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Water resource management requires a thorough examination of how land use
and climate change affect streamflow; however, the potential impacts of land-
use changes are frequently ignored. Therefore, the principal goal of this study is to
isolate the effects of anticipated climate and land-use changes on streamflow at
the Indus River, Besham, Pakistan, using the Soil and Water Assessment Tool
(SWAT). Themultimodal ensemble (MME) of 11 general circulationmodels (GCMs)
under two shared socioeconomic pathways (SSPs) 245 and 585 was computed
using the Taylor skill score (TSS) and rating metric (RM). Future land use was
predicted using the cellular automata artificial neural network (CA-ANN). The
impacts of climate change and land-use change were assessed on streamflow
under various SSPs and land-use scenarios. To calibrate and validate the SWAT
model, the historical record (1991–2013) was divided into the following two parts:
calibration (1991–2006) and validation (2007–2013). The SWAT model
performed well in simulating streamflow with NSE, R2, and RSR values during
the calibration and validation phases, which are 0.77, 0.79, and 0.48 and 0.76,
0.78, and 0.49, respectively. The results show that climate change (97.47%) has a
greater effect on river runoff than land-use change (2.53%). Moreover, the impact
of SSP585 (5.84%–19.42%) is higher than that of SSP245 (1.58%–4%). The
computed impacts of climate and land-use changes are recommended to be
incorporated into water policies to bring sustainability to the water environment.
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1 Introduction

Global warming has significant impacts on meteorological parameters, which have
changed the river flow in south Asian countries (Khan et al., 2022a; Khan M. et al., 2022;
Singh et al., 2023). Climate change has profound impacts on the water resources of Pakistan
(Kiran et al., 2023). The study conducted by Khan et al. (2022c) found that a 10% change in
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meteorological parameters can alter 10%–35% of river flow in 75%
watersheds of Pakistan. Furthermore, Rizwan et al. (2023a) found
that future streamflow will increase in Pakistan’s Kabul and the
Upper Indus Basin under several climate change scenarios,
including RCP2.6, RCP4.5, and RCP8.5. According to projections
made by Almazroui et al. (2020), under various shared
socioeconomic pathway (SSP) scenarios, the annual mean
precipitation and temperature over Pakistan are expected to
increase by 1.4°C–4.9°C and 26.4 (6.4–159.7)%, respectively, by
the end of the 21st century. The aforesaid alteration in
meteorological parameters might change streamflow and make
water management more difficult. In order to formulate a water
policy in the context of climate change, it is vital to investigate the
underlying hydrological dynamics occurring in the basin under
various SSP scenarios.

According to the Sixth Intergovernmental Panel on Climate
Change (IPCC) Assessment Report, the climate change impacts will
become severe in the future due to the combined impacts of global
warming and socioeconomic changes. According to Amiri et al.
(2023), climate change appears to be more dangerous to the
sustainability of water supplies. Pakistan’s agriculture-based
economy depends on surface water (Haleem et al., 2022). The
Indus River system irrigates Pakistan’s most fertile region (Khan
M. et al., 2022). Water is essential for both the country’s food
security and economic development, both of which rely on an
acceptable and appropriate water supply (Wisal et al., 2020).
Water resources are under tremendous stress because of their
continually expanding population. Pakistan’s per capita water
availability has declined over time, owing to the combined effects
of the growing population and declining river runoff and reservoir
storage capacity (Haleem et al., 2023a). Therefore, it is important to
investigate the impacts of climate and land-use changes on
streamflow to bring sustainability to the water environment.

The Upper Indus Basin (UIB) is the largest irrigation system in
Pakistan. For several decades, the region has faced severe threats
from climate and land-use changes. The river flow in the UIB is
affected by a variety of factors including seasonal snowpack melting,
glacier melting, and precipitation (Khan et al., 2020). The erratic
summertime and particularly wintertime variations in maximum
and minimum temperatures have accelerated glacier melting. As a
result, streamflow has increased, posing problems for the residents
of the UIB (Bilal et al., 2021). Mountainous ecosystems are
vulnerable to the influence of land use and climate change. The
risks linked with increasing temperature in mountainous regions,
particularly in areas like Gilgit Baltistan, which is a glacier-covered
territory, will amplify in the future (Shahid et al., 2021). Therefore, it
is necessary to assess the impacts of climate change on river flow to
bring sustainability to the water environment.

