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With a large population and rapid urbanization, there are still many challenges to
optimize the ecological-agricultural-urban space. Here, taking Yulin City,
situated on the Loess Plateau of China as a case in point, we explored the
spatial suitability evaluation of ecological-agricultural-urban space. Building
upon the Chinese government’s concept of “resource and environmental
carrying capacity and territorial development suitability evaluation” (hereinafter
referred to as “double evaluation”), this study applies machine learning to the
planning of ecological-agricultural-urban space. It explores an intelligent
evaluation method for land space patterns using multi-source data. Based on
the random forest (RF) algorithm and geographic information system (GIS),
resulting in evaluated spatial patterns for ecological-agricultural-urban in the
Yulin area. The results showed the constructed random forest models achieved
an accuracy of 93% for ecology, 90% for agriculture, and 92% for urban space in
Yulin City on the test dataset. By means of suitability analysis, the results indicated
that the extremely important ecological space were predominantly located in the
southwestern and eastern regions of the study area, while suitable space for
agricultural production were primarily scattered throughout the southeast. In
contrast, suitable space for urban construction were concentrated mainly in the
central part of the study area. The use of machine learning has proven to be
effective in addressing multicollinearity among spatial evaluation factors across
three different areas. By eliminating human subjectivity in weight assignment
during evaluation, it introduces fresh perspectives for land space planning and
status assessment. These findings may offer support for the scientific delineation
of ecological-agricultural-urban space (three districts and three lines) in China.
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1 Introduction

Territorial space encompasses the geographical area that falls
under the jurisdiction and sovereignty of a nation, comprising land,
inland waters, territorial sea, and airspace. It serves as the crucial
environment for the nation’s existence and survival. Rational
development and efficient land space utilization is the primary
objective in each country’s spatial strategy and policy. Achieving
the optimization of various types of territorial space holds significant
practical importance for developing countries (Wu et al., 2021a).
The structural optimization of land space has emerged as a pressing
issue in the domains of geography and resource science (Wang et al.,
2022a). The “double evaluation” proposed by the Chinese
government in 2019 addresses various aspects of territorial
planning, including urban planning (Foley et al., 2005; Verburg
et al., 2009; Li et al., 2021), rural planning (Ou et al., 2021), and land
planning (Gao et al., 2010; Reidsma et al., 2011; Yu et al., 2022), as
well as the dynamic evolution characteristics of these plans (Reidsma
et al., 2011; LIU et al., 2017). Within the context of “double
evaluation,” the “land space suitability evaluation” aims to
establish the pattern distribution of ecological-agricultural-urban
space (Wang et al., 2019).

In China, researchers have investigated the optimization of
regional patterns based on suitability evaluation utilizing the
ecological-agricultural-urban space, providing practical evaluation
concepts for the scientific arrangement of ecological space,
agricultural space, and urban space (Zhou et al., 2017; Dan, 2019;
Huang, 2019; LI et al., 2020). Previous studies in this area have
utilized traditional mathematical models and comprehensive
overlay analysis methods (Xia and Zhai, 2022). For instance,
ZHANG et al. (2018) developed a multi-objective programming
model to optimize territorial space in Yantai City, China. Li et al.
(2021) employed the entropy weight method to evaluate land use
suitability in southwestern China’s ecological-agricultural-urban
space of the karst region. Zhang et al. (2022) used geodetectors
to analyze the driving mechanism behind the spatial change of
ecological-agricultural-urban space. While these studies have made
significant progress in the spatial zoning of ecological-agricultural-
urban space, some issues remain. One concern is the subjective
nature of setting evaluation factor weights, which heavily relies on
artificial assignment and the expertise of individuals, leading to
potential biases in the evaluation results (Lin et al., 2022; Wei et al.,
2022; Xiao et al., 2022; Wang et al., 2023). Moreover, there are
similarities in the spatial evaluation indicators of land space
suitability evaluation, resulting in problems such as the
intersection of evaluation elements and unclear logical
relationships (Hao et al., 2019). For example, disaster indicators
simultaneously evaluate agricultural and urban space and water and
soil resource conditions are considered in both assessments (Tao
et al., 2022). Howerer, the focus may differ among different
studies. Addressing these challenges will enhance the effectiveness
and objectivity of land space suitability evaluation. Land planning
research commonly employs various methods, including qualitative
analysis (Gao et al., 2010), linear model method (Reidsma et al.,
2011; Das et al., 2015), and mathematical formula calculation
method (Wei et al., 2022). Additionally, the CA-Markov model
(Stewart and Janssen, 2014; Islam et al., 2018; Chaturvedi and de
Vries, 2021), similarity weight (Abdullahi and Pradhan, 2018),

