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Introduction: Terrestrial evapotranspiration (ET) over the Tibetan Plateau (TP) has
important implications for the global water cycle, climate change, and ecosystem,
and its changes and driving factors have drawn increasing attention. Previous
research studies have minimally quantified the effects and identified the pathways
of the influencing factors on ET over different land surface types.

Methods: In this study, we analyze the spatiotemporal distribution and variation
of ET over the TP in 1982–2014 based on multiple datasets. Furthermore, the
effects of each influencing factor on ET are quantified over different land surface
types, and the major influencing factors and their affecting pathways are
identified using structure equation modeling (SEM), which is a statistical
method used to analyze relationships among multiple variables.

Results: The results show that the climatology of ET decreases gradually from
southeastern to northwestern TP, with the maximum spatial averaged value of
379.979 ± 0.417 mm a−1 for the fifth generation of European Reanalysis (ERA5)
and the minimum of 249.899 ± 0.469 mm a−1 for the Global Land Data
Assimilation System (GLDAS). The most significant differences among the ET
datasets mainly occur in the summer. The annual ET averaged over the TP
presents an increased trend from 1982 to 2014, as shown by all of the ET
datasets. However, there are larger discrepancies in the spatial distribution of
the increased trend for these datasets. The assessment result shows that
the 0.05° land evapotranspiration dataset for the Qinghai–Tibet Plateau
(LEDQTP) has the highest temporal correlation coefficient (0.80) and the
smallest root-mean-square error (23.50 mm) compared to the observations.
Based on LEDQTP, we find that precipitation is the main influencing factor of
ET, which primarily affects ET through direct pathways in bare soil and grassland
regions, with standardized estimates of 0.521 and 0.606, respectively. However,
in meadow and shrub and forest regions, the primary factor influencing ET is air
temperature, which is primarily affected by an indirect pathway through a vapor
pressure deficit. Air temperature is also the controlling factor in sparse vegetation
regions, but it affects ET through a direct pathway.

Discussion: This study may provide some new useful information on the effects
of climate change on ET in different land cover types over the TP.
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1 Introduction

Evapotranspiration (ET) refers to the turbulent flux of water
vapor from the land surface into the atmosphere, involving soil
evaporation, interception from the canopy, and transpiration
through plant stomata (Chen et al., 2021). It is a key linkage
between the water and energy cycle processes of the land surface
(Zhang et al., 2016; Lian et al., 2018; Wang et al., 2021). More than
60% of precipitation (Pre) falling on the land surface is consumed by
ET per year (Pan et al., 2020). Additionally, ET plays a vital role in
modulating regional and global weather and climate (Han et al.,
2021). Therefore, it is of great significance to investigate the
spatiotemporal characteristics of ET and its response to
environmental changes, especially in regions that are most
sensitive and vulnerable to climate changes, including the
Tibetan Plateau (TP).

The TP is the birthplace of Asia’s major rivers, famous as the
“Water Tower of Asia,” which plays a crucial role in the energy and
water cycles of Asia (Immerzeel et al., 2010; Yao et al., 2012). Over
the past decades, the TP has undergone significant warming (Yao
et al., 2019), wind stilling (Li et al., 2018; Zhang and Wang, 2020),
wetting (Sun et al., 2020), and vegetation greening (Li et al., 2018).
Under these climatic and environmental changes, ET has also
changed significantly (Lal et al., 2023). The difference between Pre
and ET over the TP determines the availability of freshwater for
over two billion people downstream (Ma and Zhang, 2022).
Therefore, it is crucial to clarify the changes and mechanisms of
ET over the TP to not only understand the impact of the TP on
weather and climate (He et al., 2019; Wang et al., 2020) but also to
map sustainable water resource strategies and establish
appropriate ecoregions for Asia (Ndehedehe et al., 2018; Wang
et al., 2021).

The ET characteristics of the TP have gained increasing
attention worldwide in recent years. Studies have indicated that
the annual ET in the southeastern region of the TP was larger than
that in the northwestern region, with a variable spatial average
ranging from 294.21 mm a−1 to 377 mm a−1 (Zhang et al., 2017;
Wang et al., 2020; Ma and Zhang, 2022; Zhang et al., 2022). As for
the ET trend, some studies reported that the average ET over the TP
showed an increasing trend in recent decades (Zhang et al., 2018;
Cui et al., 2019). However, there were significant regional differences
in the spatial distribution of the ET trend among different studies.
Cui et al. (2019) presented that the increased ET trend mainly
occurred in the Ali, Lhasa Valley, and Haibei areas, while the
decreased ET trend mainly occurred in the southern TP Valley.
According to other studies, the most substantially increased ET
trend occurred in the southeastern TP, particularly in the forest and
alpine meadow regions (Lin et al., 2021; Zhang et al., 2022).
However, some other studies even reported that the domain-
averaged ET decreased slightly over the TP (Han et al., 2021).
These discrepancies may be due to differences in the datasets or
study periods used. Therefore, the selection of the appropriate
dataset based on observations is crucial for studying the
characteristics of ET over the TP.