A series of studies conducted by various researchers assessed the
impact of climate change on streamflow. Shahid et al. (2021)
evaluated the impacts of climate change on surface runoff and
found that the runoff will significantly increase in contrast to the
base period. Mahmood and Jia (2016) assessed the effects of climate
change on streamflow and found a 10%–15% increase in the mean
annual flow in the transboundary Jhelum River Basin of Pakistan
and India. Usman et al. (2021) assessed the impacts of climate
change on streamflow under various RCP scenarios, and Shahid
et al. (2018) found that streamflow will decrease in the Soan River

Basin, Pakistan. Anjum et al. (2019) found that climate change will
enhance the annual average flow under various RCP scenarios.
Mahmood et al. (2016) assessed the impacts of climate change
on streamflow in the Kunhar River Basin, Pakistan, and found
an overall increase in the mean annual flow. Moreover, Ullah et al.
(2023) and Khan M. et al. (2023) assessed the impacts of climate
change on the streamflow under various SSP scenarios in the UIB
using machine learning techniques and found an increase in
futuristic streamflow. Chathuranika et al. (2022) and
Karunanayake et al. (2020) evaluated the impacts of climate
change on streamflow and found that streamflow will increase
under various RCP scenarios in the future. The above discussion
shows that researchers only investigated the impacts of climate
change on streamflow. Therefore, it is necessary to estimate the
impacts of climate and land-use changes on surface runoff under
various SSPs and land-use scenarios. Within the larger context of
climate change and its effects on river flow, particularly in Pakistan,
this study tries to fill a significant knowledge gap by examining the
comparative impact of climate change and land-use change on river
runoff under various SSPs and land-use scenarios.

The main objectives of this study were to project streamflow in
the upper regions of the Indus Basin using CMIP6-based general
circulation models (GCMs) and investigate the effects of climate
change and land-use change on the streamflow. This will help
policymakers in formulating a water policy in the
understudy area.

2 Materials and methods

2.1 Study area

This study is carried out to assess the impacts of climate change
and land-use change on streamflow of the Indus River, which passes
through Pakistan, India, China, and Afghanistan. Originating on the
Tibetan Plateau and falling into the Arabian Sea, the Indus River is
the longest river in Asia. Pakistan encompasses a significant portion
of the Indus River Basin, whereas Afghanistan has the smallest
segment. Geographically, the river lies between latitudes 32.48 and
37.07 N and longitudes 67.33 and 81.83 E. The intended extent of
this research is the upper section of the Indus River at Besham,
Pakistan, as illustrated in Figure 1.

2.2 Data collection

2.2.1 Terrestrial data
The digital elevation model (DEM) was sourced from the

National Aeronautics and Space Administration (NASA) for the
designated study area, accessible at https://earthdata.nasa.gov/. The
DEM data, having a resolution of 30 m × 30 m, were used for
watershed delineation. The land-use data were sourced from the
United States Geographical Survey (USGS) using the moderate
resolution imaging spectroradiometer (MODIS), available at
http://www.earthexplorer.usgs.gov/. The soil data were acquired
from the Food and Agriculture Organization (FAO) website,
accessible at http://www.fao.org/. The details of DEM, land use,
and soil data are shown in Figure 1.
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2.2.2 Hydroclimatic data
Meteorological and streamflow data, spanning from 1990 to

2013, were obtained from the Pakistan Meteorological Department
and the Water and Power Development Authority, respectively. The
meteorological parameter data on 11 GCMs, namely, INM-CM4-8
(Russia), INM-CM5-0 (Russia), NESM3 (China), EC-Earth3-Veg-
LR (Europe), GFDL-ESM4 (United States), CMCC-ESM2 (Italy),
CNRM-CM6-1 (France), CNRM-ESM2-1 (France), MIROC6
(Japan), MRI-ESM2-0 (Japan), and MPI-ESM1-2-LR for
SSP245 and SSP585 were downloaded from the online
CMIP6 repository.

2.3 Methodology

The detailed methodology of the present study is demonstrated
by Figure 2.

2.3.1 Data preparation
Initially, data were prepared for the Soil and Water Assessment

Tool (SWAT) model, which includes bias correction, multimodal
ensemble (MME) estimation, and land-use prediction. The
aforementioned data are utilized in isolating climate change
impacts from land use on streamflow.