logistic regression method (Mozumder et al., 2016), FLUS model
(Wang et al., 2022a), geodetector (Ou et al., 2022), and geoscience
information map (Wang et al., 2022b) have been utilized in land
planning research. With the rapid development of artificial
intelligence in recent years, machine learning has emerged as a
prominent research tool in land planning (Sankarrao et al., 2021;
Dong et al., 2022). Commonly used machine learning algorithms in
land planning include random forest (RF) (Roy, 2021), support
vector machine (SVM) (Marjanović et al., 2011), BP neural network
(Hong et al., 2016; Aishwarya Devendran and Lakshmanan, 2017),
gradient boosting decision tree (GBDT) (Xia and Zhai, 2022),
Quadtree Algorithm (Xia et al., 2023), XGBoost (Huang et al.,
2023) and various hybrid models (Gaur et al., 2020; Gharaibeh
et al., 2020; Chaturvedi and de Vries, 2021). However, the
application of machine learning in ecological-agricultural-urban
space evaluation is still limited. Due to machine learning’s
effectiveness in addressing multicollinearity among evaluation
factors, this study introduces the RF algorithm to attempt to
construct an evaluation method for ecological-agricultural-
urban space.

In recent years, China is trying to scientifically delineate
ecological space, agricultural space and urban space (three
districts and three lines). Therefore, Yulin is located in a
transitional zone between the Loess Plateau and the Mu Us
Desert., possesses a delicate ecology and prominent
contradictions among various land types, making it an ideal
candidate for ecological-agricultural-urban space research. This
study adopts the selection criteria of evaluation factors used in
“land spatial suitability evaluation,” constructs data sets, performs
algorithm modeling, and leverages GIS technology to represent the
evaluation results spatially. The objectives of this study are as follows
(Wu et al., 2021a): Apply machine learning to the three-districts
division and attempt to resolve the issue of repetition in land space
suitability evaluation indices (Wang et al., 2022a). Analyze the
spatial distribution of ecological-agricultural-urban in Yulin City
and explore an evaluation method for the land spatial pattern in the
region (Li et al., 2021). Utilize the research findings to promote the
coordinated development of various areas in Yulin City and to
provide valuable insights for land and space planning and
management in other regions.

2 Materials and methods

2.1 Study area

Yulin City (Figure 1) is situated in the northernmost region of
Shaanxi Province, China, at the intersection of Shaanxi, Gansu,
Ningxia, Inner Mongolia, and Shanxi provinces. It serves as the
confluence of the Loess Plateau and the Mu Us Desert, functioning
as a transitional zone between the Loess Plateau and the Inner
Mongolia Plateau. Designated as a national historical and cultural
city, Yulin also holds the status of a national ecological protection
and construction demonstration city. The topography of Yulin City
slopes from the west to the east, primarily bounded by the Great
Wall. Its northern part constitutes the sandy grassland area on the
southern edge of the Mu Us Desert, while the southern part lies in
the heartland of the Loess Plateau. Yulin encompasses one city,
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2 districts, and 9 counties, with a registered population of
3.8599 million. The area stretches 385 km from east to west and
263 km from north to south, with a total land area of 42,920.2 square
kilometers. Yulin is a national energy base located in a desert region
where abundant mineral resources and ecological fragility coexist,
creating contrasts between different land types. Challenges include
imbalances in industrial structure, regional development between
the north and south, urban and rural development, known as the
“three imbalances.”

2.2 Research data

The data involved in this study mainly include basic geography
(as depicted in Figures 2A–C), land resources (as illustrated in
Figures 2D–F, I, S), natural resources (as shown in Figures 2H, K, L,
T), location conditions (as depicted in Figures 2G, J), and social
economy (as represented in Figures 2M–R). The sources of data are
detailed in Table 1. Specifically, the land use data used in this study
were obtained from the Resource and Environmental Science Data
Center of the Chinese Academy of Sciences, with the land use types
reclassified as cultivated land, forest land, grassland, water area,
construction land, and unused land. Additionally, the data related to
urban built-up areas, high-incidence areas of geological disasters,

ecological protection red lines, natural protection areas, permanent
bare farmland, and drinking water sources were derived from official
records of Yulin City. The night lighting data used in this study is
sourced from the paper data set byWu et al. (2021b). The population
data is obtained from the WorldPop database and is adjusted based
on the population data from The 2020 Statistical Yearbook of Yulin
City, following the correction method described in Liu and Hu (Liu
and Hu, 2022). The terrain data is derived from the Geographic Data
Space Cloud. The location condition data is sourced from the Open
Street Map map, including vector data of railways, national,
provincial, and county highways. Euclidean distance analysis is
employed to generate distance distribution data from various
types of roads. The precipitation data is obtained from the
monitoring data of 1710 meteorological stations in Shaanxi
Province in 2020, and the spatial distribution data of annual
rainfall is formed using Kriging interpolation. Soil erosion and
soil texture data are acquired from the Resource and
Environmental Science Data Center of the Chinese Academy of
Sciences (http://www.resdc.cn/). The socio-economic data in this
paper expands the index system by incorporating multiple data
sources and obtaining Points of Interest (POI) from the Tencent
map development platform. Spatial data characterizing economic
and social development are generated using point density analysis.
To obtain Net Primary Productivity (NPP) data for the study area,

