R2 0.613 _

F 12.84 _

NO 24 _

Note: *** and * indicate that the statistical quantity is significance at the significance level of

1% and 10%, respectively. Same as Table 7 and Table 8.
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mountainous areas has been transferred to cities and towns, leading
to natural vegetation restoration and expansion of forestland.

In terms of the carbon emission effects, ecological space is the
main source of carbon sinks. The changes seen in the forestland and
grassland directly affect the amount of carbon sinks, which is
consistent with relevant international research conclusions (Jandl
et al., 2007). In recent years, China has vigorously implemented
afforestation and strengthened forest management; therefore, the
area of ecological space in the TMS has increased, and the carbon
sink capacity has improved. The expansion of industrial and mining
production and urban living spaces were the main reasons for the
increase in carbon emissions, which is consistent with the relevant

international research (Grimm et al., 2008; Beesley, 2012; Burgin
et al., 2016). However, the difference is that carbon emissions in the
study area first increased and then decreased, reflecting it has gone
through the process of polluting first and then remediation in the
TMS. And it also reflected the conflict in the PLES experienced a
process of conflict intensification leading to gradual coordination.

In terms of the factors influencing carbon emissions,
urbanization, economic growth, and energy consumption are the
main reasons found for the increase in carbon emissions, which is
consistent with the research conclusions of developing countries,
such as Pakistan and Africa (Aftab et al., 2021; Namahoro et al.,
2021). This reflects the enormous pressure on developing countries
to reduce carbon emissions. Energy intensity and increased forest
area are important reasons for the reduction in carbon emissions,
which is consistent with the conclusions of other countries (Ang,
1999; Henriques and Borowiecki, 2017). However, this study argues
that the PLES transition, especially the transition between the
ecological space and production space, is another important
reason for carbon emissions.

4.1.2 Limitations and prospect of this study
Owing to limited data access, this study takes the Taihang

Mountain area, located west of Shijiazhuang, as an example to
study the transition of the PLES and carbon emissions in the
Taihang Mountain area in China, which may not be sufficiently
comprehensive.

Due to the complex topography of the TMS, land-use patterns
are affected by altitude, slope, aspect, soil erosion, and other factors
that may influence carbon emissions. Future studies should consider
these factors in relation to carbon emissions.

4.2 Conclusion

In this study, the spatial-temporal evolution characteristics of
the PLES transition was explored in the TMS from 2000 to
2020 based on the land-use transfer matrix. Secondly, the carbon
effects of the PLES transition were described through the indicators
of “Contribution rate” and “Marginal carbon emissions”. Finally, the
influencing factors were analyzed by the Improved STIRPATModel.
It can provide a theoretical basis for the optimization of territorial
space in the mountainous areas of China. The main conclusions are
as follows:

(1) The TMS is mainly composed of ecological space and
production space. During the study period, the ecological
space and living space increased by 123.80 km2 and
260.86 km2, respectively, while the production space
decreased by 384.66 km2. The TMS has been in a state of
carbon deficit, and it has experienced a process of increasing
first and then decreasing. Carbon storage of ecological space
increased by 0.80 × 104t, while that of agricultural productive
space decreased by 0.34 × 104t. Carbon emissions of industrial
and mining productive space decreased by 24.24 × 104t, while
that of living space increased by115.30 × 104t.

(2) The transition between agricultural productive space and
industrial and mining productive space was the main
transition types caused the increase or decrease of carbon

TABLE 8 Robustness test: increasing control variables.

Statistics Coefficient Standard
error

lnP2 0.956*** 12.687

lnA2 0.191*** 6.775

lnA3 −0.205*** 8.355

lnT2 −0.986*** 7.558

lnO1 −0.882*** 5.993

lnO2 0.975*** 7.921

the proportion of the local financial
expenditure to GDP

0.125* 3.346

Time effect YES _

Individual effects YES _

lna(constant) 9.535*** 27.821

R2 0.650 _

Adjusted R2 0.614 _

NO 24 _

TABLE 9 Robustness test: replacing the explained variable.

Statistics Coefficient Standard error

lnP2 0.932*** 9.256

lnA2 0.182*** 6.312

lnA3 −0.197*** 7.230

lnT2 −0.973*** 6.903

lnO1 −0.834*** 4.548

lnO2 0.964*** 6.529

Time effect YES _

Individual effects YES _

lna(constant) 9.361*** 25.673

R2 0.576 _

Adjusted R2 0.503 _

NO 24 _
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emissions. The marginal carbon emission of industrial and
mining productive space was the largest, and the marginal
carbon sink of forest ecological space was the largest.

(3) Proportion of construction land was the strongest factor
leading to the increase of carbon emissions, with the
elasticity coefficient of 0.975%, followed by the factors of
urbanization rate and proportion of secondary industry. Per
capita energy consumption is the strongest factor leading to
the decrease of carbon emissions, with the elasticity coefficient
is −0.986%, followed by the factors of forest coverage and
proportion of tertiary industry.

4.3 Policy recommendations

Based on the aforementioned analysis, we can formulate
different policies according to different territorial space control
objectives and gradually coordinate the PLES.

(1) For ecological space, the core is to enhance the carbon
sequestration capacity. The carbon storage of forest and
meadow ecological space in the TMS is much larger than
that of other ecological spaces, so the scale of forestland and
grassland can be continuously increased. The vacating space
should preferentially restore to forest and meadow ecological
space. The carbon sequestration capacity can also be
improved by planting local tree species and optimizing the
proportion of mixed species.

(2) For agricultural productive space, because it has a certain
carbon sequestration capacity, so we should actively develop
green agriculture, reduce the application of pesticides and
fertilizers, and implement straw returning. Combining with
the terrain and climate resources in the study area, develop
unique mountain green agriculture. For industrial andmining
productive space, reduce pollution energy and increase clean
energy to reduce carbon emissions, and establish industrial
parks to optimize the layout of industrial production space.

(3) For urban living space, delineate the urban boundary to
control the urban expansion. Reasonable arrange the park
green space in the urban area to enhance the carbon
sequestration capacity. For rural living space, guide
moderately intensive arrangement of rural living spaces

through village relocation and mergers, and construct
modern new rural living space. Increase the area of green
land in the village to enhance the carbon
sequestration capacity.
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