2.3.1.1 Bias correction of GCMs
Bias correction is an important step in climate modeling,

especially when there are large differences between simulated
and observed data. Bias correction is used to bridge the gap
between GCMs and observed data via transformation
algorithms. This step is necessary in improving future GCM
estimates (Nguyen et al., 2020). There are many bias correction
techniques, namely, delta change correction (additive and
multiplicative), linear scaling (additive and multiplicative),
power transformation of precipitation, precipitation local
intensity scaling, distribution mapping of precipitation and
temperature, and variance scaling of temperature (Nguyen
et al., 2020; Haleem et al., 2022). In a specific case study,
Worku et al. (2020) noted that bias correction effectively aligns
the GCM data with the observed data, further underscoring the
significance of bias correction in enhancing the reliability of
climate projections. In this study, the linear scaling technique
was used for bias correction. The linear scaling method has notable
advantages in terms of simplicity and efficiency compared with
statistical or dynamic scaling techniques (Fang et al., 2015).

2.3.1.2 Selection of the best-performing CMIP6 GCMs
The ensemble computation of GCMs is a common technique

used to improve the accuracy of climate predictions. In the present

FIGURE 1
Study area, DEM, land use, and soil map. (A) shows monitoring stations (B) subbasins and river (C) land use classes (D) soil classes.
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project, the performance of the GCM ensembles was computed
using the Taylor skill score (TSS) and rating metric (RM) techniques
(Dey et al., 2022; Shetty et al., 2023). First, the TSS was computed
using meteorological parameters observed and GCM data via
Equation (1):

S � 4 1 + R( )4

σ+( 1
σ)

2
1 + Ro( )4

. (1)

The equation is based on the ratio of the standard deviation of a
GCM to the standard deviation of observed data, as well as the
highest correlation coefficient value (which is equal to 1), expressed
as R0. The TSS value ranges between 0 and 1. A TSS score of

1 implies that a particular GCM excels in replicating the
observed data.

Second, the RM is estimated for each GCM meteorological
parameter based on their TSS rankings. The GCMs are then
ranked collectively by averaging the RM values for each
meteorological parameter. The RM value varies between 0 and 1,
with a value closer to 1 indicating superior GCM performance and a
value closer to 0 indicating worse performance.

RM � 1 − 1
n
∑n

i�1Ranki, (2)

where i is the rank of the particular GCM based on the TSS and n is
the total number of CMIP6 GCMs.

FIGURE 2
Methodology of the research.
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2.3.1.3 Future land-use prediction
Land use was predicted via the Model of Land Use Change and

its Effects (MOLUSCE), a QGIS plugin, using the cellular automata
artificial neural network (CA-ANN) algorithm. First, the model was
trained to predict specific years of land use. Second, the predicted
land use was compared with NASA MODIS land use. The model
performance was assessed via statistical performance indicators,
namely, kappa value and accuracy. After satisfactory
performance, future land use for 2030, 2040, and 2050 was
predicted. The predicted land use was used to assess land-use
impacts on streamflow.

2.3.2 SWAT model development
This section describes the SWAT model, calibration and

validation procedures, and model performance assessment via
statistical performance indicators.

2.3.2.1 Description of the SWAT model
The SWAT is a semi-distributed hydrological model that

evaluates the complex interactions among terrestrial and
meteorological parameters at the watershed scale (Yi and
Sophocleous, 2011). This tool has gained increasing
recognition in recent years, particularly for its effectiveness in
predicting the effects of meteorological parameters, various land-
use patterns, and soil conditions on streamflow (Gassman et al.,
2014). This model necessitates a minimum number of input
variables, including terrestrial data (including DEM, land use,
and soil) and daily meteorological data (precipitation,
temperature, wind speed, and solar radiation) (Ficklin and
Barnhart, 2014; Wisal et al., 2020). The SWAT model is based
on the principle of the water cycle, as demonstrated by
Equation 3:

SWt � SWo +∑t

i�o Rday − Qsurf − Ea −Wseep − Qgw( )
i
, (3)

where SWt represents the final soil moisture content, mm;
SW0 represents the initial soil moisture content of the ith day,
mm; t represents the time, d; Rday represents the precipitation of the
ith day, mm; Qsurf represents the surface runoff of day i, mm; Ea
represents the amount of evapotranspiration on day i, mm; Wseep

represents the amount of water entering the vale zone from the soil
profile on day i, mm; and Qgw represents the return flow amount on
day i, mm.

