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Surface-canopy forming kelps (Macrocystis pyrifera and Nereocystis luetkeana)
can be monitored along the Northeast Pacific coast using remote sensing. These
kelp canopies can be submerged by tides and currents, making it difficult to
accurately determine their extent with remote sensing techniques. Further, both
species have morphologically distinct canopies, each made up of structures with
differing buoyancies, and it is not well understood whether the differing
buoyancies between these species’ canopies affects their detectability with
remote sensing technologies. Here, we collected in situ above-water spectral
signatures for the surface-canopies ofNereocystis andMacrocystis, providing the
first direct hyperspectral comparison between the structures that make up the
canopies of these species. Additionally, we compare the strength of their red-
edge and near-infrared band signals, as well as the normalized difference red-
edge (NDRE) and normalized difference vegetation index (NDVI) values. At the
bed level, we compare detection of kelp canopy extent using both NDRE and
NDVI classified unoccupied aerial vehicle imagery. We also characterized how
changing tides and currents submerge the canopies of both species, providing
insights that will allow remote sensors tomore accurately determine the extent of
kelp canopy in remote sensing imagery. Observations of canopy structures paired
with in situ hyperspectral data and simulatedmultispectral data showed thatmore
buoyant kelp structures had higher reflectance in the near-infrared wavelengths,
but even slightly submerged canopy structures had a higher reflectance in the
red-edge rather than the near-infrared. The higher red-edge signal was also
evident at the bed level in the UAV imagery, resulting in 18.0% more canopy
classified with NDRE than with NDVI. The area of detected canopy extent
decreased by an average of 22.5% per meter of tidal increase at low current
speeds (<10 cm/s), regardless of the species present. However, at higher current
speeds (up to 19 cm/s),Nereocystis canopy decreased at nearly twice the average
rate of kelp beds in low-current conditions. Apart from the strong differences in
high-current regions, a robust linear relationship exists between kelp canopy
extent and tidal height, which can aid in understanding the errors associated with
remote sensing imagery collected at different tidal heights.
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1 Introduction

Kelp forests are highly productive marine ecosystems that
provide numerous ecologically and commercially important
ecosystem services (Mann, 1973; Krumhansl and Scheibling,
2012). In the Northeast Pacific, Macrocystis pyrifera (giant kelp)
and Nereocystis luetkeana (bull kelp) are two important kelp species
that formmorphologically distinct floating surface-canopies, both of
which can be monitored using remote sensing methodologies
(Pfister et al., 2017; Nijland et al., 2019; Cavanaugh et al., 2021a;
Gendall et al., 2023). The presence and area of surface-canopy can be
highly variable for both of these species, both spatially and
temporally, according to numerous environmental factors. In
recent decades, some kelp forests have undergone significant
reductions in extent or even extirpation, making it important to
monitor changes in these vital ecosystems (Krumhansl et al., 2016;
Wernberg et al., 2019; Starko et al., 2022). Measuring temporal
changes to the canopy extent of these kelps from aerial and satellite
imagery is essential to effectively understand how environmental
drivers, such as inter-annual and decadal climate regimes (Pfister
et al., 2017; Schroeder et al., 2019a; Bell et al., 2020a; Gendall et al.,
2023), or how pulse events like marine heatwaves (Arafeh-Dalmau
et al., 2019; Starko et al., 2022) influence the spatial and temporal
persistence of kelp forests.

Remote sensing is an effective technology used to monitor
floating kelp at both local and regional scales (e.g., Schroeder
et al., 2019a; Cavanaugh et al., 2021a; Gendall et al., 2023). The
remote sensing of floating kelp canopy relies on the kelp’s high
reflectance in the near-infrared (NIR) (700–1,000 nm) in contrast
with the surrounding water’s low NIR reflectance (Jensen, 1980;
Schroeder et al., 2019b; Timmer et al., 2022). However, in situ
oceanographic and biological conditions during remote sensing
imagery acquisition can introduce uncertainties when measuring
kelp extent. For example, portions of the kelp canopy may be
submerged by changing tides and associated tidal currents
(Britton-Simmons et al., 2008; Cavanaugh et al., 2021b), or
simply due to the morphological differences in the canopies and
their position at the water’s surface (Schroeder et al., 2019b).
Further, different parts of the kelp canopy (e.g., Nereocystis
pneumatocyst vs blades) are either positively or negatively
buoyant, which can lead to a spectral signal containing both
submerged kelp (low NIR reflectance) and floating kelp (high
NIR reflectance) with the surrounding water (Schroeder et al.,
2019b; Timmer et al., 2022). The above-water reflectance of both
floating and submerged kelp detected with remote sensing is a
combination of the kelp and water’s spectral signals, which are
further influenced by the presence of optically active water
components (e.g., chlorophyll or suspended sediments)
(Mobley, 1994).

Specifically, when kelp is submerged, the typically high NIR
signal is dampened by the water molecules’ strong absorption,
potentially reducing the detectability of submerged canopy with
an above-water sensor (Augenstein et al., 1991; Schroeder et al.,
2019b; Cavanaugh et al., 2021b; Timmer et al., 2022). Generally, this
problem can be minimized by collecting remote sensing imagery at
relatively low tidal heights and during times when current speeds are
relatively low, when most kelp canopy is expected to be floating at or
near the water’s surface (Pfister et al., 2017; Schroeder et al., 2019a;

Nijland et al., 2019; Hamilton et al., 2020). However, tidal ranges can
vary substantially across regions, making both the planning of
imagery acquisition and the selection of archived imagery during
low tides and under cloud-free conditions (where kelp can be seen),
challenging. For example, moving northward from California
toward Alaska, the tidal range and frequency of cloud cover both
generally increase, limiting the availability of cloud-free, low-tide
imagery (Cavanaugh et al., 2021a). Further, nearshore currents can
be highly heterogeneous over space and time, often decoupling
completely from open water currents in straits or channels where
current speeds are often the fastest (Britton-Simmons et al., 2008),
making it difficult to predict the effects of currents on kelp detection
within remote sensing imagery, even when tidal height and cloud
cover are ideal.

Given these constraints, remote sensing imagery for mapping
kelp on the Northeast Pacific Coast have been acquired within a
range of conditions, with potentially significant implications on the
accuracy of the mapped kelp canopy extent (Schroeder et al., 2019a;
Nijland et al., 2019; Gendall et al., 2023). Recently, narrow-band
multispectral UAV imagery has been used to measure the effects of
tides and currents on Macrocystis beds in California (Cavanaugh
et al., 2021b), allowing analyses at high spatial (centimeters) and
temporal (minutes) resolutions that are not currently possible with
satellite imagery (sub-meter to meters; days to weeks) (Nijland et al.,
2019; Mora-Soto et al., 2020). Similar UAV comparisons have not
been conducted for Macrocystis kelp forests in British Columbia,
where both tidal ranges and current variability are higher, nor have
UAV comparisons been conducted for Nereocystis in any region.