Identifying the primary drivers of ET and the mechanisms that
influence it will aid in comprehending its response to climate
change. Several studies have investigated the factors that impact
ET on the TP. It has been found that air temperature (Ta) and

surface net radiation (Rn) were important factors influencing the
temporal variations in ET over the TP (Wang et al., 2020). Ma and
Zhang (2022) showed that precipitation was the main driver
regulating ET trends across most of the TP. Additionally, they
found significant spatial differences in the main influencing
factors affecting ET. Zou et al. (2018) demonstrated a significant
correlation between ET and Rn and Ta in the Nagqu River basin in
the TP. According to Lin et al. (2021), the controlling factor of ET in
the humid areas of the TP was available energy, while in arid areas,
energy and water factors together dominated the ET changes. Song
et al. (2017) noted the importance of the leaf-area index in ET
changes in moist regions. The TP exhibits a unique geography, with
a distinct climate gradient from the northwest to the southeast.
Additionally, its surface is heterogeneous. Therefore, it was
understandable that the characteristics of ET and its main
influencing factors varied in different regions across the TP, as
reported by previous studies. It is important to note that the land
cover types on the TP are also diverse, including bare soil, grassland,
meadows, and forests, from the northwestern to the southeastern
regions (Figure 1). To formulate appropriate ecological and
environmental protection policies for each land cover type and
rationalize water resource usage, it is crucial to understand the
variation of ET and the primary influencing factors and mechanisms
in each land cover type. Previous studies have extensively examined
the spatiotemporal characteristics of ET and its main influencing
factors. However, limited research has been conducted on the
primary influencing pathway and quantifying the impacts of the
influencing factors on ET in different land cover types over the TP.

In this study, we analyzed the spatiotemporal characteristics of
ET in different land surface types over the TP from 1982 to
2014 based on multiple datasets. Meanwhile, the accuracy of
these datasets was evaluated based on observations from nine
sites to select one for further analysis. Finally, based on the ET
dataset selected from the evaluation, the contribution of each
influencing factor to ET was quantified, and the main influencing
factors and their impact pathways were identified using structure
equation modeling (SEM), which is a statistical method used to
study the relationships of multiple variables.

2 Materials and methods

2.1 Materials

2.1.1 ET datasets
The spatial resolutions, temporal resolutions, time periods, and

sources of the ET datasets used in this study are summarized in
Table 1. The Global Land Evaporation AmsterdamModel (GLEAM)
was a set of algorithms that were based on satellite observations and
estimated the different parts of ET separately, including
transpiration, interception loss, bare soil evaporation, snow
sublimation, and open-water evaporation (Miralles et al., 2011;
Martens et al., 2017). The basic principle of GLEAM was to
retain the effective information from satellite observation to the
maximum extent in order to keep the ET data as observation-based
as possible (Liu et al., 2021b). Micro-derived soil moisture (SM) was
used, and vegetation interception was fully considered, which were
the advantages of GLEAM (Pan et al., 2020). Many previous studies
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have intensively evaluated the GLEAM data and proved their high
quality (López et al., 2017; Bai and Liu, 2018).

A 0.05° land evapotranspiration dataset for the Qinghai–Tibet
Plateau (LEDQTP) was generated using the remote sensing-based
water-carbon coupled model PML_V2, which was calibrated and
validated by the observed ET and carbon fluxes data from 14 EC

stations across the TP. The model forcing data included
meteorological variables, leaf-area index from remote sensing,
albedo, and emissivity. More detailed information of the dataset
was described byMa and Zhang (2022). The dataset was provided by
the National Cryosphere Desert Data Center (http://www.ncdc.
ac.cn).

FIGURE 1
Distribution of the major land cover types over the TP and locations of the nine eddy-covariance observation sites, including the Muztagh Ata
Westerly Observation and Research Station, Chinese Academy of Sciences (MAWORS, CAS); the Ngari Desert Observation and Research Station, CAS
(NADORS); the BJ site of Nagqu Station of Plateau Climate and Environment, CAS (BJ); the Nam Co Monitoring and Research Station for Multisphere
Interactions, CAS (NAMORS); theQomolangma Atmospheric and Environmental Observation and Research Station, CAS (QOMS); and the Southeast
Tibet Observation and Research Station for the Alpine Environment, CAS (SETORS); Dangxiong (DX); Haibei (HBGCT1 and HBGCT2 with different land
cover types) stations.

TABLE 1 Information of the datasets used in the study.

Variable Spatial resolution Temporal resolution Time period (year) Dataset and data source

ET 0.25° × 0.25° Monthly 1980–2020 Global Land Evaporation Amsterdam Model
(GLEAM v3.5a)

0.05° × 0.05° Monthly 1982–2016 A 0.05° Land Evapotranspiration Dataset for the
Qinghai-Tibet Plateau (LEDQTP), National

Cryosphere Desert Data Center

0.25° × 0.25° Monthly 1948–2014 The Global Land Data Assimilation System (GLDAS-
2.0 Noah)

0.1°×0.1° Monthly 1950–present The European Center for Medium-Range Weather
Forecasts (ECMWF) Reanalysis v5 (ERA5)

0.5° × 0.625° Monthly 1980–2023 The Modern-Era Retrospective Analysis for Research
and Applications, Version 2 (MERRA-2)

Ta and Pre 0.5° × 0.5° Monthly 1961–present China Surface Temperature/Precipitation 0.5 ° × 0.5 °