FIGURE 1
Location of Study area. (A) Administrative map of China (B) Administrative map of Shaanxi Province (C) Administrative map of Yulin City.
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image mosaicking, projection, and resampling were applied to
MOD17A3HGF Version6.0 products. The spatial distribution
data set of China’s Normalized Difference Vegetation Index

(NDVI) is obtained from the Resource and Environmental
Science Data Registration and Publishing System. All data in this
study are based on the year 2020, and the coordinate system is

FIGURE 2
The experimental data samples in the study area. (A) DEM (B) Slope (C) Slope aspect (D) Sand (E) Clay (F) Silt (G) Distance to roads (H) Average
preciptation (I) Soil erosion (J) Distance to river (K) Ndvi (L) Npp (M) Population density (N) Distribution of eatering establishments (O) Distribution of
scenic spots (P) Distribution of healthcare regions (Q) Distribution of schools and educational institutions (R) Night lighting (S) Land use types (T)
Distribution of high-riskgeological hazards area.
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unified into the CGCS2000 projection coordinate in ArcGIS10.8.
The spatial scale of the evaluation unit is 30 m × 30 m.

2.3 Research methods

2.3.1 The ecological-agricultural-urban spatial
classification system

Based on the evaluation index system of land space suitability
and considering the specific conditions of the study area, the
evaluation index system is constructed to encompass three main
aspects: ecological protection suitability, agricultural development
suitability and urban development suitability.

Based on previous studies (Allam et al., 2015; Falasca et al., 2015;
Bathrellos et al., 2017), the author has constructed the index system
for each space, as shown in Table 2. Ecological space serves as the
core carrier of the ecosystem and plays a crucial role in safeguarding
ecological security and enhancing the regional living environment

(Zheng et al., 2017). Numerous studies have assessed the significance
of ecological protection based on ecosystem service functions and
ecological vulnerability. The evaluation of regional ecological
function mainly involves water conservation, biodiversity
preservation, soil and water conservation, windbreak and sand
fixation, and coastal ecological stability. On the other hand, the
vulnerability of the regional ecological environment is assessed by
factors such as soil erosion, land desertification, rocky
desertification, and salinization. The combination of these two
aspects helps to identify ecologically important areas. Considering
the specific ecological conditions in Yulin City, this study selects
certain evaluation factors to assess the importance of soil and water
conservation and soil erosion sensitivity. These factors include soil
erosion, soil texture, topography, rainfall, distance from water
systems, vegetation net primary productivity, and vegetation
coverage as the evaluation factors for ecological space.

Agricultural space is vital for agricultural production, farmers’
livelihoods, and rural ecology. It plays a crucial role in supporting

TABLE 1 Data source and description.

Data type Name Source

Basic geographic data Administrative boundary Provinces, cities and counties data download network (https://www.
shengshixian.com/)

DEM Geospatial data cloud (http://www.gscloud.cn)

Slope Calculated by DEM

Slope aspect

Land resource data Soil quality Resource and Environment Science and Data Center (http://www.resdc.
cn/)

Soil erosion

Land use types

Ecological Protection Red Line From official data

Nature reserves

Drinking water source

Permanent basic farmland

Urban built-up area

Natural resource data Distribution of high-risk Geological hazards area

NPP Resource and Environment Science and Data Center
(http://www.resdc.cn/)

NDVI

Average precipitation China’s surface climate data daily data set V3.0

Location conditions Distance to roads Open Street Map

Distance to river

Socio-economic data POI Population density WorldPoP database (https://www.worldpop.org/) Wu et al. (2021b)

Night lighting

Distribution of healthcare regions Tencent maps

Distribution of Scenic spots

Distribution of educational institutions

Distribution of catering establishment
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and ensuring the implementation of food security strategies. The
planning of agricultural space aims to achieve a compact and well-
structured agricultural layout, providing accessible agricultural
services (Zheng et al., 2017). Spatial planning, driven by the goal
of food security, focuses on optimizing the regional agricultural
pattern based on factors like cultivated land quality grade, soil
environmental quality, soil beneficial elements, and geological
conditions. Therefore, this study selects evaluation indices for
agricultural space from four key aspects: land resources, water
resources, climatic conditions, and environmental conditions.
These indices include soil texture, rainfall, land use status, and
distance from roads.

Urban space primarily serves as a hub for human production
activities and residential areas. It encompasses building areas,
under-construction areas, and a certain range of reserved space.
Urban space constitutes the main concentration of regional
economic and social resources. The quality of its use depends on
the efficiency of space utilization, the availability of public service
facilities, and the quality of the living environment. Considering the
boundary and scale constraints of urban development, along with
terrain, slope, geological disaster risks, and transportation location
conditions, this study establishes the bottom-line constraints for
land space development, which serves as a spatial foundation for
rational urban and town planning. Consequently, the evaluation
indicators for urban space suitability are chosen, emphasizing
factors that significantly impact urban construction, including
high-incidence areas of geological disasters, night lighting,
distance from roads, population density, and various types of
POI data, such as healthcare facilities, tourist attractions,

educational institutions, and cultural venues. These indicators are
crucial for characterizing urban spatial suitability.