Beyond the uncertainties associated with in situ oceanographic
and biological conditions, sensor characteristics may also influence
kelp detection. These characteristics include the different spectral
bands or wavelengths available for kelp classification (Augenstein
et al., 1991; Schroeder et al., 2019b; Cavanaugh et al., 2021b). For
instance, light absorption by water and its optical constituents is
generally the lowest in the visible wavelengths and increases
exponentially at longer wavelengths. As such, wavelengths in the
longer NIR ranges (e.g., >800 nm) are subject to higher absorption
than the shorter wavelengths in the red-edge (RE) range
(670–750 nm) (Mobley, 1994). As a result, the RE wavelengths
can penetrate deeper into the water column, allowing for deeper
kelp canopy detection than possible with longer NIR wavelengths
(see Timmer et al., 2022 for detailed discussion of this phenomenon)
and higher separability between the classes of kelp and water during
imagery classification (Mora-Soto et al., 2020; Cavanaugh et al.,
2021b). However, some of the first-generation satellite sensors (e.g.,
Landsat and SPOT series) have been used to map historical kelp
based on the NIR band, but were not designed to measure
reflectance at RE wavelengths (Tucker, 1978; Barsi et al., 2014;
Schroeder et al., 2019b). As such, long-term remote sensing studies
generally focus on the NIR bands for kelp classification, often either
using the normalized difference vegetation index (NDVI) to
enhance and standardize kelp detection, or using an NIR band
directly as part of Multiple Endmember Spectral Mixture Analysis
(MESMA) (Jensen, 1980; Schroeder et al., 2019b; Nijland et al., 2019;
Bell et al., 2020a; Butler et al., 2020; Hamilton et al., 2020; Gendall
et al., 2023). Given the many potential uncertainties when using
remote sensing to monitor kelp, it is critical to understand how
morphological differences in their canopy structures and the
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resulting differences in their buoyancy can affect different regions of
the kelp spectral reflectance. Further, a better understanding of how
these kelps are submerged by tides and currents and whether certain
spectral bands or vegetation indices can be used to enhance the
detection of their submerged structures is also critical for using
remote sensing for kelp mapping.

In this study, our goals were two-fold: (1) to describe spectral
characteristics that arise from morphological and bed-level
differences between Macrocystis and Nereocystis surface-canopies,

and (2) to quantify the effects of local tides and currents on the
apparent canopy extent for both Macrocystis and Nereocystis using
remote sensing imagery. To address these goals, (i) we characterized
the spectral differences between Nereocystis andMacrocystis canopy
structures using both in situ hyperspectral and simulated
multispectral measurements, as well as multispectral UAV
imagery, and (ii) we investigated the relationship between the
canopy extents of both Nereocystis and Macrocystis derived from
multispectral UAV imagery with associated tidal height and current

FIGURE 1
Survey site locations on the Central Coast of British Columbia. Site names are based on The Hakai Institute’s existing kelpmonitoring program. TQ =
Triquet Bay (oneMacrocystis bed), TA = Triquetta (twoNereocystis beds), WM=Womanley (oneMacrocystis bed), SF = Starfish Channel (oneMacrocystis
bed and one Nereocystis bed), SP = Surf Pass (one mixed bed), WB = Westbeach (one Macrocystis bed).
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speed. This work contributes to global efforts to monitor surface-
canopy forming kelps by detailing the first direct comparison of the
in situ above-water spectral signatures of Nereocystis and
Macrocystis canopy structures. It also adds to the limited
scientific knowledge of how both species’ canopy structures
respond to submergence by tides and tidal currents. Together,
this information empirically assesses the variability and
uncertainty in remote sensing of kelp extent, allowing remote
sensors to make informed decisions to increase the accuracy of
mapped kelp.

2 Materials and methods

2.1 Study site selection and characterization

This research was conducted at six sites located near the Hakai
Institute ecological observatory on Calvert Island (51°39′16″N
128°07′53″W) on the Central Coast of British Columbia over
2 weeks in July 2020 (Figure 1). The region is characterized by a
complex coastline with numerous channels, fjords, and islands,
creating a mosaic of habitats for aquatic vegetation (Nijland et al.,
2019; Olson et al., 2019). Mean sea surface temperatures range from 7°C
to 15°C annually (Jackson et al., 2015), and tides in the region are semi-
diurnal, with tidal exchanges ranging between 3 and 5 m (Thomson,
1981). The two dominant surface-canopy forming kelp species are M.
pyrifera and N. luetkeana, which can be found in mono-specific and/or
mixed beds (Sutherland, 2008; Nijland et al., 2019). Both species are
generally found between zero to 10 m below chart datum on the BC
coast, but are most commonly found at less than 5 m depth [McHenry
et al., 2024 (under review)]. Although species-level abundance data are
uncommon for this region, aerial surveys conducted by the government
of BritishColumbia show that between 1993 and 2007, a significant shift
occurred from Nereocystis toMacrocystis-dominated reefs (Sutherland,
2008). Since then, changes in kelp abundance have occurred locally at
different sites, likely as a result of trophic cascades (Burt et al., 2018) and
climatic shifts (Krumhansl et al., 2016).

To account for environmental variability of kelp beds along the
heterogeneous coastline, a range of site types were surveyed (e.g.,
bays, channels, headlands) across various conditions (e.g., exposure,
current speeds) that included bothMacrocystis and Nereocystis beds,
with site selection based on expert knowledge from the Hakai
Institute’s kelp monitoring program (https://hakai.org/). Within
these sites, the bathymetric extent of all kelp beds was between
0 and −5 m based on the lower low water large tide (LLWLT) chart
datum. Study site selection required: (1) distinct kelp beds that a
UAV could collect imagery of within a single flight, (2) relatively flat
subtidal benthos near the kelp bed for the benthic placement of an
acoustic Doppler current profiler (ADCP) to collect concurrent tide
and current data; (3) a nearby shoreline that could be captured in
imagery and used for georeferencing UAV images; and (4) deep
enough bathymetry so the canopy did not mix with lower intertidal
or upper subtidal species (e.g., surf-grass or understory kelps) at the
lowest tides. Two sites (Triquetta and Starfish) contained two
distinct kelp beds each within the UAV flight path (Figure 1).
Therefore, a total of eight beds were analyzed even though only
six sites were surveyed: four Macrocystis, three Nereocystis, and one
mixed bed with both species present (Table 1).

2.2 Kelp morphological characteristics:
implications for remote sensing detection

Macrocystis and Nereocystis kelp canopies are
morphologically distinct from one another, and the buoyancy
of their canopies is directly related to the canopy morphology
(Burnett and Koehl, 2017). The strength of a kelp canopy
reflectance signal, as detected by an above-water sensor, will
vary based on the buoyancy of the canopy and its emergence
at the water’s surface (Timmer et al., 2022). From a strictly remote
sensing perspective, here we consider three distinct kelp canopy
“structure types”: The Nereocystis pneumatocyst, the Nereocystis
blades, and theMacrocystis fronds. The Nereocystis pneumatocyst
is a single elongated gas bladder, often many meters long, that
transitions into a stipe and is anchored to the benthos by a
holdfast. Up to 60 blades, which are often around 4 m long,
trail from the distal end of the Nereocystis pneumatocyst
(Springer et al., 2007; Koehl et al., 2008) and are usually held
aloft just below the surface in the water column by passing
currents (Koehl et al., 2008). When mapping Nereocystis with a
UAV the pneumatocyst and blades of Nereocystis sit differently at
the water’s surface due to their positive and negative buoyancy,
and are readily distinguishable from one another (Figure 2). In
comparison, the Macrocystis canopy is comprised of multiple
smaller structures that are not generally individually
distinguishable, even in high resolution UAV imagery
(Figure 2). This collection of Macrocystis canopy structures is
commonly referred to as fronds. A Macrocystis frond is made up
of numerous thin stipes rising from a large holdfast on the sea
floor, with each stipe lined with many small buoyant
pneumatocysts and a single negatively buoyant blade
protruding from the distal end of each pneumatocyst (Druehl
and Wheeler, 1986). The combined buoyancy of the many small
pneumatocysts holds the fronds at the surface, but portions of the
frond (e.g., the blades) may still sit largely just below the water’s
surface. With increasing interest in using ultra high-resolution
remote sensing imagery to understand metrics like kelp biomass
and health (Bell et al., 2020b), we believe that it is useful to better
understand the remote sensing implications of these unique kelp
canopy “structure types” and their morphological differences.