2.3.2.2 SWAT model calibration and validation
During the calibration process, model parameters were

adjusted to ensure that the observed streamflow matched the
simulated streamflow data. Fine-tuning was carried out in
SWAT calibration and uncertainty procedures (CUPs) using
optimization algorithms, namely, sequential uncertainty fitting
(SUFI-2) (Shang et al., 2019). The SUFI-2 algorithm is based on
11 objective functions. In the current study, the Nash–Sutcliffe
efficiency (NSE) was used as the objective function as it captures
temporal dynamics, which is a crucial aspect of hydrologic
model calibration (Khan S. et al., 2023). The model
performance was assessed using statistical performance
indicators, namely, the NSE, coefficient of determination (R2),
the root mean squared error (RSR), and percentage error

(PBIAS). The ideal number for RSR and PBIAS is zero, but
for R2 and NSE, it is one. The 2/3 data are used for model
calibration and 1/3 for model validation. The SWAT-CUP
model was calibrated using monthly data from 1991 to 2006.
After successful calibration, the model was validated using
monthly data from 2007 to 2013. The model performance was
assessed as per the criteria presented in Table 1.

2.3.3 Isolating climate change and land-use
impacts on the streamflow

The SWATmodel was used to isolate the land use and climate
change impacts on streamflow. The intercomparison of the
observed and simulated streamflow data was carried out using
preset land use and climate scenarios. In this study, four
scenarios were prepared; scenarios 1 and 3 are related to land-
use change impacts on river runoff, while scenarios 2 and 4 are
related to the climate change impacts on river runoff, as shown in
Table 8. The influence of climate change and land use was
estimated via Equations (8) and (9), respectively (Shang
et al., 2019).

ΔQC � Q2 − Q1, (4)
ΔQL � Q3 − Q1, (5)
ΔQM � QL +QC, (6)
ΔQ � Q4 − Q1, (7)

where Q1, Q2, Q3, and Q4 represent the average streamflow.
Hypothetically, ΔQ is equal to ΔQM.
ηC represents the impacts of climate change on streamflow.
ηL represents the impacts of land use on streamflow.

η ΔQC

ΔQM
× 100, (8)

ηL�
ΔQL

ΔQM
× 100. (9)

3 Results

3.1 Bias correction of the GCM

In this study, we used a linear scaling correction method,
encompassing both addition and multiplication, using the
CMhyd tool (Worku et al., 2020). The model performance was
assessed via statistical performance indicators, namely, R2, NSE,
and RSR (Haleem et al., 2022). The R2, NSE, and RSR values for
temperature and precipitation are 0.81, 0.85, and 0.35 and 0.66,
0.74, and 0.48 for SSP245, and 0.87, 0.82, and 0.31 and 0.76, 0.68,
and 0.45 for SSP585, respectively, as presented in Table 2.

3.1.1 Rating matric and Taylor skill score
The MME was used to improve the performance of GCM

simulations. The best combination of GCMs (SSP245 and
SSP585) for the computation of MMEs was found via the TSS
and RM, as shown in Figure 3. For SSP245, six GCMs, namely,
NESM3 (China), CNRM-CM6-1 (France), CNRM-ESM2-1
(France), GFDL-ESM4 (United States), MIROC6 (Japan), and
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MRI-ESM2-0 (Japan) exceeded the target value which highlights
their similarity with the observed data. These models were used
for MME computation. Similarly, for SSP585, seven GCMs,

namely, NESM3 (China), CNRM-CM6-1 (France), CNRM-
ESM2-1 (France), GFDL-ESM4 (United States), MIROC6
(Japan), CMCC-ESM2, and MRI-ESM2-0 (Japan), crossed the

TABLE 1 Statistical performance indicators.

Performance rating NSE RSR PBIAS (%)

Very good 0.75<NSE≤1 0≤RSR≤0.5 −10<PBIAS<10

Good 0.65<NSE≤0.75 0.5<RSR≤0.6 ±10≤PBIAS<±15

Satisfactory 0.5<NSE≤0.65 0.6<RSR≤0.7 ±15≤PBIAS<±25

Unsatisfactory NSE≤0.5 RSR>0.7 PBIAS≥25

TABLE 2 Model assessment statistical indicators under SSP 245 and 585.