2.3.2 Construction of the evaluation model of
ecological-agricultural-urban space based on
machine learning

The study area is divided into 47,683,386 evaluation units based
on a 30 m × 30 m grid, as illustrated in Figure 3.

Step 1: Construction of sample data sets. Supervised learning in
machine learning is employed for modeling, necessitating the
creation of positive and negative sample sets. For the ecological
space suitability evaluation model, positive samples are derived from
areas identified as ecological and important, such as the ecological
protection red line, natural protection area, and drinking water
source area, as designated by expert organizations under the Chinese
government. Conversely, the urban built-up area, which is
challenging to convert into ecological land, serves as negative
samples for this evaluation. The positive sample count is
9,487,517, and the negative sample count is 8,566,318. For the
agricultural spatial suitability evaluation model, permanent basic
farmland is selected as positive samples, while the urban built-up
area is used as negative samples. The positive sample count is
8,845,275, and the negative sample count is 9,208,560. Regarding
the urban spatial suitability evaluation model, the built-up area
serves as positive samples, while the negative samples include the
ecological protection red line, natural protection area, drinking
water source area, and permanent basic farmland. The positive
sample count is 121,013, and the negative sample count is

TABLE 2 The ecological-agricultural-urban space classification system.

Patial classification Type of evaluation index Evaluation factor

Ecological space Land resource data Soil erosion

Natural resource data NDVI

NPP

Location conditions Distance to river

Agricultural space Basic geographic data DEM

Slope

Slope aspect

Natural resource data Average precipitation

Land resource data Land use types

Soil quality

Urban space Natural resource data Distribution of high-risk Geological hazards area

Location conditions Distance to roads

Socio-economic data POI Distribution of healthcare regions

Distribution of Scenic spots

Distribution of educational institutions

Distribution of catering establishment

Night lighting

Population density
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242,026. Through the above steps, a comprehensive sample data set
for evaluating the spatial suitability of the three types of areas is
successfully constructed.

Step 2: Machine learning algorithm modeling. The sample set is
divided into a training set and a test set in a 7:3 ratio. The random
forest algorithm is applied to construct models on the training set,
with subsequent evaluation using the test set. Fine-tuning of
hyperparameters is performed to enhance the model’s performance
and generalization ability. Ultimately, separate ecological space
suitability evaluation, agricultural space suitability evaluation, and
urban suitability evaluation models are established.

Step 3: The constructed models are utilized for evaluation. Using
the trained models, the evaluation units across the entire region are
individually assessed, and the results are presented in a probability
form ranging from 0 to 1. Here, a value of 1 indicates the most
suitable evaluation unit, while a value of 0 represents the least
suitable. The probability results are then categorized using the
natural breaks (jenks) method, This method applies a clustering
approach, dividing data into different groups in a way that
maximizes the similarity within each group while maximizing the

dissimilarity between different groups. The significance of its
application lies in the fact that there are natural (non-artificially
set) turning points or breakpoints in any sequence of numbers.
These natural turning points have statistical significance (JC et al.,
2013; Liu et al., 2023). Therefore, by utilizing the statistical
significance of these turning points, the corresponding numerical
values can serve as reference values for suitability levels. For
ecological suitability evaluation, divisions are made into
extremely important, important, and generally important
categories. For agricultural suitability evaluation, the divisions are
suitable, moderately suitable, and unsuitable. Lastly, for urban
suitability evaluation, the categories are suitable, moderately
suitable, and unsuitable.

Step 4: spatial representation of the evaluation results. Utilizing the
calculations from the three models, each evaluation unit will obtain
suitability evaluation results for ecological space, agricultural space,
and urban space, respectively. In accordance with the requirements
of land space suitability evaluation, ecological space is considered
more important than agricultural space, and agricultural space is
given higher importance than urban space. In the actual application
of land space, it is necessary to reserve some flexible areas for

FIGURE 3
Technical flowchart of research.

Frontiers in Environmental Science frontiersin.org07

Li et al. 10.3389/fenvs.2024.1338931

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1338931


construction beyond the planned scope. In these areas, the original
state is maintained until utilization, and development can be carried
out based on demand during the development process. Flexible
space ensures the orderly expansion of construction land in the
region, avoiding the squeezing of agricultural and ecological spaces
simultaneously, and meeting the needs of regional development.
Consequently, the following evaluation rules are established:
extremely important ecological space > important ecological
space > suitable agricultural space > moderately suitable
agricultural space > suitable urban space > moderately suitable
urban space. If an evaluation unit is classified as moderately
important ecological space, unsuitable agricultural space, and
unsuitable urban space, it is designated as a flexible area, as
illustrated in Figure 4. Following the outlined evaluation rules,
the GIS method is employed to express the evaluation results of
each evaluation unit spatially, resulting in the formation of a spatial
suitability grade distribution map for ecological-agricultural-urban
space. This map displays the distribution of suitability grades for
ecological, agricultural, and urban spaces across the study area.