TABLE 1 List of bed codes used for each kelp bed surveyed, according to site
and species present. Note that bed codes are simply site codes from
Figure 1, but with suffixes added to distinguish when two beds are located
at the same site.

Site Bed code Species

Triquet TQ Macrocystis

Starfish SF_N Nereocystis

Starfish SF_M Macrocystis

Westbeach WB Macrocystis

Womanley WM Macrocystis

Triquetta TA_1 Nereocystis

Triquetta TA_2 Nereocystis

Surf Pass SP Mixed
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2.3 Data collection and processing

2.3.1 Biophysical water properties and in situ
above-water reflectance

Water optical properties can be highly variable along the coast of
British Columbia due to contributions from glacial fjords and estuaries,
characterized by high sediment loads, which significantly increase the
reflectance across all wavelengths between the red and theNIR regions of
water spectra (Loos and Costa, 2010; Phillips and Costa, 2017; Giannini
et al., 2021). In addition, intense phytoplankton blooms can increase
reflectance in the NIR region of water spectra, especially at the RE
wavelengths (Schalles et al., 1998). The variable concentrations of these
optical water constituints may bias classification results by obscuring
spectral features used to detect aquatic vegetation (Dekker et al., 2005;
O’Neill and Costa, 2013;Murray et al., 2015). To account for the possible
changes in water optical constituents during the field survey, water
quality measurements were conducted at each site, including under-
water hyperspectral downwelling irradiance from a Satlantic Hyperpro
profiler that was lowered through the water column with a boat-
mounted downrigger. The profiler acquired down-welling irradiance
at a 2-nm spectral resolution with a spectral range of 300–800nm, every
0.1 m depth. These data were used to calculate the diffuse attenuation
coefficient (Kd) (a proxy for light penetration in the water column)
between 400 and 800 nm within the top 1 m of the water column, using
Satlantic software and following the methods outlined by O’Neill et al.
(2011). Further details about the calculation of Kd can be found in
SupplementaryMaterial S1.Water samples were collected in triplicate to
determine total suspendedmatter (TSM), percent organicmatter (POM)
and percent inorganic matter (PIM) (Phillips and Costa, 2017). Finally,

Secchi depth was collected at each site as a proxy for water clarity
(Gallegos et al., 2011). Together with the above-water spectra, the Kd,
TSM, POM, PIM, and Secchi depth data informed the range and
variability of water conditions during field data acquisition.

To characterize the in situ spectral differences between kelp
canopy ‘structure types’, above-water spectra were collected for
dense samples of each structure (i.e., the field of view containing
~100% spectral target - either Macrocystis fronds, Nereocystis
pneumatocysts, or Nereocystis blades) using an ASD Fieldspec
Handheld 2 spectroradiometer (325–1,075 nm) aboard a 22′
aluminum motor vessel following target acquisition methods by
(O’Neill et al., 2011). Above-water spectra were also collected over
optically deep water to supplement the water quality measurements
at each site, except for Surf Pass, due to technical problems with the
spectroradiometer. For each spectral target, above-water radiance
(LT (λ)) and radiance from a white reference panel (Lspec (λ)) were
collected to calculate surface reflectance (Eq. 1; R(λ)0+(%)),
hereafter referred to as R0+ for brevity (Mobley, 1994).

R λ( )0+ %( ) � LT λ( )( )
Lspec λ( )( )( ) × 100 (1)

A Sony HDR-AS50 digital camera was mounted on the ASD
spectroradiometer to collect a matching image from the same
viewpoint from which spectra were collected. Further details
about the parameters of spectral acquisition can be found in
Supplementary Material S1. Spectral data were collected across
multiple days of fieldwork under varying environmental
conditions. For overcast days, an increase of 3%–5% in R0+ was
observed across the spectra compared to cloud-free days due to the

FIGURE 2
Unoccupied aerial vehicle imagery collected at 90 maltitude showing a nadir view of themorphological distinction between (A)Macrocystis pyrifera
fronds, along with higher resolution inset where the bulbs, blades, and stipe cannot be as easily distinguished from one another; as well as (B)Nereocystis
luetkeanawith pneumatocysts prominent at the surface near rocks and blades prominent near the surface in the channel between the rocks, along with
higher resolution inset showing these same features.
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reflection of clouds on the water’s surface (Kutser et al., 2013).
Therefore, to compare spectral features from different survey dates,
all kelp spectra were standardized to R0+ at 500 nm and all water
spectra were standardized using the lowest R0+ value between
850 and 900 nm. Standardized hyperspectral R0+ measurements
from the ASD spectroradiometer were simulated to the red, RE,
and NIR bands of the DJI Phantom 4-Multispectral UAV using
Gaussian functions with the sensor’s spectral response for each
band. The simulated redASD, REASD, and NIRASD were subsequently
used to calculate two normalized vegetation indices (VIn): the
normalized difference vegetation index (NDVIASD; Eq. 2) and the
normalized difference red edge index (NDREASD; Eq. 3).

NDVIASD � NIRASD − redASD

NIRASD + redASD
(2)

NDREASD � REASD − redASD
REASD + redASD

(3)

NDVI is a commonly used vegetation index in kelp mapping
(Jensen, 1980; Schroeder et al., 2019a; Schroeder et al., 2019b;
Nijland et al., 2019; Bell et al., 2020a; Butler et al., 2020;
Hamilton et al., 2020), and NDRE is similar but uses the RE
band instead of the NIR band. Both NDRE and NDVI
incorporate the red band, resulting in a lower influence of sky
radiance on the VIn values than if using a green or blue band
(Karpouzli and Malthus, 2003). VIn values range between −1 and
1 depending on the reflectance signals of the bands used in the
equation. When a VIn is used to measure dense, healthy vegetation,
the RE or NIR reflectance signals are relatively large compared to the
visible band signal (here, the red band), and the VIn outputs reach an
asymptotic plateau as they approach a value of 1, resulting in
potential loss of spectral information (Mutanga and Skidmore,
2004; Timmer et al., 2022). Therefore, the NIRASD/REASD ratios
were calculated for each structure type to define relative differences
in the strength of the NIRASD and REASD values for floating and
submerged kelp canopy structures.

2.3.2 Collection of bed-level metrics and
associated tide and current data

Aerial surveys were conducted using a DJI Phantom 4-
Multispectral UAV, which collects both narrow-band
multispectral imagery from six adjacent sensors (wavelength
ranges in Supplementary Material S2) as well as wider
multispectral bands at red, green, and blue wavelength ranges
within a single sensor (commonly known as RGB). UAV flights
(n = 51) were conducted over 6 days at six sites at 0.5 m tidal
intervals, and the Canadian chart datum of lower low water large
tide (LLWLT) was used to plan all UAV flights with daily tidal states
ranging from ~0 to 4 m. Flights were conducted at a standard height
of 90 m above sea level, resulting in ground sample distance
(i.e., pixel size) of approximately 5 cm for the multispectral
imagery. Flight paths had 80% side-lap and 80% front-lap
between images to maximize the number of features available to
be used as tie points during the orthomosaic creation and improve
the orthomosaic outputs (Casella et al., 2017; Nahirnick et al., 2019).