Grid Dataset (V2.0), China Meteorological Data
Service Center

Ts and SM 0.25° × 0.25° Monthly 1948–2014 Global Land Data Assimilation System (GLDAS-
2.0 Noah)

Win, Rs, Prs, and RH 0.1°×0.1° Monthly 1979–2018 China Meteorological Forcing Dataset (CMFD), the
National Tibetan Plateau Data Center (TPDC)

NDVI 0.083° × 0.083° Monthly 1982–2015 Normalized Difference Vegetation Index (NDVI)
dataset of Tibetan Plateau, the National Tibetan
Plateau Data Center (TPDC)
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The scientists at the National Oceanic and Atmospheric
Administration (NOAA), National Centers for Environmental
Prediction (NCEP), and the National Aeronautics and Space
Administration (NASA) Goodard Space Flight Center (GSFC)
have jointly established the Global Land Data Assimilation
System (GLDAS), which provides high-resolution global data
through integrating ground-based and satellite-based observations
using data assimilation techniques and land surface models (Rodell
et al., 2004). Different land surface models, including Mosaic, Noah,
CLM, and VIC, were used in GLDAS, with only Noah continuing to
be updated until now.

The fifth generation of European Reanalysis (ERA5) was also a
widely used dataset globally. Compared to the previous ERA-
Interim, ERA5 has upgraded some of its key climatic information
and applied the latest version of the Earth system model and data
assimilation techniques used at ECMWF. These updates included
more sophisticated parameterization of geophysical processes
(Hersbach et al., 2020; Lu et al., 2021). Additionally, ERA5 had
improvements in both temporal and spatial resolutions and a better
balance of global Pre and evaporation (Albergel et al., 2018). The
evaluation findings indicated that ERA5 exhibited lower absolute
biases in surface latent heat flux compared to ERA-Interim (Martens
et al., 2020).

The Modern-Era Retrospective Analysis for Research and
Applications, version 2 (MERRA-2), was an improved
atmospheric reanalysis dataset and the second version of
MERRA. It incorporated a larger volume of satellite data and
included new observation types, such as hyperspectral radiation,
microwaves, and aerosols. In addition, it integrated satellite and
conventional weather observations with simulated atmospheric
behavior to achieve the most optimal possible estimation of the
Earth’s system state (Gelaro et al., 2017; Lu et al., 2021). Previous
research has demonstrated that the mean absolute error of latent
heat for MERRA-2 was lower than MERRA (Bosilovich et al., 2015).

2.1.2 Hydrometeorological parameters
The variables that might affect ET are also listed in Table 1. The

gridded Ta and Pre datasets were provided by the China
Meteorological Data Service Center (http://data.cma.cn/), which
were generated through the thin-plate smoothing spline method
based on Ta observations from 2,472 stations and Pre observations
from 2,416 stations in China. The gridded wind speed (Win),
downward shortwave radiation (Rs), relative humidity (RH), and
surface pressure (Prs) used to calculate the vapor pressure deficit
(VPD) were from the China Meteorological Forcing Dataset
(CMFD), which was developed by He et al. (2020) and could be
downloaded from the National Tibetan Plateau/Third Pole
Environment Data Center (https://www.tpdc.ac.cn/en/). The
dataset was created through the fusion of remote sensing
products, reanalysis datasets, and in situ observation data at
weather stations. A wide range of studies suggested that CMFD
presented reasonable consistency with ground-measured
meteorological data and was, therefore, a reliable gridded dataset
in China (Chen et al., 2011; Sun et al., 2017; Yang et al., 2017; Ma
et al., 2019). The land surface temperature (Ts) and SM were from
GLDAS-2.0 Noah. The normalized difference vegetation index
(NDVI) dataset utilized in this study was accessible at http://data.
tpdc.ac.cn and was generated from the NDVI 3 g product based on

the GIMMS AVHRR sensor. This product was computed from the
reflectance of the infrared and near-infrared channels (Pinzon and
Tucker, 2014) and has been proven to have good suitability and
reliable accuracy for detecting vegetation changes in the plateau
region (Zhao et al., 2021).

2.1.3 Eddy-covariance observed data
The eddy-covariance-observed latent heat flux was widely used

by researchers to evaluate ET datasets and validate ET models.
Therefore, we also used the observations from nine EC stations to
evaluate the ET datasets. The detailed information and geographical
location of these sites are shown in Table 2 and Figure 1, respectively.
The observations of the BJ site of Nagqu station of the Plateau
Climate and Environment (BJ), the Southeast Tibet Observation and
Research Station for the Alpine Environment (SETORS), the Nam
Co Monitoring and Research Station for Multisphere Interactions
(NAMORS), the Qomolangma Atmospheric and Environmental
Observation and Research Station (QOMS), the Ngari Desert
Observation and Research Station (NADORS), and the Muztagh
Ata Westerly Observation and Research Station (MAWORS) sites
were downloaded at https://www.scidb.cn/en/. The temporal
resolutions of the original data from these six sites were hourly.
Therefore, we first processed the hourly data into daily data and then
further processed the daily data into monthly data. There were
missing values in the downloaded raw data, so we assigned the data
of a day as amissing value if the missing values of that day were more
than 80% in the generation process of daily data; otherwise, the
missing values were ignored. Similarly, during the generation of
monthly data, if 80% of the days in a month had missing values, the
value for that month was assigned as missing values; otherwise, the
missing values were ignored. The more detailed information about
the six stations was shown in Ma et al. (2020). In addition, the
observations of the Dangxiong (DX) and Haibei (HBGCT1 and
HBGCT2) sites were downloaded from the National Ecosystem
Science Data Center (http://www.nesdc.org.cn/). The details of the
observations were described by Yu et al. (2006). The data from these
three sites has already been processed into monthly values provided
by the data provider, so we just downloaded and used them directly.