2.3.3 Random forest model
The random forest model was introduced by Breiman (Breiman,

2001) and is a machine learning algorithm based on classification
trees. The random forest has unique characteristics such as easy

implementation, strong interpretability, and effectively addressing
collinearity and overfitting issues commonly encountered in other
machine learning algorithms. Additionally, the random forest can
evaluate the importance of variables and possesses a robust prediction
capability. The random forest algorithm obtains the final result by
constructing and combining multiple decision trees, as illustrated in
the Figure 5. These decision trees are not required to have high
classification accuracy. Ultimately, the decisions of all decision trees
are determined through voting, akin to a group of experts convening
and voting after a discussion. The process of the random forest
algorithm begins by randomly selecting n samples with
replacement from the original training set to construct the first
decision tree using the bootstrap sampling method. This process
continues until a decision tree can no longer be split, indicating its
completion. The above steps are repeated M times to create M
decision trees, forming a random forest. In this study, the
hyperparameters of the three random forest models were set to 50,
and the calculation formula for the model is as Eq. 1:

H x( ) � ∑
T
i�1hi x( )
T

(1)

Where H(x) is the score probability for model planning; T is the
number of machine learners; hi represents the i thmachine learner; x
is the input.

FIGURE 4
Evaluation rules.
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2.3.4 Classification accuracy verification
The “ecological-agricultural-urban” spatial evaluation model is

examined in this study to determine its quality and application
utilizing a variety of accuracy evaluation indices. Model evaluation is
a crucial aspect of assessing the accuracy and credibility of the
machine learning model. The evaluation methods employed in this
study include classification indicators based on the confusion
matrix, as well as the Receiver Operating Characteristic (ROC)
curve and Area Under the Curve (AUC). These metrics provide
quantitative assessments of the model’s accuracy and performance.

(1) Confusion matrix

The confusionmatrix is utilized to evaluate themodel’s performance
in classifying positive and negative samples, providing insights into its
predictive ability (Sun et al., 2019). Table 3 presents the confusionmatrix,
where Ture Negatives (TN) represents the number of negative samples
correctly predicted as negative, False Positives (FP) indicates the number
of negative samples incorrectly predicted as positive, False Negatives
(FN) denotes the number of positive samples incorrectly predicted as
negative, and True Positives (TP) represents the number of positive
samples correctly predicted as positive.

Based on the confusion matrix, several indicators can be
calculated to characterize the model’s classification performance.
This study utilizes the following indicators: Precision, Recall, and F1,
with the corresponding calculation expressions (as in Eqs 2–4):

Precision � TP
TP + FP

(2)

Recall � TP
TP + FN

(3)

F1 � 2 × Precision × Recall
Precision + Recall

(4)

FIGURE 5
Random forest model diagram.

TABLE 3 Confusion matrix.

Predicted condition

Actual condition 0 1

0 Ture Negatives False Positives

(TN) (FP)

1 False Negatives Ture Positives

(FN) (TP)
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(2) ROC curve and AUC

The ROC curve is a method proposed by Spackman to evaluate
the performance of binary classification prediction models obtained
by different machine learning algorithms (Fawcett, 2006). The ROC
curve has the False Positive Rate (FPR) on the horizontal axis,
representing the proportion of incorrectly predicted negative
samples to all negative samples. The True Positive Rate (TPR) is
on the vertical axis, representing the proportion of correctly
predicted positive samples to all positive samples. The
corresponding calculation expressions are shown in Eqs 5, 6. A
ROC curve closer to the upper left corner indicates a larger area
under the curve and better performance of the model (Chen and
Wu, 2017; Keykhay-Hosseinpoor et al., 2020).

FPR � FP
FP + TN

(5)

TPR � TP
TP + FN

(6)

3 Results

3.1 Modeling results

In this study, the sample set was randomly divided into a
training set and a test set, with 70% of the data used as the
training set and 30% as the test set. The machine learning

modeling was conducted using the Python programming
language, with data preprocessing performed using the Pandas
library, and the Scikit-learn library was utilized to call the
machine learning algorithm. The Random Forest (RF) algorithm
was chosen for modeling, and the hyper-parameter n_estimators of
the three models was set to 50, which means that each algorithm
generated 50 decision trees by default. After training the models with
the training set, the evaluation models were tested on the test set to
obtain the confusion matrix (Table 4) and ROC curve (Figure 6).
Table 4 shows the accuracy of the ecological, agricultural, and urban
space models, which are 93%, 90%, and 92%, respectively. The
ecological model achieved the highest accuracy among the three.
The recall rate measures the model’s ability to identify positive
samples correctly, and all three models demonstrated high recall
rates, with the urban space model achieving an impressive 99% recall
rate. The F1 score, which comprehensively considers precision and
recall, indicated good overall performance for the three models, as
shown in the figure below.