Scenario Temperature Precipitation

NSE R2 RSR NSE R2 RSR

SSP 245 0.81 0.85 0.35 0.66 0.74 0.48

SSP585 0.82 0.87 0.31 0.68 0.76 0.45

FIGURE 3
GCMs selection for MME computation.

Frontiers in Environmental Science frontiersin.org06

Mahmood et al. 10.3389/fenvs.2024.1338512

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1338512


target value. These models were later used for MME estimation. A
simple arithmetic mean approach was used for MME estimation.
The MME estimation reduces the biases and uncertainties of
individual models and uses the collective predictive power of the
selected models. The complete detail of GCMs is presented
in Table 3.

3.2 Expected increase in temperature and
precipitation

Table 4 demonstrate an increase in average precipitation for
all scenarios and time periods, with SSP245 witnessing a 5.43%
increase from 2015 to 2037 and a significant 9.7% increase from
2038 to 2054. SSP 585, on the other hand, shows a lesser 3.26%
growth from 2015 to 2037 but a considerable 10.71% increase
from 2038 to 2054. These patterns indicate that both scenarios
predict a considerable increase in precipitation, which might
have serious consequences for regional water resource
management and ecosystems.

Similarly, Table 4 shows variations in minimum and
maximum temperatures. Temperature is clearly increasing in
both scenarios and time periods. The maximum temperature
increases from 20.6% in the base period to 21.53% in
2038–2054 for SSP245, whereas the minimum temperature
increases from 8.44% to 9.22%. The temperature fluctuations
are more dramatic for SSP 585, with maximum and minimum
temperatures increasing significantly. These changes point to a
significant warming effect, which might have far-reaching
implications for ecosystems, agriculture, and water resource
management.

It is worth noting that the observed average precipitation and
temperatures from 1991 to 2013 are significantly lower than the
expected changes in future scenarios. These findings highlight the
severity of the expected temperature and precipitation changes, as
well as the necessity of proactive arrangements for water resource
management in the region.

3.3 Model calibration and validation

Model calibration (1991–2006) and validation (2007–2013)
were carried out using the observed streamflow data at Besham
Qila, Indus River. A 2-year warm-up period (1989–1990) was used
to initiate the calibration process. In this study, NSE was used as the
objective function during the model calibration. After the model
calibration process, a sensitivity analysis was performed to select the
parameters that governed the streamflow. The 28 most sensitive
parameters were used to calibrate the model, as shown in Table 5.
The simulated streamflow during the calibration and validation
phases is presented in Figure 4.

Statistical performance indicators including NSE, R2, and RSR
were used to assess the model’s effectiveness in predicting the
observed streamflow. The NSE, R2, and RSR values during the
calibration and validation phases are 0.77, 0.79, and 0.48, and
0.76, 0.78, and 0.49, respectively, as presented in Table 6.

3.4 Predicting future streamflow

The selected MMEs were used to predict future streamflow for
the next 31 years under SSP245 and SSP585 scenarios, as shown in
Figure 5. In contrast to the reference period (1991–2013) shown in
Table 7, future streamflow estimates show a divergent pattern
under SSP245 and SSP585 scenarios, for the time spans
2015–2037 and 2038–2054, respectively. SSP585 showed a
19.42% increase in streamflow for the time span 2015–2037,
followed by a 5.84% decline for the time span 2038–2054. In
contrast, under SSP245, the increase in streamflow is relatively
modest, with a 4% increase from 2015 to 2037, and continues to
increase by 1.58% from 2038 to 2054. These findings suggest that
streamflow will vary in the near future, which could have
consequences for future water resource management in the
study region.

As depicted in Figure 6, the frequency of occurrence of the
highest flow spikes of the best-simulated model is lower than the

TABLE 3 Demonstrating GCM details.