The nine observation sites are located in the meadow (DX, BJ,
and SETORS), grassland (NAMORS), wetland (HBGCT2), desert
(QOMS, NADORS, and MAWORS), and shrub (HBGCT1) regions
(Table 2) so they can represent the land surface types over the TP.

2.2 Methods

For compatibility in all of the datasets, a common period of
1982–2014 was used for analysis in the study. In addition, the
bilinear interpolation method, a commonly used interpolation
approach, was used to unify the spatial resolution of different
datasets into 0.05° × 0.05°. The temporal correlation coefficients
(TCCs) and root-mean-square error (RMSE) were used to evaluate
the ET datasets. The TCC was calculated as follows:

TCC �
∑n
i�1

xi − �x( ) yi − �y( )���������∑n
i�1

xi − �x( )2
√ ����������∑n

i�1
yi − �y( )2√ , (1)
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where TCC was the Pearson’s correlation coefficient, x and y
represented the observations and variables to be assessed,
respectively, and n was the number of months in this paper. The
RMSE was calculated as follows:

RMSE �
������������
1
n
∑n
i�1

yi − xi( )2√
, (2)

where n, x, and y had the same meaning as previously defined. The
two statistics were calculated using NCAR Command Language
(NCL) version 6.6.2. Then, the t-test was used to examine the
significance of the correlation coefficients. In addition, the linear
trend of ET was also calculated using NCL. SEM, a statistical
technique widely used to test and assess causal relationships
among climate system variables (Pan et al., 2022), was utilized to
analyze the pathways of the influencing factors on ET. The direct
and indirect impact factors were distinguished in the SEM analysis.
The SEM analysis was carried out using R version 4.2.3 with the
“lavaan” package. The Rn was calculated using the radiation
calculation formulas (Allen et al., 1998) based on the Rs
in the CMFD.

3 Results

3.1 Spatiotemporal characteristics of ET over
the TP

The spatial distributions of annual ET for the five datasets in
1982–2014 are presented in Figure 2. All datasets exhibit a gradual
decrease in ET from the southeastern to the northwestern region of
the TP, with the lowest values concentrated primarily in the Qaidam
basin. A similar ET distribution pattern in the TP was also identified
by Ma and Zhang (2022). It is noteworthy that the spatial
distribution characteristic for ERA5 (Figure 2D) differs from that
of the other datasets due to the larger ET values in the northwestern
regions. Additionally, ET in the northwestern TP for GLDAS
(Figure 2C) and MERRA-2 (Figure 2E) is significantly smaller
than that for GLEAM (Figure 2A) and LEDQTP (Figure 2B).
From Figure 2F, it can be seen that ET values for LEDQTP,

ERA5, and MERRA-2 are higher at most grid points compared
to the other datasets. However, the mean ET from ERA5 averaged
over the TP is the largest at 379.979 ± 0.417 mm a−1 due to the larger
discreteness of ET observed in LEDQTP andMERRA-2, particularly
for MERRA-2. GLDAS presents the smallest mean ET value of
249.90 ± 0.469 mm a−1, averaged over the TP (Table 3).

In addition, ET over the TP presents a clear seasonal cycle,
gradually increasing from January and reaching its maximum in July
before decreasing, as shown by all the datasets (Figure 3).
Furthermore, as ET increases, the differences among the datasets
become more pronounced. In June, July, and August, ERA5 shows
significantly higher ET compared to the other datasets, followed by
LEDQTP, while GLDAS has the lowest value. Therefore, the
discrepancies in annual ET among the five datasets are primarily
caused by the differences in summer. Nevertheless, all of the datasets
can consistently demonstrate the spatial and seasonal distribution
characteristics of ET over the TP in 1982–2014.

Figure 4 shows the inter-annual variations as well as the spatial
distribution of the linear trends of ET for the five datasets from
1982 to 2014. Each dataset exhibits an increasing ET trend, with
GLEAM showing the most significant increase at a rate of 10.8 mm
(10a)−1, followed by LEDQTP. The ET trends for GLEAM,
LEDQTP, and MERRA-2 are statistically significant at a p-value
of less than 0.05. GLDAS, however, shows the minimum variation
with a change rate of 3 mm (10a)−1, which does not pass the
significance test (Figure 4F). Lin et al. (2021) and Yin et al.
(2013) have also reported an increase in ET over the TP during
the periods of 1961–2014 and 1981–2010, respectively. Conversely,
Han et al. (2021) and Song et al. (2017) have shown that the annual
ET averaged over the TP decreased in 2001–2018 and 2000–2010.
The inconsistency in the study time period may be the primary
reason for the opposing ET trends.