The AUC is a crucial evaluation metric used to assess the
performance of the ROC curve. It ranges from 0 to 1, and the
closer the value is to 1, the better the model’s performance and
generalization ability. In this study, the AUC values of the three
Random Forest (RF) models were found to be 0.98, 0.98, and 0.99,
respectively. These high AUC values indicated that the models had
strong generalization ability and can could be effectively used for
prediction and evaluation.

As the model’s performance indicators were already close to the
optimal state (value of 1), no further optimization of the model
hyperparameters was required. Based on a comprehensive analysis
of the above model performance evaluation indicators, the Random
Forest algorithm was selected as this study’s ecological-agricultural-
urban spatial evaluation model.

3.2 The suitability analysis of ecological-
agricultural-urban space

3.2.1 Evaluation of the importance of
ecological space

In Yulin City, the extremely important area of ecological
protection covers 10,647.48 square kilometers, which accounts for
24.77% of the total land area. This area is mainly situated in the loess
hilly-gully regions of Yulin, Dingbian County, the southern part of
Jingbian County, and the eastern part of Shenmu (Figure 7). It
includes significant nature reserves, wetlands, and water sources, as
well as other vital natural protection areas in the city. Additionally,
there are 23,578.33 square kilometers of important areas for
ecological protection, making up 54.85% of the total land area in
the entire region. These areas are primarily distributed in regions

TABLE 4 Performance comparison graph of models.

Precision Recall rate F1 score AUC-ROC

Ecological model 0.93 0.96 0.93 0.98

Farmland model 0.90 0.94 0.90 0.98

Urban model 0.92 0.99 0.95 0.99

FIGURE 6
ROC curve graph for “ecology-agriculture-urban” spatial
Random Forest model.
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other than the extremely important ecological protection areas, such
as the loess gully region, and areas sensitive to land desertification
and soil erosion, including Jiaxian, Hengshan, Mizhi, and Zizhou.
Furthermore, there are 8,760.95 square kilometers of generally
important areas for ecological protection, accounting for 20.38%
of the total land area in the entire region. These areas are moderately
distributed in the northern part of Yulin City, where it meets the Mu

Us Desert, as well as in the urban areas of various districts and
counties and surrounding townships.

3.2.2 Suitability evaluation of agricultural space
The suitable area for agricultural production in Yulin City covers

617.32 square kilometers, which accounts for only 1.44% of the total
area in the region, indicating a relatively low proportion. These

FIGURE 7
Distribution of ecological importance level.
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suitable areas are scattered in the northern region of the Great Wall,
including Yuyang, Hengshan, Fugu, Dingbian, and Jingbian. These
areas have flat terrain, good soil texture, and favorable farming
conditions (Figure 8). Most of the cultivated land in Yulin City is
located in the moderately suitable area, covering an area of
16,347.83 square kilometers, accounting for 38.03% of the total
area in the region. These areas are primarily scattered in the

southeastern part of Yulin City. On the other hand, there are
15,974.13 square kilometers of unsuitable areas for agricultural
production, making up 35.76% of the total area in the region.

3.2.3 Suitability evaluation of urban space
The suitable area for urban construction in Yulin City covers

11,991.80 square kilometers, accounting for 27.9% of the total

FIGURE 8
Agricultural suitability grade distribution map.
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area in the region. These areas are mainly concentrated in the
central part of Yulin City (see Figure 9). There is also a
moderately suitable area for urban construction, which spans
15,994.31 square kilometers, making up 37.21% of the total area
in the region. These areas are primarily distributed in districts
and counties such as Yuyang, Hengshan, Shenmu, Fugu,

Jingbian, and Dingbian. However, certain regions located in
the loess gully area, characterized by steep slopes, significant
topographic relief, and concentrated sandy land, are considered
unsuitable for urban construction. These unsuitable areas span
3,735.84 square kilometers, representing 8.69% of the total area
in the region.

FIGURE 9
Urban suitability grade distribution map.
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3.2.4 The overall evaluation results
Upon merging the three types of space, this study retains the

optimal evaluation results for each space. Following the principle of
“ecological space > agricultural space > urban space,” as proposed by
the technical requirements of “double evaluation,” the evaluation
results are divided into seven categories based on the suitability level
of each district, as shown in Table 5. The ecologically important
areas are mainly scattered in the central and eastern parts of the
study area. Moderately suitable areas for agriculture are found in the
western, southeastern, and northeastern parts of Yulin City. Most of
the urbanmoderately suitable areas are concentrated in the northern
region of Yulin City, with Hengshan and the northern part of
Yuyang having the highest concentration. Because we established
areas unsuitable for both urban and agricultural spaces as flexible
areas in our evaluation rules, flexible areas are more densely
distributed near the junction of Hengshan and Jingbian in this
study. These areas consist predominantly of grasslands and
undeveloped land, showing lower suitability for both urban
construction and agricultural production spaces. Additionally,
due to constraints imposed by the suitability of other regions,
flexible areas sporadically scatter in the transition zones of the
three spatial categories. These regions can serve as potential areas
for development and utilization when different needs arise within
the study area (Figure 10).