Wind speed was collected using an anemometer at the beginning of
each flight and generally remained below 5 m/s during all surveys.
However, daily site selection was partially based on the placement of
kelp beds on the leeward side of the shoreline, and therefore, wind

speeds detected from the boat likely had less of a disturbance on the
water surface than might be expected in open water or exposed areas.
Further, a 12 kHzWorkhorse Sentinel acoustic Doppler current profiler
(ADCP) was deployed on the seafloor facing upward, allowing for
simultaneous and continuous in situ depth and current measurements
during each UAV flight. Due to ADCP requirements for depth, pitch,
and roll of the unit, as well as the distance frommoving vegetation that
might impede the beams (RD Instruments, 2005), the ADCP was
strategically placed adjacent to the kelp beds in a location that would
generally characterize the currents at each site. All tidal height and
current data from the ADCP were processed with current speed (cm/s)
calculated as a non-directional absolute value on a horizontal axis
between 0.5 and 1.5 m depth and averaged into 10-min periods. Most
UAV surveys took place at current speeds lower than 10.0 cm/s, except
for surveys at Triquetta, where current speeds of up to 19.0 cm/s were
recorded during imagery collection (Supplementary Material S3).

2.3.3 UAV imagery processing
Orthomosaics were generated from each UAV flight using the

structure-from-motion workflow within Agisoft Metashape [Version
1.8.2], and kelp extent was derived in ESRI ArcMap [Version 10.5.1]
according to the following steps: (1) where necessary, glint masks were
created for imagery to remove specular reflection following methods
developed by Cavanaugh et al. (2021a); (2) each orthomosaic was
georeferenced so that all imagery data were positionally correct relative
to each other; (3) deepwater and landweremanuallymasked from each
orthomosaic, resulting in a clipped area that captured the kelp bed
extent at all tidal heights; (4) NDRE and NDVI rasters were created
from each multispectral orthomosaic; and (5) Jenks Natural breaks
implemented in ArcMap were used to classify kelp and water within
each VIn raster to determine kelp canopy extent (Figure 3). More details
for the UAV imagery processing steps can be found in Supplementary
Material S4.

2.4 Statistical analyses

2.4.1 Evaluation of NDRE and NDVI for kelp canopy
classification in UAV imagery

Exploratory analysis of the UAV imagery showed that NDRE
classification (NDREUAV) detected considerably larger kelp extent
than NDVI classification (NDVIUAV) in surveys with less than
~150 square meters of kelp extent (mostly in imagery collected at
tides >2 m). This discrepancy was due to smaller beds becoming
almost entirely submerged at high tides and, consequently, less
detectable with NDVIUAV (Timmer et al., 2022). Since most kelp
remote sensing imagery is either collected at lower tides, or filtered
for days when tides are low, with beds much more extensive than
150 square meters (e.g., a single Landsat pixel at 30 m2 representing
an area of 900 square meters), VIn classifications were only
compared for imagery with more than 150 m2 of kelp extent. As
such, 10 of the 65 total orthomosaics were removed from the VIn
comparisons and the area of classified kelp canopy (m2) was
determined for the remaining beds using both NDVIUAV
classification (areaNDVI) and NDREUAV classification (areaNDRE).

First, to determine which VIn detects more kelp, a pairwise t-test
was used to compare the mean difference between areaNDRE and
areaNDVI at the bed-level (Cohen, 1988); Then, to investigate
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whether these differences in kelp detection are (i) species specific
(i.e., between Macrocystis and Nereocystis canopies) or (ii) different
during higher (above 2 m) versus lower (below 2 m) tidal heights, the
ratio between areaNDVI/areaNDRE was determined for each bed and
two separate analyses were conducted. (i) A two-sample t-test was
used to compare species level detection differences (Cohen, 1988);
and (ii) the Welch’s t-test for unequal variance was used to compare
detection differences at high versus low tides (Cohen, 1988). The
appropriate statistical tests for each comparison were determined by
first checking for normal distribution using the ShapiroWilk test and
for equality of variance using an F-test (Cohen, 1988).

2.4.2 The effects of tidal height and current speed
on NDVI classified kelp canopy extent

For this analysis, areaNDVI was chosen rather than areaNDRE as
the measure of kelp extent, given that NDVI is the most commonly
used vegetation index for kelp remote sensing due to the prevalence
of the NIR band and lack of RE band in many satellite sensors (e.g.,
Landsat, Spot). The evaluation of tidal height and current speeds on
the areaNDVI was determined according to multivariate regression

for each of the eight kelp beds surveyed. Akaike Information
Criterion with modification for small sample size (AICc) was
used to rank the importance of tidal height and current speed in
determining kelp extent (Burnham and Anderson, 2004). The
multivariate regression results were ranked for each bed instead
of one global model because the canopy extents and minimum tidal
heights of each bed were different. This analysis considered classified
“canopy extent” (i.e., areaNDVI) as the dependent variable with either
“tidal height” and/or “current speed” as the independent variable(s)
(Faraway, 2002), with both additive and interactive effects of these
factors considered, where possible. Unfavourable environmental
conditions (large swell and excessive glint) during UAV imagery
acquisition resulted in a lower number of degrees of freedom
(i.e., useable orthomosaics) for two of the eight kelp beds (TA_1,
df = 5; TA_2, df = 4). Therefore, the AICc ranking for TA_1 did not
include interactive effects between tide and current, and the ranking
for TA_2 did not include additive or interactive effects. In addition
to ranking models with AICc, variance inflation factors were used to
quantify the strength of the correlation between tidal height and
current speed at each site (Cohen, 1988; Stine, 1995).

FIGURE 3
An example of the kelp classification workflow, starting with (A) the full orthomosaic shown in false-color infrared (where the near-infrared band is
shown in red) and a green outline showing the clipped kelp bed region used in the analysis, (B) the colour coded NDVI raster resulting from the clipped
area, (C) the frequency histogram of the NDVI raster showing the Jenks natural breaks threshold in the trough between thewater (lower) and kelp (higher)
peaks, and (D) the resulting binary classification of kelp and water.
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A second level of analysis was conducted to define the rate of
change for areaNDVI due to tidal height increases, ignoring in situ
current speeds. For this analysis, the relationship between tidal height
(x) and areaNDVI (y) for each bed was defined using simple linear
regressionmodels. Since the total extent of each kelp bed varied between
sites, the tide-extent relationships were standardized by dividing the
slope of each linear equation (m) by the y-intercept (b), which provided
the decrease in canopy extent permeter as a percentage of the estimated
kelp extent at 0 m tidal height (Eq. 4).

Percentage of bed extent decrease permeter %/m( ) � m

b
( ) × 100

(4)
This standardization relied on the assumption that all estimates of

the y-intercept were reasonably accurate (see Table 3 in Results for r2

values) and that the extent at 0 m tidal height was a reasonable
benchmark representing 100% of possible kelp canopy at the
surface. Once the data was standardized, the tide-extent relationships
for individual kelp beds were characterized using the average values
(mean ± SD) and the overall ranges of slopes. These descriptive statistics
were determined at the species level, as well as between high-current
(>10 cm/s) and low-current (<10 cm/s) sites.