Spatially, ET for all five datasets presents an increasing trend in
most areas of the TP in 1982–2014 (Figure 4A–e). However, there
are some disparities in the spatial distribution patterns of the ET
trends among the five datasets. The increasing ET trends for
GELAM are mainly distributed in the western and northern
regions of the TP, which pass the significance test at p < 0.001 in
some areas, while the decreasing ET trends are mainly distributed in
the southeastern regions, Qaidam basin, and Karakoram Mountain

TABLE 2 Information of the eddy-covariance observation sites.

Code Longitude Latitude Temporal
resolution

Time period
(year)

Vegetation
type

DX 91.08° 30.85° Monthly 2004–2010 Meadow

HBGCT1 101.33° 37.67° Monthly 2003–2010 Shrub

HBGCT2 101.32° 37.62° Monthly 2004–2009 Wetland

BJ 91.90° 31.37° Hourly 2010–2016 Meadow

QOMS 86.95° 28.36° Hourly 2007–2016 Desert

SETORS 94.74° 29.77° Hourly 2007–2016 Meadow

NADORS 79.70° 33.39° Hourly 2010–2016 Desert

MAWORS 75.03° 38.42° Hourly 2012–2016 Desert

NAMORS 90.96° 30.77° Hourly 2005–2016 Grassland
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range (Figure 4A). The spatial distribution pattern of the ET trend
for LEDQTP shows a more substantial increase compared to that for
GLEAM (Figure 4B). The decreasing trend is sporadically
distributed in the northeastern regions, southern fringes, and
southeastern regions of the TP. Yang et al. (2022) pointed out
that the enhanced Indian monsoon significantly increased the
temperature, which induced the depletion of SM and, thus,
reduced ET in the southeastern region of the TP. As for GLDAS,
regions with a decreasing ET trend are mainly located in the

northern and southern edge regions of the TP (Figure 4C). The
decreasing ET trends for ERA5 are mainly in the Qaidam basin,
Nyingchi Tanggula, and Yarlung Tsangpo River regions and Daxue
Mountain and Qionglai Mountain regions (Figure 4D). The
increasing trend of ET for MERRA-2 is more significant, and the
range distribution with an increasing trend is wider compared to the
other datasets (Figure 4E).

3.2 Evaluation of the ET datasets based on
observations

Although all five datasets exhibit an increasing trend in ET over
the TP from 1982 to 2014, there are discrepancies in the spatial
distribution patterns of ET trends in these datasets. Therefore, it is
essential to assess these datasets and select the one that is most

FIGURE 2
Spatial distributions of the annual ET (unit: mm a−1) for (A) GLEAM, (B) LEDQTP, (C)GLDAS, (D) ERA5, and (E)MERRA-2 and (F) the boxplot of annual
ET (unit: mm) for the five datasets during 1982–2014.

TABLE 3 Annual mean ET averaged over the TP during 1982–2014 for the
five datasets (unit: mm a−1).

GLEAM LEDQTP GLDAS ERA5 MERRA-2

MEAN 280.416 341.970 249.899 379.980 303.891
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closely aligned with the observation before proceeding with
further analyses.

Figure 5 displays the variation of monthly ET for the five datasets
and the observed latent heat flux at the nine observation sites during
the corresponding years. All datasets are able to capture the oscillatory
characteristics of the observations over time at most sites, except for
certain periods at specific sites, such as at the MAWORS site in 2014
(Figure 5G), which may have resulted from the high number of
missing values for observations during the period at the site. Table 4
shows the TCC between ET for the five datasets and observations at
each site. It can be seen that almost all the TCC for these datasets pass
the significance test at p < 0.001, with the exception of GLDAS at
MAWORS. Specifically, the correlations between GLEAM and the
observation at the HBGCT1 and NADORS sites are larger compared
to the other datasets, with a TCC of 0.798 and 0.808, respectively. It is
worth noting that the TCC between LEDQTP and the observation is
larger than the other datasets at four sites, namely, DX, HBGCT2,
QOM, and MAWORS, with values of 0.909, 0.944, 0.847, and 0.726,
respectively. The highest TCC between GLDAS, ERA5, and MERRA-
2 and the observations only appear at the SETORS, BJ, and NAMORS
sites, respectively. In terms of the average across all the sites, the
highest correlation relationship is found between LEDQTP and the
observation, with a correlation coefficient of 0.8, followed by GLEAM.

Despite the strong temporal correlation between these datasets
and observations, there are still some errors between them, as shown
in Figure 5. All five datasets underestimate ET in certain periods,

particularly in the summer, compared to the observations at the DX
site (Figure 5A). Similar deviations also occur at other sites,
especially at HBGCT1 (Figure 5B), BJ (Figure 5D), and
MAWORS (Figure 5G). The RMSE between the five datasets and
observations is shown in Table 5. The RMSE between LEDQTP and
the observations is lowest at the DX, HBGCT1, HBGCT2, and BJ
sites, with values of 17.618, 27.705, 13.037, and 22.448 mm,
respectively, compared to the other datasets. At the QOM,
SETORS, and NAMORS sites, the lowest RMSE occurs between
the observations and GLEAM, GLDAS, andMERRA-2, respectively.
The two sites (MAWORS and NADORS) have the lowest RMSE
between ERA5 and observations. The LEDQTP has the lowest error
between observations, with an RMSE of 23.501 mm when
considering the mean results averaged over all the sites.