3.3 Characteristics of the evaluation factors
in the ecology-agriculture-urban model

Figure 11 shows that the ecological random forest model
identifies rainfall as the most influential factor in the model,
followed by terrain. This suggests a critical need to enhance the
utilization of water resources and prioritize water conservancy
safety. Enhancing water resource conservation and building
better drainage and flood control infrastructure are crucial
measures in advancing sustainable development in Yulin City.
Implementing these strategies will aid in mitigating the
difficulties presented by the scarcity of water resources and
safeguard the ecological and human health of the municipality in
the long run.

The random forest agriculture model highlights the significant
influence of land use status and vegetation coverage on the model. In
most areas of Yulin City, forest land and unused land are dominant
land use types, with cultivated land primarily concentrated in

Jingbian and Dingbian areas. These regions boast flat terrain,
good soil texture, and favorable farming conditions. It is critical
to contemplate the need to adapt the agricultural structure in the
northern part of the study area in line with economic development
and regional characteristics. In the eastern region, where numerous
ecological zones are present, special attention should be given to the
construction of ecological agricultural areas. Overall, promoting
sustainable agricultural practices and addressing the challenges
posed by water resources and terrain will be crucial for
enhancing the quality and productivity of agricultural land in
Yulin City. Additionally, maintaining a balance between
economic development and ecological conservation is essential
for long-term regional prosperity and ecological stability.

The urban model reveals that social and economic factors, such
as healthcare, science and education schools, and catering
establishments, have the most significant impact on the model.
The remarkable progress in Yulin City’s development and
construction is evident, with the suitable area accounting for
27.9% of the total region, closely mirroring the distribution of
nighttime light and population density. The main concentration
of suitable areas is in Yuyang, Dingbian, Shenmu, Fugu, and other
districts and counties. However, Yulin City also faces certain
challenges and shortcomings in its development and
construction. The city’s economic growth heavily relies on
natural resources, leading to a monopolized industrial structure
and increasing policy, security, and ecological environment
constraints on industrial development. Furthermore, the existing
industrial type in Yulin City exerts significant pressure on the
ecological environment and water resources. To address these
issues, it is recommended to bolster regional innovation
cooperation and invest in scientific and technological innovation.
Emphasizing the development of green industries and advocating
for sustainable practices will contribute to the city’s economic
diversification and environmental protection efforts.

4 Discussion

Within the framework of ecological civilization construction,
scientific rationality and the efficient and effective utilization of land
resources are fundamental prerequisites for land spatial planning.
Land spatial development suitability assessment should be based on
standards of ecological security, efficient resource utilization, and
sustainability. Land spatial suitability assessment serves as a means

TABLE 5 The summary table of the overall evaluation results in Yulin City.

Suitability zoning grade Area (km2) Proportion (%)

Ecological conservation extremely important area 10,647.4824 24.77

Ecological conservation important area 5,018.7438 11.68

Agricultural suitable area 617.3172 1.43

Agricultural moderately suitable area 11,123.649 25.88

Urban suitable area 11,991.7989 27.9

Urban moderately suitable area 3,476.0016 8.09

Flexible area 111.7719 0.26
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to analyze the baseline conditions of land space. Scientific suitability
assessment can provide strong support for guiding land
spatial planning.

The current “double evaluation” policy proposes the possibility
of targeted supplementation and improvement of the indicator
system. With the application of big data technology, numerous
scholars have focused on expanding the indicator system,

particularly emphasizing the integration of Point of Interest
(POI) data into suitability assessments. This enrichment of the
social dimension of the indicator system enhances its regional
specificity. In terms of indicator selection, our study, similar to
the research of Lu (Lu, 2021), incorporates POI data into urban
space indicators. Building upon this foundation, we present a more
comprehensive suitability assessment indicator system, which

FIGURE 10
The summary map of the overall evaluation results in Yulin City.
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additionally includes data such as nighttime light and population
density. Similarly, Li and Guo (Li and Guo, 2023) assesses the
suitability of campsite locations in Xinjiang using POI data.
However, our study diverges by employing the RF algorithm to
calculate indicator weights, replacing the combined method of
subjective and objective evaluations used by others. Thus,
drawing inspiration from the research paradigm of big data, our
study further expands the indicator system for land spatial suitability
assessment.