Model Horizontal Resolution Vertical Levels

NESM3 (China) ~1.1 degrees (~11 km) 60

CMCC-ESM2 (Italy) ~0.25 degrees (~25 km) 56

CNRM-CM6-1 (France) ~0.25 degrees (~25 km) 91

CNRM-ESM2-1 (France) ~1.4 degrees (~140 km) 91

EC-Earth3-Veg-LR (Europe) ~0.75 degrees (~75 km) 91

GFDL-ESM4 (USA) ~0.25 degrees (~25 km) 33

INM-CM4-8 (Russia) ~2.5 degrees (~250 km) 20

INM-CM5-0 (Russia) ~1.5 degrees (~150 km) 40

MIROC6 (Japan) ~1.4 degrees (~140 km) 80

MRI-ESM2-0 (Japan) ~1.1 degrees (~110 km) 80

MPI-ESM1-2-LR ~0.4 degrees (~40 km) 40
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observed data. Conversely, the frequency of occurrence of the
general and lowest flow values is consistent between the best-
simulated model data and observed data. The same pattern is
also found in the projected future streamflow for both SSP
scenarios, with the main difference being that the peak flow
spikes in both SSPs surpass those found in the observed data.
Moreover, the peak flow spikes of SSP585 are higher than those
of SSP245.

3.5 Land-use prediction

MOLUSCE, a QGIS plugin, was used to predict the land use of
the study area. First, the CA-ANNmodel was trained via 2001 and
2010 land use to predict the 2018 land use. Second, the
2018 predicted land-use map was compared to NASA MODIS
land use for accuracy and kappa value, which were determined to
be 84.94% and 0.80, respectively. Following validation, 2001 and
2018 land-use maps were used to predict 2030, 2040, and
2050 land uses. Figure 7 depicts the predicted land use in 2030,
2040, and 2050 and the percentage composition of various land
use classes.

3.6 Isolating the impacts of climate and
land-use changes on streamflow

The impact of 2050’s predicted land use on surface runoff was
assessed using the SWAT model. The river flow alters in the study
area by 2.53% due to land use and 97.47% due to climate change, as
shown in Table 8. The results clearly depict that climate change has
severe impacts on streamflow in the study area.

4 Discussion

Climate change and land use are the major determinants that
alter streamflow. Haleem et al. (2022) conducted a study in the
Upper Indus Basin, Pakistan, and found that climate change
overweighs land use in altering streamflow. In another study,
Haleem et al. (2023b) found that streamflow will increase by
19%–30% under SSP245 scenarios. Haider et al. (2023) found
that the mean monthly flow will increase by 18%–33.4% in the
Kunhar River Basin, Pakistan, under various land use and
climate change (SSP2 and SSP5) scenarios. Masood et al.
(2023) found that the mean annual flow will increase in the
Mohmand Dam catchment, Pakistan, ranging from 13.7% to
34.8% due to the combined effects of land use and climate change
(SSP2 and SSP5). Rizwan et al. (2023b) found that the mean
monthly streamflow will decrease in the Jhelum River and will
increase in the Kabul River and Upper Indus River, Pakistan,
under various RCP scenarios. Ismail et al. (2022) found that the
average annual stream flow will decrease in the future under
various RCP scenarios in the Soan River, Pakistan. Hassan et al.
(2023) found that streamflow will increase in the future under
various SSPs and land use scenarios in the Rawal Dam
catchment, Pakistan. Lutz et al. (2014) found that the water
level will rise in the Swat and Indus rivers. Akbar and GheewalaT
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(2021) found that the average annual streamflow will increase
due to land use but is not significant in the Kunhar River Basin,
Pakistan. It shows that both climate change and land use are
dominant determinants that alter streamflow. It is suggested that
watershed managers frame water policies based on the climate
change and land use impacts on streamflow because these
determinants play a vital role in shaping sustainable water
resource management strategies.

Climate change is consistently acknowledged as a prominent
factor impacting streamflow in various river basins of Pakistan, with
several studies forecasting an increase in streamflow under various
climate change scenarios. However, there are doubts about the
influence of land-use changes since results range from
considerable increases in streamflow to non-significant changes

in certain basins. The alterations in river flow suggest that the
influence of land use and climate change is context-dependent and
multifaceted. This complexity may be attributed to diverse
methodologies and regional differences. Regional differences in
streamflow responses show the importance of conducting
regional studies. The variations in futuristic streamflow are
attributed to various climate change scenarios adopted by various
researchers, highlighting the complex interplay of determinants
affecting the regional hydrological systems. Overall, while climate
change continues to be a major driver, addressing uncertainty
requires a more detailed understanding of regional conditions as
well as improved modeling techniques to represent the complicated
relationships between climate change and land use across various
river basins of Pakistan.