In summary, since the temporal correlation between ET for
LEDQTP and the observations is the highest and, at the same time,
that for RMSE is the lowest, we chose the LEDQTP dataset to study
the main influencing factors on the variation of ET over the TP in
the following section.

3.3 Analysis of the influencing factors of the
ET changes

ET can be affected by various factors, such as climatic variables
and vegetation. Moreover, the main factors that cause changes in ET

FIGURE 3
Monthly ET (unit: mm) averaged over the TP for the five datasets during 1982–2014.
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may be different for different land cover types. Therefore, we
conducted SEM analyses using annual ET and its relevant
variables. Table 6 presents the total contribution of surface Ta,
Pre, Win, Rn, and VPD to ET for LEDQTP using the SEM statistical
method across the entire TP and various land cover types. On the
whole TP, Ta has the strongest effect on ET with a standardized
estimate of 0.666, which is statistically significant at p < 0.005
(Table 6). The response mechanisms of ET to the influencing
factors resulting from the SEM are shown in Figure 6. It is
evident that Ta has a direct impact on ET as well as an indirect
influence through Ts leading to ET and Ts leading to NDVI, which
ultimately affects ET (Figure 6A). In other words, an increase in Ta
causes an increase in Ts, resulting in an increase in ET. Additionally,

the increase in Ts leads to an increase in NDVI, which contributes to
the overall increase in ET. Teng et al. (2021) also found that the
increased ET on the TP was closely related to vegetation greening in
the past 30 years. Although the standardized estimate for Pre, which
is 0.403 and passes the significance test at p < 0.05, is lower than that
of Ta, it still has a direct impact on ET, as illustrated in Table 6
and Figure 6A.

In the bare soil and grassland areas, the standardized estimates of
Ta and Pre both pass the significance test at p < 0.005, and Pre has the
higher values of 0.521 and 0.606, respectively (Table 6). This indicates
that both Ta and Pre have a significant effect on ET in the two land
cover type regions, and Pre has a stronger effect. Ma and Zhang (2022)
and He et al. (2019) also pointed out that the increased ET on the TP

FIGURE 4
Spatial distribution of linear trends (mm (10a)−1) of annual ET for (A) GLEAM, (B) LEDQTP, (C) GLDAS, (D) ERA5, and (E) MERRA-2 and (F) the inter-
annual variations of ET averaged over the TP for the five datasets during 1982–2014. The areas with black dots in (A–E) represent the linear trends that
pass the significance test at p < 0.001.
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was primarily driven by the increased Pre, which was associated with
weakened westerlies that significantly correlated with the Atlantic
Multi-decadal Oscillation (AMO) on inter-decadal time scales (Sun
et al., 2020). As shown in Figures 6B and C, Pre affects ET primarily
through a direct pathway. The increase in Pre (Figure 7C) directly
contributes to the increase in ET (Figure 7A). However, Ta indirectly

affects ET. In bare soil areas, Ta affects ET through Ts (Figure 6B). The
increased Ta (Figure 7B) leads to an increase in Ts (Figure 7H), which
finally promotes an increase in ET. In grassland areas, Ta (Figure 7B)
affects ET through Ts, which in turn affects NDVI and, ultimately, ET.
In addition, the decrease in Rn (Figure 7E) contributes to the increase
in SM (Figure 7F), which finally contributes to the increase in ET.

FIGURE 5
Monthly ET (unit: mm) for GLEAM, LEDQTP, GLDAS, ERA5, and MERRA-2 corresponding to the observed latent heat flux at each observation site.
(A) DX, (B) HBGCT1, (C) HBGCT2, (D) BJ, (E) QOMS, (F) SETORS, (G) MAWORS, (H) NADORS, (I) NAMORS.

TABLE 4 TCC between ET and observed latent heat flux at each observation site.

DX HBGCT1 HBGCT2 BJ QOM SETORS MAWORS NADORS NAMORS MEAN

GLEAM 0.874* 0.798* 0.929* 0.914* 0.799* 0.735* 0.722* 0.808* 0.600* 0.798*

LEDQTP 0.909* 0.794* 0.944* 0.924* 0.847* 0.677* 0.726* 0.756* 0.624* 0.800*

GLDAS 0.888* 0.686* 0.880* 0.907* 0.742* 0.763* 0.108 0.725* 0.654* 0.706*

ERA5 0.866* 0.757* 0.911* 0.928* 0.776* 0.701* 0.714* 0.793* 0.540* 0.776*

MERRA-2 0.871* 0.686* 0.905* 0.851* 0.817* 0.716* 0.577* 0.792* 0.656* 0.763*

Notes: * indicates correlation coefficients that pass the significance test at p < 0.001.
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Therefore, the total effect of Rn was insignificantly negative in the
two regions.