This study utilizes machine learning techniques to address
spatial planning within the context of “ecological-agricultural-
urban” settings. It aims to provide a data-driven approach to
spatial planning research by investigating intelligent
optimization strategies using a variety of data sources. In the
realm of machine learning algorithms, Li et al. (2023) compared
machine learning Random Forest (RF) and deep learning Deep
Neural Network (DNN) models to assess the land quality of
agricultural land in Guangdong Province, China. The research
findings indicated that the RF method exhibits higher stability and
achieves superior model accuracy across diverse test datasets.
Similarly, Wang et al. (2021) focused on Xiangzhou City, Hubei
Province, constructing a comprehensive assessment indicator
system for arable land quality in the region. Three models-
Entropy Weight (EW), Backpropagation Neural Network
(BPNN), and Random Forest (RF)-were selected for training,

with the study similarly demonstrating the superior
performance of the RF model. RF method can effectively
decompose indicators with nonlinear relationships to the
evaluated object into linear relationships of leaves, determining
the weights of indicators in the operational process, and providing
higher interpretability of indicators, leading to more favorable
evaluation results. This study, centered on the three-zone spatial
assessment in the context of land spatial patterns, produces the
final results of suitability assessment, forming different levels of
suitability classifications. The principles underlying the decision
trees in RF, akin to the classification process, share common
ground with the study’s fundamental principles. Additionally,
the RF model, requiring separate processing of data and
samples, eliminates the need to calculate evaluation weights,
reducing potential biases in suitability results resulting from the
subjective allocation of indicators. This approach ensures the
scientific rigor of the assessment. This offers new insights for
optimizing land spatial patterns at the city and county levels, with
clearly defined zoning evaluation factors and a scientific
zoning approach.

However, due to data collection limitations, our study’s data
acquisition is not comprehensive enough, especially regarding the
inadequate collection of water resource data. Furthermore, the
dynamic and temporal aspects of land use and cover are not
incorporated into the spatiotemporal dimension. In the future,

FIGURE 11
Contribution of ecology-agriculture-urban model evaluation factors.
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we intend to explore the incorporation of dynamic changes in land
use into the optimization of land spatial patterns in land spatial
planning research.

5 Conclusion

This research primarily focuses on enhancing the “double
evaluation” factor composition system for land use planning. The
study collects a diverse array of geoscience data and develops a
comprehensive index system for evaluating the suitability of land
based on its geographical characteristics, thus enhancing the existing
assessment index system for ecological protection, agricultural
suitability, and suitability for construction land. The ongoing
discussion in Yulin City focuses on optimizing the regional
spatial pattern, which has led to the separation of the territory
into seven distinct areas: ecologically important area, important
area, agricultural suitable area, general, suitable area, urban suitable
area, urban general, suitable area, and elastic space. These areas
account for 24.77%, 11.68%, 1.43%, 25.88%, 27.9%, 8.09%, and
0.26% of the total area, respectively. Notably, the central and
northern parts of the study area offer favorable geographical and
local conditions, making them most suitable for urban functional
area development (i.e., urban suitable areas and urban general
suitable areas). Meanwhile, the general suitable areas for
agriculture are predominantly located in the southern part of the
study area, with suitable areas for agriculture scattered in the western
part. The study suggests adjusting the agricultural structure in the
north based on economic development and regional characteristics.
Additionally, in the eastern region with numerous ecological areas,
particular attention should be given to constructing ecological
agricultural areas. The connectivity of ecological space is notably
high in the southeast, southwest, and northeast regions. Conversely,
the flexible area is dispersed near the intersection of Hengshan and
Jingbian, primarily consisting of grassland and unutilized land. The
study’s findings contribute to a better understanding of land space
planning and provide valuable insights for sustainable development
and ecological protection in Yulin City. This study uses the RF
algorithm for artificial intelligence evaluation. The accuracy of the
constructed RF ecological, agricultural, and urban models on the test
set reached 93%, 90%, and 92%, respectively. By adopting the
machine learning model as a suitability evaluation method, this
research effectively addresses issues related to cross-cutting
evaluation elements and unclear logical relationships in
“suitability evaluation.” The RF model is not constrained by the
scale of data, exhibiting high accuracy in predictive tasks. It can also
identify the contribution of variables to the outcome based on a
limited sample size, achieving the classification process with small
errors. This capability addresses complex and nonlinear evaluation
problems. Simultaneously, through the analysis of the features of the
ecological-agricultural-urban model evaluation factors, it was found
that factors such as rainfall, land use, and healthcare have the most
significant impact on the ecological, agricultural, and urban spaces

in the study area, respectively. Combining these findings with
regional development characteristics, relevant recommendations
have been proposed. The scientific delimitation of ecological-
agricultural-urban space in this research provides valuable
support for optimizing the land spatial pattern and serves as a
reference for land spatial planning and management in other
regions. It holds significance for future land spatial planning and
current situation assessments. The use of machine learning in this
context demonstrates its potential to improve land planning
processes, providing a more objective and efficient evaluation
approach. The research findings do indeed contribute to
advancing land spatial planning practices, fostering sustainable
development, and promoting ecological civilization construction.
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