3 Results

3.1 Spatial and temporal water
characteristics

Before spectral comparisons can be made for kelp at the
structure or bed levels, it is important to verify that the spectral
properties of the surrounding waters are not a confounding factor
between sites and days of surveys in the analyses. Here, the optical
constituents and optical properties of the water had generally low
spatial (between site) and temporal (between days) variability
(Table 2). TSM concentrations (3.3 ± 0.3 mg/L; with similar

contributions of inorganic PIM: 58.8% ± 4.2% and organic POM:
41.2% ± 4.22%) and Secchi depths (4.1 ± 1.1 m) showed that
turbidity was relatively low during the survey days, in
comparison with reported TSM in a large range of coastal waters
in BC (Phillips and Costa, 2017).

The low concentrations and variability of suspended particulate
matter are also expressed in the low R0+ and Kd values. For deep-
water (Figure 4A; Table 2), R0+ was most variable in the blue and
green wavelengths, with the red, RE, and NIR wavelengths showing
relatively low R0+ and minor differences between sites. The deep-
water spectra showed a strong R0+ peak at 570 nm and a small
fluorescence peak at ~690 nm, yet none of the spectra had peaks in
the RE or NIR that would have indicated high water turbidity due to
a phytoplankton bloom or high concentrations of inorganic
particulates (Kutser, 2009; Phillips and Costa, 2017). The Kd

values indicated that light attenuation in the water column
generally increased at longer wavelengths (Figure 4B; Table 2),
with the NIR (788 nm) values roughly 1.5 times higher than in
the RE (715 nm), and the RE was about twice as high as in the red
wavelengths (650 nm). Together, this dataset indicates that turbidity
was low during all surveys, and consequently, low variability in both
R0+ and Kd was observed. Therefore, the spectral properties of the
water are not expected to substantially add to the R0+ variability of
the kelp in our analyses.

3.2 In situ spectral characterization of
morphologically different kelp structures

The in situ above-water spectra showed that the morphology
and buoyancy of different kelp canopy structures play an important
role in the resulting above-water spectra. The locations of spectral
peaks were generally similar regardless of structure type
(pneumatocyst, frond, or blade), but the magnitude of R0+ in the
RE and NIR varied considerably for each structure type (Figure 5A).
In the visible region of the spectrum (400–700 nm), all structure

TABLE 2 Water optical properties and parameters for deep water at each site and averages over the survey period. TSM = total suspended matter; POM =
percent organic matter; PIM = percent inorganic matter; Kd = diffuse attenuation coefficient; R0+ = above-water reflectance. Site codes are in Figure 1.

Site SP WB TA WM TQ SF Mean ± SD

Date (2020-DD-MM) 03–07 04–07 05–07 06–07 07–07 09–07 -

Secchi (m) 4.5 3.0 3.5 3.5 4.0 6.0 4.1 ± 1.07

TSM (mg/L) 3.8 3.5 3.1 3.4 3.4 2.8 3.3 ± 0.34

POM (%) 35.8 39.4 44.5 45.1 45.2 37.4 41.2 ± 4.22

PIM (%) 64.2 60.6 55.5 54.9 54.8 62.6 58.8 ± 4.22

Kd (650 nm) 0.57 - 0.54 0.34 0.52 0.21 0.43 ± 0.16

Kd (715 nm) 1.10 - 1.09 0.72 1.10 0.93 0.98 ± 0.17

Kd (788 nm) 1.59 - 1.84 1.25 1.61 1.49 1.56 ± 0.21

R0+ (650 nm) - 0.75 0.48 0.44 0.46 0.53 0.53 ± 0.13

R0+ (715 nm) - 0.38 0.25 0.25 0.19 0.24 0.26 ± 0.07

R0+ (788 nm) - 0.14 0.15 0.07 0.10 0.05 0.10 ± 0.04

R0+ (840 nm) 0.10 0.04 0.01 0.05 0.02 0.04 ± 0.04
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types had similar shapes andmagnitude of spectral peaks at 575, 600,
and 645 nm. These similarities were likely due to shared
photosynthetic and accessory pigments, with both Nereocystis
and Macrocystis species having a combination of chlorophyll-a,
chlorophyll-c, and fucoxanthin pigments (Duncan, 1973;
Wheeler, 1980). Additionally, each spectra showed a peak at the
top of the RE (~715 nm) and a second peak higher in the NIR
(~815 nm) for all kelp structures, yet the magnitude of these peaks
varied for each structure type. When out of the water, the R0+ of
different kelp species are highly similar (Supplementary Material S5)
and often the R0+ of structures only vary by around 5% (Timmer
et al., 2022), and since the structures here were aggregated at high
densities within the sensor’s field of view, in situ differences in the
shape and magnitude of R0+ signal are thought to be mainly due to
their differing buoyancies and resulting levels of submergence below
the water’s surface.

Nereocystis pneumatocysts were highly buoyant, and a relatively
large portion of their biomass remained emergent above the water
(Figure 5Ai), resulting in the highest overall reflectance and a more
prominent NIR peak compared to the RE peak. Portions of the
Macrocystis fronds were buoyant because of their multiple small
pneumatocysts, but the majority of frond biomass (e.g., blades and
stipes) remained submerged just below the surface of the water
(Figure 5Aii), resulting in a lower overall reflectance than the
Nereocystis pneumatocysts and a more prominent RE peak
compared to the NIR peak. The Nereocystis blades were not
buoyant and remained just below the water surface
(Figure 5Aiii), resulting in the lowest overall spectral signal and a
more prominent RE peak compared to the NIR peak.

The in situ R0+-based simulated multispectral bands of the DJI
UAV showed similar values as the hyperspectral REASD and NIRASD

R0+. However, the derived NDVIASD and NDREASD for both
Nereocystis pneumatocysts and Macrocystis fronds were very near
to the maximum possible VIn value of 1.0 (Figure 5B), despite the
differences in the overall magnitude of R0+ at the REASD and NIRASD

bands regions (Figures 5Ai, ii). Conversely, for theNereocystis blades
that were entirely submerged, the R0+ at the REASD and NIRASD

bands were only slightly higher than the R0+ at the redASD band
(Figure 5Aiii). As such, the VIn values for blades were substantially
lower than those of the other structures, with NDREASD values being
nearly twice that of the NDVIASD (Figure 5B).

3.3 Bed level comparison of UAV based
NDRE and NDVI classifications

Across all UAV surveys, the data showed that areaNDRE was
larger than areaNDVI (t = 7.17, df = 58, p-value <0.001) regardless of
the species surveyed (t = −0.07, df = 51, p-value = 0.95) or tidal
height during the survey (t = −0.54, df = 27.7, p-value = 0.59). The
summed total of areaNDRE was 18% larger than the areaNDVI across
all beds. Despite NDREUAV detecting larger kelp extent than
NDVIUAV, there were no significant differences (t = 0.49, df =
14, p-value = 0.635) between the rate of decrease for canopy extent
classified with NDREUAV (mean ± SD: −24.3% ± 5.3%/m) or with
NDVIUAV (−25.7% ± 6.6%/m), indicating that similar relationships
can be expected in our tide and current analysis using either a
NDREUAV or NDVIUAV classification. A simple visual comparison
of the NDREUAV and NDVIUAV classifications made it apparent that
the reason for this difference was related to the additional
NDREUAV-classified kelp area being consistently at the edges of
the kelp bed.