Different from the previous two regions, in the meadow and
shrub and forest regions, the total contributions of Ta to ET are the
largest, with standardized estimates of 0.593 and 0.618, respectively,
both passing the significance test at p < 0.005 (Table 6). Ta primarily
affects ET by an indirect pathway, mainly through VPD and Ts
(Figures 6D and E). It is worth noting that the standardized
estimates of Win are also significant at p < 0.05 in both regions
(Table 6). However, because Win presents a downward trend
(Figure 7D), it inhibits the increase of ET by reducing the
evaporation rate, with estimated values of −0.46 (Figure 6D)
and −0.21 (Figure 6E). The effect of Win is ultimately
outweighed by the positive contribution of Ta, so the ET still
presents an increasing trend (Figure 7A). In addition, it can be
seen that Pre has a larger negative effect on NDVI in meadow
regions (Figure 6D). Figure 7F shows that SM is already higher in the
meadow area, second only to the shrub and forest areas. Therefore,
the soil may be too wet due to higher Pre, causing plant roots to
receive excessive soaking, which can limit plant growth and
photosynthesis, ultimately reducing the NDVI. Previous studies
have also shown a negative relationship between Pre and
vegetation in other cold areas (Xu jie et al., 2019; Ma et al.,
2023). Furthermore, Pre over the TP falls in the form of snowfall
most of the time due to the special topography, and the snow cover
can hinder the identification of vegetation by satellite remote
sensing, which ultimately influences the NDVI. In the shrub and
forest regions, Pre has a negative direct contribution to ET
(Figure 6E). This is mainly because Pre in the shrub and forest
areas presents a decreasing trend (Figure 7C). In addition, Pre
indirectly affects ET through SM. Generally, a decrease in Pre

would inhibit the increase in SM, but due to the more developed
root systems and the high water-holding capacity of the soil in forest
and shrub regions, the vegetation can still maintain SM even with a
decrease in Pre, which may be the reason why SM still increases in
these regions, but the trend is not as significant as in the other
areas (Figure 7F).

Since sparse vegetation is scattered across the TP (Figure 1), the
total contribution of each influencing factor to ET is similar to that
of the whole TP, i.e., the contributions both of Pre and Ta to ET pass
the significance test at p < 0.05 and p < 0.005, respectively, but the
effect of Ta is relatively more significant with a standardized
estimate of 0.699 (Table 6). Ta primarily affects ET through a
direct pathway and secondarily by affecting Ts and then NDVI
indirectly. Similarly, Rn also affects ET to some extent through
SM (Figure 6F).

Summarily, ET shows an increasing trend averaged across the
TP and in all the land cover types. Both Ta and Pre have a significant
effect on the increased ET in the whole TP, bare soil, grassland, and
sparse vegetation regions. On the whole TP and sparse vegetation
region, the total contribution of Ta is more significant, while in the
bare soil and grassland regions, the contribution of Pre is more
significant. In the meadow as well as shrub and forest regions, Ta
plays a dominant role in the increase in ET.

4 Discussion

This study evaluated five ET datasets using the observed latent
heat flux in order to investigate the main driving factors and
influencing mechanisms of ET over the TP in 1982–2014.
However, the observations used in this paper are limited to only

TABLE 5 RSME between ET and observed latent heat flux at each observation site (unit: mm).

DX HBGCT1 HBGCT2 BJ QOM SETORS MAWORS NADORS NAMORS MEAN

GLEAM 27.502 39.254 26.348 33.446 15.932 24.776 39.910 16.143 30.025 28.148

LEDQTP 17.618 27.705 13.037 22.448 18.283 28.145 37.042 17.269 29.958 23.501

GLDAS 24.501 49.146 37.095 29.641 18.330 21.928 38.382 21.505 31.573 30.233

ERA5 22.470 34.484 20.907 22.891 19.795 26.380 29.822 14.062 34.354 25.018

MERRA-2 24.383 36.913 22.275 31.768 17.799 22.531 48.519 19.606 27.646 27.938

TABLE 6 Total contribution of Ta, Pre, Win, and Rn to ET estimated by SEM.

Ta~ET Pre~ET Win~ET Rn~ET

Estimate P Estimate P Estimate P Estimate P

All the TP 0.666** 0.000 0.403* 0.012 −0.121 0.448 0.010 0.955

Bare soil 0.385** 0.000 0.521** 0.000 −0.009 0.918 −0.168* 0.032

Grassland 0.529** 0.000 0.606** 0.000 −0.167 0.104 −0.023 0.811

Meadow 0.593** 0.000 0.286* 0.036 −0.636** 0.000 0.124 0.523

Shrub and forest 0.618** 0.000 0.025 0.743 −0.288** 0.000 0.393** 0.000

Sparse vegetation 0.699** 0.000 0.363* 0.007 0.054 0.627 0.027 0.813

Notes: * and ** indicate the contribution that pass the significance test at p < 0.05 and p < 0.005.
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nine sites, which are sparsely located in the southern part of the TP
(Figure 1). Furthermore, the time series of observations from these
sites is too short, and the time duration is inconsistent for each
station (Table 2). It may not be adequate to evaluate the gridded data

solely based on these observations. Therefore, high-density and
long-time series of flux observations are urgently needed to
evaluate the available gridded datasets in order to obtain more
accurate ET data in future research.