TABLE 5 Parameters sensitive to streamflow and their fitted values.

Parameter Description Fitted value Range

CN2.mgt Runoff curve number for SCS 55.25 (35,98)

HRU_SLP.hru Average slope steepness 6.11 0.10

OV_N.hru Overland flow’s “n" value according to Manning 9.47 (0.01,30)

CH_N2.rte Main channel’s “n" value, according to Manning 5.49 0.11

RFINC.sub Rainfall adjustment 76.33 (0,100)

DEEPST.gw Initial depth of water in the deep aquifer (mm) 3635.79 (0,50000)

LAT_TTIME.hru Lateral flow travel time 19.80 (0,180)

ESCO.hru Compensation for soil evaporation −4.53 (0,1)

SOL_BD.sol Moist bulk density 1.20 (0.9,2.5)

SLSOIL.hru Length of the slope for lateral subsurface flow 52.37 (0,150)

GW_REVAP.gw Threshold depth of water 0.08 (0.02,0.2)

SNOCOVMX.bsn Minimum amount of water in snow 402.40 (0,500)

SNO50COV.bsn Same amount of snow to 50% snow cover in terms of water 0.46 (0,1)

SFTMP.bsn Snowfall temperature 11.13 (−20,20)

ESCO.bsn Compensation for soil evaporation 0.25 (0,1)

RCHRG_DP.gw Deep aquifer percolation fraction 0.34 (0,1)

SLSUBBSN.hru Average slope length 107.22 (10,150)

TMPINC.sub Temperature adjustment 47.56 (0,100)

REVAPMN.gw Threshold depth of water 287 (0,500)

GWQMN.gw Water in the shallow aquifer must be at a certain depth for the return flow to occur (mm) 350.05 (0,500)

SOL_K.sol Hydraulic conductivity at saturation 117 (0,2000)

CNOP.mgt Number of SCS runoff curves for moisture conditions 16.66 (0,100)

CANMX.hru Maximum canopy storage 7.37 (0,100)

SOL_AWC.sol Soil layer’s capacity to hold water 0.52 (0,1)

EPCO.hru Factor compensating for plant uptake 0.19 (0,1)

ADJ_PKR.bsn Peak rate adjustment factor 0.53 (0,1)

EPCO.bsn Factor compensating for plant uptake 0.95 (0,1)

CH_K2.rte Optimum hydrological conductivity in the main channel’s alluvium 168.32 (0.01,500)
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This study pointed out that land-use changes have less
influence on streamflow regime in comparison to climate
change. Due to global warming, climate change will increase
water availability in the short term, followed by a decrease in the

long run. Summer flow will be enhanced in the early 21st century
due to excessive snowmelt and decline in the later decades due to
melted glaciers although this decline will be reduced by rainfall.
To improve the condition, current water management practices

FIGURE 4
(A) Model calibration and validation (B) best simulation and 95% prediction uncertainty.

TABLE 6 Statistical indicators for calibration and validation.

Watershed Calibration Validation

NSE R2 RSR P-factor R-Factor NSE R2 RSR P-factor R-Factor

Qila Besham 0.77 0.79 0.48 0.51 0.32 0.76 0.78 0.49 0.50 0.31
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need to be reviewed. It is essential to implement water
management strategies that necessitate water storage to lessen
the effects of extreme conditions. The stored water will be used
for various purposes in the study area. Plantation is suggested in

the region to control the glacier melting and bring sustainability
to the water environment (Ahmad et al., 2020).

4.1 Implications for water management
and policy

Pakistan is ranked among the top 10 most susceptible countries
to climate change, with 10,000 deaths and $4 billion in financial
losses due to climate-related disasters. The country is facing climatic
threats, owing to melting glaciers, changing monsoon rainfall

FIGURE 5
SWAT model monthly futuristic streamflow results at the Besham station for the selected MMEs of six GCMs under SSP245 and SSP585 scenarios.

TABLE 7 Future prediction streamflow based on ensemble of 11 GCMs.