FIGURE 4
Summary of (A) the percentage of light reflectance (R0+) between 400 and 900 nm from deep-water spectra during surveys and (B) Diffuse
attenuation coefficient (Kd) between 400 and 800 nm for the top meter of the water column during surveys. For each, the thick black line indicates the
mean values over the survey period, and the grey lines show the variability of measurements between days.
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For instance, Figure 6 shows three orthomosaics from the same
region of the Womanley Macrocystis bed (see Figure 1 for location)
collected at low (0.2 m), medium (1.7 m), and high (3.2 m) tidal
height; each with a simple overlap of NDREUAV classified areaNDRE

and NDVIUAV classified areaNDVI using a fixed threshold of 0. At
each tidal height, the additional NDREUAV-classified kelp can be
seen at the edges of the fronds, contributing to the overall larger
areaNDRE. Quantitatively, the NDVIUAV and NDREUAV values of

FIGURE 5
(A) In situ spectra (mean value) and spectral targets for dense examples of (i)Nereocystis pneumatocysts, (ii)Macrocystis fronds, and (iii)Nereocystis
blades. Spectra have overlayed red, red-edge (RE), and near-infrared (NIR) bandwidths of the DJI Phantom 4 multispectral sensor, which were used to
simulate multispectral band reflectance signals and calculate (B) NIR/RE ratios and vegetation indices for each structure type.
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2 m × 2 m regions crossing the kelp bed from west to east showed
that, at each tidal height, both NDVIUAV and NDREUAV values were
higher (mean ± SD) at the center of the kelp bed and lower towards
the bed edges, suggesting a higher kelp density at the bed centre. In
addition, regardless of the position across the kelp bed, the
NDREUAV values are higher than NDVIUAV because much of the
Macrocystis biomass is just below the water’s surface. Therefore, the
higher RE signal from kelp at the bed edges allowed some pixels to be
classified with NDREUAV but not NDVIUAV.

3.4 Kelp extent: tide and current
relationships

The best fit model for seven of the eight kelp beds surveyed
contained tidal height alone as predictor for areaNDVI kelp extent
(Supplementary Material S6). For the eighth bed (TA_1), both
current and tidal height were equal predictors of areaNDVI.
However, for both TA_1 and TA_2, tidal height and current
speed were highly correlated throughout the surveys (VIF >10),
and therefore these two variables were highly collinear and,
therefore, the model results cannot be interpreted with
confidence. Since tidal height was the only variable strongly
supported by all AICc comparisons, further analysis was
conducted for all beds using this variable alone as predictor
of areaNDVI.

Linear regression models between areaNDVI and tidal height
showed strong negative linear relationships for all eight kelp beds
surveyed (Table 3). For all beds, tidal height alone was strongly

correlated with areaNDVI (R
2 > 0.90), with an average decrease in

detected kelp canopy extent of about −26% per meter of tidal height
increase. The areaNDVI of beds that were subjected to high current
speeds (>10 cm/s; TA1 and TA2) decreased at nearly twice the rate
(−35.5% per meter) of the beds at the lower current (<10 cm/s) sites
(−22.5% per meter). This suggests a strong interaction between tidal
height and currents at these high currentNereocystis sites, that could
not be verified statistically due to low degrees of freedom and high
collinearity. At the third Nereocystis bed (SF_N, <10 cm/s), the
areaNDVI decreased at a similar rate to the other Macrocystis beds
and the mixed bed (Table 3). Overall, the rate of decrease for the
detected canopy extent of the three Nereocystis beds was nearly three
times greater than for the threeMacrocystis beds (Table 4). However,
rates of decrease for detected canopy extent were roughly similar and
predictable between both species in low-current environments.

4 Discussion

Accurately measuring kelp canopy extent with remote sensing
requires consideration of numerous variables at the planning,
acquisition, and analysis stages of kelp mapping. Here, in situ
hyperspectral data paired with field observations demonstrated
that differing buoyancy between kelp structures resulted in
variable R0+ at the RE and NIR wavelengths. Further,
multispectral UAV imagery showed that NDRE classification
detected 18% more kelp extent than NDVI classification,
regardless of species or tide levels. This difference in detection
was most apparent near the edges of the kelp beds, where kelp

FIGURE 6
(A)NDRE (orange) and overlayed NDVI (red) classifiedMacrocystis from a subsection of theWomanley kelp bed at tidal heights of 0.2, 1.7, and 3.2 m.
Five quadrat areas (each 2 m2 for scale between panels) overlay the classified kelp at the same georeferenced coordinates, although the kelp canopy
appears tomove due to local currents within the site (e.g., at 3.2 m tide). Panels showonly a small portion of the total kelp bed and are notmeant to reflect
the full bed extent at each tidal height. (B) The NDVI and NDRE values (mean ± SD) for each quadrat area are listed below each panel as a barplot.

Frontiers in Environmental Science frontiersin.org11

Timmer et al. 10.3389/fenvs.2024.1338483

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1338483


structures were often submerged. Ultimately, measured kelp extent
showed a strong negative linear relationship with tidal height,
decreasing at an average of 25.7% ± 6.6% per meter of increase
in tidal height. However, further analysis showed that low-current
beds decreased at an average of 22.5% per meter and high-current
beds decreased at an average of 35.5% per meter, suggesting more
investigation is needed into the interactive effects of high current
speeds and tidal height on kelp submersion.

4.1 Spectral characterization of water and
kelp canopy at the structure and bed scales

Different kelp canopy structures, and even kelp species, are
generally grouped as a single class in remote sensing imagery, with
variability in R0+ associated with changes in density (Schroeder et al.,
2019a; Nijland et al., 2019; Bell et al., 2020a). However, our results
show that for different kelp structures, the R0+ at the NIR and RE
wavelengths also vary according to the amount of emergent kelp at
the water’s surface (Figure 5), which is a result of the buoyancy of the
kelp structures and their spatial distribution within a kelp bed,
i.e., bed centre or edges (Figure 6). Generally, when kelp is emergent
above the water surface, the NIR signal is slightly higher than the RE
signal, regardless of structure type (Timmer et al., 2022). If
submerged even slightly, the RE signal quickly becomes higher
than the NIR signal because the R0+ at RE wavelengths are much
less attenuated by water and its optical constituents than at the NIR

wavelengths (Timmer et al., 2022). In this study, the spectral
properties of the water were similar between all surveys, and
therefore the differences in kelp R0+ were primarily attributed to
variability within and between kelp beds rather than changes in
water optical properties. However, it is important to note that
different optical conditions of water may yield varying results for
kelp detection and should still be considered when choosing spectral
bands for kelp mapping.

Despite the differences in RE and NIR attenuation, the simulated
multispectral UAV data showed that both NDREASD and NDVIASD
values were positive regardless of the kelp structure, meaning that
both VIn can still accurately classify dense kelp canopy structures if
they are at or just below the water’s surface. Nonetheless, in the UAV
imagery, NDREUAV detected ~18% more kelp overall at the bed
level, indicating that a portion of the kelp canopy was submerged
deeper than the NDVIUAV could detect but still within the detection
limits of the NDREUAV.

Spatially, both NIRUAV and REUAV reflectance signals were
consistently lower at the bed periphery relative to the bed center.
Yet the REUAV signal here was generally higher than NIRUAV

(Figure 6), which suggested that the reduced NIRUAV signal was
likely due to submersion rather than lower density of kelp. The
higher REUAV signal from kelp at the bed edges allowed some pixels
to be classified with NDREUAV but not NDVIUAV. Together, these
examples demonstrate that both NDVI and NDRE may accurately
classify dense kelp at the center of a bed where VIn values are
consistently higher, while kelp at the bed edges may be more

TABLE 3 Intercept (±SE) and regression coefficient (±SE) for linear regressionmodels using only tidal height as a predictor variable, as well as the coefficient
of variation (R2) for each model.