FIGURE 6
Results of the structural equationmodel for ET and its influencing factors over the whole TP (A) and different land cover types (B–F): (B) bare soil, (C)
grassland, (D) meadow, (E) shrub and forest, and (F) sparse vegetation. The numbers in the plots represent the fraction of variation explained for
dependent variables in the model.
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The datasets related to this study have been carefully selected
according to evaluations in previous studies so that they can more
accurately describe the climate changes over the TP. Nevertheless,
there are still some biases in these datasets compared to
observations, which could impact the results of this paper. For
example, GLDAS performed better in capturing the variations of in
situ SM and Ts, but it overestimated SM and showed lower Ts when
compared to the in situ measurements (Bi and Ma, 2015; Xu W.
et al., 2019; Ma et al., 2021; Xing et al., 2021). Win in the CMFD had
the least bias with observations and could represent the variation of
observations well, but its correlation with the observations needed
improvement (Xie et al., 2017; He et al., 2020; Lin et al., 2023). For
Ta, although it was interpolated from observations and had high
accuracy, the gridded Ta was lower than the observation due to the
low altitude of the observing stations (Gao et al., 2015).

Due to the complexity of land–atmosphere interactions, ET is
influenced by various aspects. In this paper, we have only discussed
the influencing factors of ET from the perspective of climate change.
The study found that Pre was the main influencing factor in dry,
bare soil and grassland areas, while Ta was the dominant factor in

the wet meadow and forest regions. This finding was in line with
previous studies that have indicated that ET was constrained by
moisture in arid regions and that the surface energy fluxes were
dominated by sensible heat fluxes. In contrast, in the humid
subsurface, ET was mainly limited by energy supply, with smaller
sensible heat fluxes, and the surface energy fluxes were dominated by
latent heat transfer (Taheri et al., 2022). The elevated CO2

concentration (Liu et al., 2021a), land use/land cover change
(LULCC) (Sterling et al., 2013; Li et al., 2017), and reservoir
storage (Scanlon et al., 2018) may also have larger impacts on ET
by changing the local water and energy balance. According to the
IPCC, global atmospheric CO2 concentrations have increased
(IPCC, 2013). An increase in CO2 concentration reduces
vegetation stomatal openness, thereby increasing stomatal
resistance and reducing ET (Ainsworth and Long, 2005). Piao
et al. (2012) reported that the rising atmospheric CO2

concentration was the main cause of vegetation increases in
eastern regions of the TP, and increased vegetation would lead to
increased ET. Therefore, the elevated CO2 concentration had
comprehensive impacts on ET, which needs to be further

FIGURE 7
Inter-annual variations of (A) ET (mm), (B) Ta (°C), (C) Pre (mm), (D) Win (m s−1), (E) Rn (W m−2), (F) SM (mm), (G) NDVI, (H) Ts (°C), and (I) VPD (hPa)
averaged over different land cover types during 1982–2014.
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discussed in the future. Li et al. (2017) pointed out that the
conversion of forest and wetland to other land uses caused a
decrease in ET, and the conversion of grassland to cropland
resulted in an increase in ET. Additionally, the LULCC would
also affect precipitation (Zhang and Zhou, 2021) and air
temperature (Li et al., 2023), which in turn affected ET. The TP
was covered by a large amount of snow, glaciers, and permafrost
because of its unique terrain and climate features. Changes in the
cryosphere, such as snow reduction, glacial melting, and permafrost
degradation, may also have a significant impact on the
increase in ET.

In addition to these local factors, larger-scale circulation patterns
may also play an important role in altering ET. Miralles et al. (2014)
reported that the dynamics of the El Niño/Southern Oscillation
(ENSO) have dominated the multi-decadal variability of ET at the
global scale. All these issues need to be further discussed in detail in
the future.

5 Summary and conclusion

In this study, we analyzed the spatiotemporal characteristics of
ET over the TP in 1982–2014 based on multiple datasets and then
evaluated these datasets by comparing them with observations
from nine flux observation sites to select one that was closest to the
observation. Finally, based on the selected ET dataset, we
quantified the effect of each driving factor of ET and identified
the main influencing factors and their affecting pathways over the
different land surface types over the TP. The main conclusions are
as follows:

1) ET over the TP decreases from the southeastern to the
northwestern regions. The maximum mean ET averaged
over the TP is 379.979 ± 0.417 mm a−1 for ERA5, and the
minimum is 249.899 ± 0.469 mm a−1 for GLDAS. In addition,
ET presents a clear seasonal cycle, with larger values mainly in
the summer. The differences among the datasets are more
pronounced in the summer. Although all five datasets show an
increasing trend in ET from 1982 to 2014, there are large
differences in the spatial distribution of the trend.

2) The correlations between the five datasets and observations are
high, and the TCC between them passes the significance test at
p < 0.001 at almost all observation sites. LEDQTP possesses the
highest mean TCC of 0.800, while GLDAS has the lowest value
of 0.706. Additionally, LEDQTP has the minimum mean
RMSE of 23.501 mm, while GLDAS has the maximum
RMSE of 30.233 mm.

3) Across the TP, Ta is the main influencing factor for ET.
However, the main influencing factors of ET are different
in different land cover-type regions. In the wet meadow and
shrub and forest regions, Ta is the main and indirect
influencing factor, mainly through affecting VPD, with
standardized estimates of 0.593 and 0.618, respectively. Ta
is also the controlling factor in sparse vegetation regions, but it
affects ET through a direct pathway. However, in the dry, bare
soil and grassland regions, Pre is the main and direct
influencing factor, with standardized estimates of 0.521 and
0.606, respectively.
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