Model 1991–2013 2015–2037 2038–2054

Ensemble (SSP 585) 8,725 10,420 (19.42%) 9235 (5.84%)

Ensemble (SSP 245) 8,725 9073 (4%) 8,863 (1.58%)
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FIGURE 6
Intercomparison of the observed and modeled streamflow.

FIGURE 7
Schematic representation of the predicted land use and percentage composition of various land-use classes.
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patterns, rising temperatures, and recurrence of droughts and floods.
The country has already faced 2010 and 2022 floods which have
incurred financial and human costs (Ahmed et al., 2018).

The Indus River is important for Pakistan’s food production
and economic growth, providing approximately 25% gross
domestic product and 90% water for irrigation purposes.
Increasing air temperature has an influence on agriculture as it
increases crop water requirements. In Pakistan, 2010 and
2020 floods damaged million hectares of cropland, created food
shortage, and increased wheat prices by 50% above pre-flood levels
(Saeed et al., 2015). The urban poor dwellers spent more money on
food items. Furthermore, global warming will increase net
agricultural water requirements, putting additional stress on
water resources. A 6% decrease in rainfall increases net
irrigation water requirements by 29% in the country (Arif et al.,
2019). According to the World Bank’s 2020–2021 projection, the
water shortfall will expand to 32% by 2025, resulting in a food
shortage of over 70 million tons. Recent projections indicate that
siltation and climate change will diminish the water storage
capacity by over 30% by 2025. Pakistan has a per capita water
storage capacity of roughly 150 m3, which is fairly low in contrast
to other countries. The condition will be further exacerbated by
climate change. In this regard, water management is necessary at
the country level (Janjua et al., 2021).

The findings that climate change has a greater impact on river
runoff than land-use change emphasize the critical need for adaptive
water management and water diplomacy. A multimodal strategy is
required to solve this, including investments in climate-resilient water
infrastructure capable of handling changing runoff patterns, namely,
climate-resilient reservoirs and small dams at the district level.
Integrated planning that takes into account both land-use and
climate change considerations is critical, highlighting the necessity
of collaboration between urban planners and environmental
authorities. Collaboration among these stakeholders may promote
the creation of sustainable land-use plans that improve adaptive
methods to deal with the effects of climate change, namely, in situ
and ex situ rainwater harvesting systems at the city level. Water
allocation strategies should be created for various sectors that are
flexible enough to adjust to shifting river runoff patterns. This might
include reviewing water distribution quotas for various sectors on a
regular basis in light of revised climate forecasts. To deal with transient
fluctuations in runoff, we can consider putting in place systems that
enable real-time modifications to water allocations for various sectors.
Community involvement and education efforts should empower local
communities to contribute to water conservation such as sustainable
agricultural practices and rainwater harvesting, while the
implementation of early warning systems backed by modern
technology can improve the responsiveness of water management

techniques. Policy incentives for sustainable land-use practices, as well
as international collaboration on shared water resources, strengthen
water management systems’ resilience in the face of increasing
environmental concerns (Haleem et al., 2023b; Ishaque et al., 2023).

5 Conclusion

This study was carried out to isolate the effects of anticipated
climate and land-use changes on streamflow at the Indus River,
Besham, Pakistan, using the Soil and Water Assessment Tool
(SWAT). Future climate change and land-use projections were
created using an ensemble of general circulation models and CA-
ANN, respectively. The historical record (1991–2013) was
separated into two parts: calibration (1991–2006) and validation
(2007–2013). The SWAT model produced statistically significant
results during calibration and validation. The NSE, R2, and RSR
values during the calibration and validation phases are 0.77, 0.79,
and 0.48, and 0.76, 0.78, and 0.49, respectively. Climate change
(97.47%) has a greater effect on river runoff than land-use change
(2.53%). Moreover, the impact of SSP585 (5.84%–19.42%) is
higher than that of SSP245 (1.58%–4%). The computed impacts
of climate and land-use changes on streamflow are recommended
to be incorporated into water policies to bring sustainability to the
water environment.

The findings of this study are significant as it is based on the
MME of 11 GCMs for SSP245 and SSP585 scenarios. However, the
results can be improved by using deep learning techniques for bias
correction and MME computation, which are sophisticated in
comparison to linear scaling and arithmetic mean techniques,
respectively. This acknowledgment underscores the need for
further improvement in streamflow forecasting for better water
resource management.
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