Bed code y-intercept ± SE Regression coefficients ± SE % Change per meter R2

TQ 1,482.0 + 87.0* −343.1 ± 35.7* −23.1 0.94

SF_N 753.9 ± 26.5* −156.1 ± 10.6* −20.7 0.97

SF_M 538.0 ± 29.3* −141.9 ± 11.8* −26.4 0.95

WB 2603.6 ± 169.8* −552.3 + 82.5+ −21.2 0.90

WM 8628.1 ± 378.4* −1721.1 ± 151.5* −19.9 0.95

TA_1 2757.5 ± 153.1* −887.5 ± 88.7* −32.2 0.96

TA_2 222.1 ± 12.7* −86.0 ± 8.8+ −38.7 0.97

SP 608.1 ± 40.6* −143.0 ± 15.3* −23.5 0.95

*<0.001, +<0.01. Bed codes are defined in Table 1.

TABLE 4 Descriptive statistics of NDVI-derived kelp bed extent (areaNDVI) characteristics grouped by both species and current speed.

Grouping # Of
beds

Mean ± SD extent
decrease (%/m)

Range of extent
decrease (%/m)

Range of current speeds
(cm/s)

All beds 8 −25.7 ± 6.6 −19.9 to −38.7 0.0 to 19.0

Nereocystis 3 −30.5 ± 9.1 −20.7 to −38.7 0.0 to 19.0

Macrocystis 4 −22.7 ± 2.8 −19.9 to −26.4 0.0 to 9.6

Mixed spp. 1 ---- −23.5 0.7 to 7.1

Low-current 6 −22.5 ± 2.4 −19.9 to −26.4 0.0 to 9.6

High-current 2 −35.5 ± 4.6 −32.2 to −38.7 4.6 to 19.0
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accurately classified using NDRE due to the improved detectability
of submerged kelp. We were unable to measure why kelp was more
submerged at the bed periphery, but we hypothesize that it may be
due to slightly higher current speeds at the bed-edge submerging
more canopy than at the center of the bed where currents are
reduced (Monismith et al., 2022). This level of analysis is important
for when deriving kelp bed biomass based on NDVI (K. Cavanaugh
et al., 2011) because our results suggest that dense kelp at the
periphery of a bed will have a lower NIR R0+ if submerged.
Therefore, incorporating RE bands into classification schemes
may be useful for detecting more biomass of submerged kelp
structures such as Nereocystis blades, and for understanding
variable R0+ between sparse and submerged kelp canopy. In these
cases, the ability to detect deeper submerged kelp canopy will vary
based on the R0+ magnitude for each kelp structure, the bio-optical
properties of the water, and the depth at which the structure is
submerged, making it important to understand and consider in situ
environmental factors.

4.2 Tide and current analysis

The same increases in tidal height resulted in both a higher and
more variable rate of decrease in classified kelp canopy extent for
Nereocystis beds (−30.5% ± 9.1%/m) than for Macrocystis beds
(−22.7% ± 2.8%/m) or the mixed bed (−23.5%/m). These
differences are likely due to the wide range of current speeds
during UAV flights at the Nereocystis sites (0.0–19.0 cm/s) versus
the narrower range measured atMacrocystis sites (0.0–9.6 cm/s) and
the mixed site (0.7–7.1 cm/s). When considering only low-current
speed data (<10.0 cm/s), the canopy extents decreased at a similar
rate (−22.5% ± 2.4%/m) for all sites, regardless of species. Under
these low-current conditions, despite the distinct morphologies of
Macrocystis and Nereocystis, the buoyant forces that result from the
pneumatocysts and fronds hold the kelp canopy at or near the
water’s surface. As the tidal height increases, the basal ends of the
floating portion of the surface canopy (Macrocystis frond or
Nereocystis pneumatocyst) are held in place by the holdfast and
pulled below the water’s surface at similar rates (Figure 7). This
process takes place simultaneously for each individual within the
kelp bed, and as a result, tidal height alone explained more than 90%
of the variability in the canopy extent over the tidal cycle at low-
current sites.

Two of the Nereocystis beds surveyed were exposed to relatively
higher current speeds, up to 19.0 cm/s. At these beds, the average
rate of decrease (−35.5% ± 4.6%/m) was nearly twice that of the sites
with lower current speeds (−22.5% ± 2.3%/m) (Table 4). Here,
similar to beds in low-current conditions, the increasing tidal height
submerges the basal portion of the kelp canopy. However, the high
current adds horizontal drag to the kelp, pushing it diagonally into
the water column and resulting in additional submersion of the
canopy (Figure 7). Although it was not possible to test interactive
effects between tide and current due to low degrees of freedom, it is
reasonable to assume that faster current speeds at higher tides cause
increased submersion compared to at lower tides due to the potential
for increased drag.

In a similar study of Macrocystis remote sensing in California,
tidal height also showed negative linear relationships (R2 =

0.72–0.98) with UAV-derived canopy extent (Cavanaugh et al.,
2021b). Of the two California beds surveyed, the shallower bed
showed a similar tide-extent relationship (−20.1%/m; max. depth
8 m) as the Macrocystis beds in our study (−22.7%/m; max. depth
5 m). However, the deeper Macrocystis bed decreased at nearly half
the rate of the shallower bed (−12.7%/m; max. depth 16 m). Our
findings suggest that the deeper bed’s lower rate of decrease in
classified canopy extent may be due to local high current speeds
(>20 cm/s) at lower tidal heights during surveys, which may have
hidden the true maximum canopy extent. While current speed was
not a significant predictor of kelp extent in their work, Cavanaugh
et al. (2021b) note that the effect of current speed on classified kelp
canopy area was large and suggested that with a larger sample size,
current would have likely been a significant predictor of kelp extent.

In another study in the Strait of Juan de Fuca, Washington,
which used oblique angle colour photography from land-based
vantage points, extreme currents (>100.0 cm/s) resulted in
Nereocystis canopy extent decreases between 50% to nearly 100%
during a 1-m increase in tidal height (Britton-Simmons et al., 2008).
Similar to our and Cavanaugh et al.‘s results, this study showed that
currents below 10.0 cm/s did not affect classified canopy extent.
Together, this body of knowledge suggests that although theymay be
difficult to track, local current speeds likely play a substantial role in
kelp submersion at both high and low tidal heights and that their
effects on measuring accurate kelp extent should be investigated
further with UAV imagery.

4.3 Implications for satellite remote sensing
of kelp extent

Our results describe the effects of tidal height and current speed
on the extent of kelp canopy detected by a very high spatial
resolution (~5 cm) multispectral sensor at high temporal
resolution (up to 9 times over a single tidal cycle). However, kelp
forest mapping is often conducted using satellite imagery on a
regional scale with either high (<10 m) or medium (10–30 m)
spatial resolution imagery that are generally acquired at a lower
temporal resolution (acquisition weeks or months apart). Therefore,
our results should be considered in the context of the spatial and
temporal differences typical of satellite imagery collection and
analysis, such as multi-year time series using single low tide
images acquired annually during peak kelp growth (Schroeder
et al., 2019a; Gendall et al., 2023) or time series that aggregate
results of all imagery acquired over a period of time (Bell et al.,
2020a; K; Cavanaugh et al., 2011; Nijland et al., 2019). In either
scenario, the relationships provided by this study are crucial to
understand uncertainties associated with tidal height on the kelp
canopy extent derived from satellite imagery.

For instance, Schroeder et al. (2019b) and Hamilton et al. (2020)
used a maximum acceptable tidal height of ~2.0 m as a threshold for
Nereocystis detection with satellite imagery. Our results suggest that
if these tidal conditions are selected in low-current areas, kelp
canopy extent differences of 45% (i.e., 22.5% per meter) should
be expected from imagery collected within that range. In such cases,
it may be beneficial to select narrower tidal windows to allow the
user to reduce uncertainties related to tidal heights, with lower tidal
heights producing the most kelp canopy at the surface. However, a
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simple exercise using satellite-derived kelp extent by Nijland et al.
(2019) shows that upscaling our results to satellite may not be
straightforward. Nijland et al. (2019) acquired paired imagery of the
same region at two different tidal heights with WorldView-2 (2 m
spatial resolution; 1.5 and 3.6 m tidal height) and Landsat-8 (30 m
spatial resolution; 0.6 and 2.7 m tidal height), each acquired roughly
1 month apart. This imagery was from an exposed group of islets
(the McMullin group) just north of the kelp beds surveyed in this
research, where large, dense, and contiguousMacrocystis beds occur
at shallow depths (<5 m). After standardizing their results with ours
(as in Section 2.4.2), kelp extent was estimated to decrease by 18%/m
with WorldView-2, and 15%/m with Landsat-8 as tidal height
increased. These values are lower than the average decrease for
low-current sites in our higher spatial and temporal resolution study
(−22.5%/m). One potential explanation for these differences is that
the reduced rate of decrease is an artifact the thresholding methods
used by Nijland et al. (2019) on the lower spatial resolution imagery.
For example, in their methods, a pixel of Landsat imagery must
contain only 20% kelp canopy fraction to be positively classified as a
kelp (Nijland et al., 2019; Hamilton et al., 2020). As such, our data
suggest that a satellite imagery pixel containing 100% kelp canopy at
0.0 m tide could decrease by 22.5%/m, and at 3.5 m tidal height
could still be positively classified with the binary threshold in
Nijland et al.’s (2019) methods. Therefore, as the spatial
resolution of imagery decreases, using a binary threshold to
classify large contiguous kelp beds may disproportionately
overestimate canopy extent at higher tidal stages.

Regardless of the classification and mapping methods used in kelp
remote sensing, it is crucial to collect accurate ground truth data to
reduce potential errors in high to medium-resolution (<30 m) satellite
imagery associated with different kelp structures and varying tidal
heights. For example, a remote sensing pixel that contains 100%
density of Nereocystis pneumatocysts generally has a higher
reflectance signal than a pixel that contains the same percentage of
Macrocystis fronds or Nereocystis blades. Therefore, if a Nereocystis

pneumatocyst is used as an end-member for determining the fraction of
fronds or blades within a pixel, the true kelp fraction for that pixel will
be underestimated. Additionally, our results suggest that if multiple
end-member spectral mixture analysis (MESMA) is used to estimate
kelp biomass of Macrocystis within satellite resolution imagery
(Cavanaugh et al., 2011), the availability of a RE band may allow for
increasingly accurate biomass estimation due to the ability to detect
submerged portions of the canopy more effectively. As such, the
addition of RE bands or hyperspectral sensors on future remote
sensing platforms will be of benefit to the remote sensing
community for monitoring shallow submerged vegetation. There are
many different considerations when choosing a remote sensing
platform to monitor kelp, the breadth of which go beyond the scope
of this research, but an openly available resource to narrow down best
practices and options for effectively monitoring kelp is available to help
make those decisions (https://catalogue.hakai.org/dataset/ca-cioos_
c074bff6-408b-443a-bdaf-4713f0eadb95).

Conversely, in regions with shallow vegetation, classifying
nearshore kelp in satellite imagery acquired during low tide requires
the incorporation of known sources of uncertainties. For example,
nearshoreMacrocystis and Nereocystis kelp forests in BC often contain
various species of understory vegetation, such as Pterygophora
california, which forms a secondary benthic canopy up to 2 m off
the sea floor (Shaffer, 2000; Druehl and Clarkston, 2016). Nearby our
study sites, subtidal Pterygophora beds were mixed with shallow
Macrocystis beds at two locations. In both cases, the Pterygophora
canopy was detectable in UAV imagery with both NDRE and NDVI
classification at 0.5 m tidal height, yet at 1.0 m tidal height, the
Pterygophora canopy was only detectable with the NDRE. Therefore,
to avoid overestimation of overstory kelp canopy extent due to
misclassification of understory canopy, caution should be exercised
whenmonitoring nearshore kelp beds at the lowest tides, especially with
RE indices. NIR-based indices like NDVI may help reduce these
potential errors by only detecting the kelp canopy nearest to the
surface. Further, deeper than 1 m below the surface, even the NDRE

FIGURE 7
Observation based differences in the orientation of kelp structures during different combinations of tidal heights and current speeds. Bull kelp is on
the left and giant kelp is on the right in each panel, and are not necessarily to scale.
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will be unlikely to detect any understory kelp canopy (Timmer et al.,
2022), making it unlikely that this region of the spectral range would be
useful for mapping anything but the shallowest kelp canopies at the
lowest tides. If specifically targeting only understory kelp canopy, the
visible range of the spectrum is still the most useful.

5 Conclusion

Submergence of kelp canopy is associatedwith buoyancy differences
between canopy structures, tidal height, and current speed, leading to
changes in the detected R0+ and, therefore, derived kelp canopy extent.
In this study, we described spectral characteristics that arise from
morphological and bed-level differences between Macrocystis and
Nereocystis, and we quantified the effects of local tides and currents
on the apparent extent of Macrocystis and Nereocystis canopy when
using remote sensing imagery. In situ submerged kelp structures showed
lower overall R0+ than emergent structures but a higher relative R0+ in
the RE than the NIR. The in situ hyperspectral data was supported by
complimentary multispectral UAV imagery, which showed that kelp
was more likely to be submerged at the periphery of the bed, possibly
due to higher currents at the bed edges versus the bed center. Further, the
vegetation index that relied on the R0+ of the RE wavelength (NDRE)
detected 18% more submerged canopy than the NDVI, meaning that
inclusion of RE bands or hyperspectral sensors on future remote sensing
platforms could be advantageous for detecting shallow submerged
vegetation. However, using red-edge indices may also overestimate
kelp canopy extent due to the misclassification of shallow submerged
benthic vegetation. At the bed level, our results are important to
interpret trends across a range of tidal heights and currents by
providing a range of possible errors associated with site-specific
metrics of bed extent. Tidal height had a strong negative linear
relationship with the canopy extent of both Macrocystis and
Nereocystis at all sites, and in low-current areas (<10.0 cm/s), canopy
extent decreased by an average (mean ± SD) of 22.5% ± 2.4%/m,
regardless of species. UnlikeMacrocystis, Nereocystis was found in both
low and high current areas (>10.0 cm/s), and as such, Nereocystis
canopy extent decreased at a higher and more variable rate (30.5% ±
9.1%/m) when compared toMacrocystis (22.7% ± 2.8%/m). Overall, we
recommend minimizing the range of tidal conditions over which
temporal analyses are conducted and incorporating an explicit
understanding of the role of currents when comparing the detected
extent of kelp beds either between sites or at sites with a large range of
current speeds. This research contributes to improve themethodological
framework used to map canopy kelp and understand the ongoing
changes in kelp forest ecosystems globally. Remote sensing is a key tool
formonitoring these changes, and, as such, it is critical to understand the
implications of collecting remote sensing imagery of kelp forests at
various tidal heights and current speeds.
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