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In collaboration with the International Union for the Conservation of Nature
(IUCN) Taskforce on Biodiversity and Protected Areas, countries worldwide are
working to develop a new systematic approach to inform the Key Biodiversity
Areas (KBAs) initiative. The goal is to map KBAs from the national to global scales
with a baseline international standard in support of biodiversity conservation
efforts. According to the IUCN standard, one of the five criteria used to identify
potential KBAs, is the Ecological Integrity (EI) of the ecosystem. Sites identified
with respect to EI must have an intact ecological community and be
characterized by minimal anthropogenic disturbance. In this study, a new EI
metric, phenospectral similarity (PSpecM), has been developed and implemented
in Google Earth Engine to identify potential forest stands of high EI from a large
set of candidate stands. The implementation of PSpecM requires a network of
known reference sites of high EI and target ecological units of the same land
cover type for comparison to help identify potential sites of high EI. Here, we
tested PSpecM on a ~12,000 km2 study area in the Laurentian region, Quebec,
Canada, using Sentinel-2 and PlanetScope (Dove) satellite imagery. Considering
the phenological effect on reflectance, we found a 2,700 km2 spatial extent,
equivalent to approximately 22% of the study area, commonly delineated as
potential areas of high EI by both PlanetScope (Dove) and Sentinel-2. Without
consideration of phenology, the total area delineated as potential areas of high EI
increased to 5,505 km2, equivalent to around 45% of the study area. Our results
show that PSpecM can be computed for rapid assessments of forest stands to
identify potential areas of high EI on a large geographic scale and serve as an
additional conservation tool that can be applied to the ongoing global and
national identification of KBAs.
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1 Introduction

Globally, we are facing a biodiversity decline at unprecedented rates due to direct and
indirect impacts by humanity that is resulting in major economic and health impacts (e.g.,
food security andmedicinal species) (Malcolm et al., 2006; Cardinale et al., 2012, Isbell et al.,
2017). Human modification of forested lands and other ecosystems and the associated
climate change impacts have been identified as key drivers of biodiversity loss worldwide
(Schimel et al., 2013). There is an urgent need for a more sustainable approach for
biodiversity management and conservation across the globe (Riera et al., 2020). For
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instance, Kullberg et al. (2019) expressed the need for a more
efficient management approach of key habitats that support the
maintenance and sustainability of biodiversity and wildlife
populations. Such an approach should include the identification
and conservation of a network of Key Biodiversity Areas (KBAs) to
help minimize biodiversity loss and assist in conservation resources
allocation (Eken et al., 2004; Schimel et al., 2013).

Despite the significant increase in protected sites in recent
decades, biodiversity continues to decline (UNEP-WCMC and
IUCN, 2021). The new Global Biodiversity Framework of the
United Nations Convention on Biological Diversity adopted at
COP15 has identified a target of protecting 30% terrestrial,
inland water, and coastal and marine areas by 2030. Therefore, it
has become increasingly important for policymakers to expand and
adopt new measures to mitigate the declining biodiversity trends
(Smith et al., 2019). To achieve this objective, the International
Union for the Conservation of Nature (IUCN) Taskforce on
Biodiversity and Protected Areas in collaboration with countries
worldwide is developing a new and systematic approach for
identifying KBAs (IUCN, 2016). The overarching goal is to map
out KBAs at the national to global scales to support biodiversity
conservation efforts with a baseline IUCN standard.

According to the IUCN standard, KBAs are “sites of importance
for the global persistence of biodiversity” (IUCN, 2016). For a site to
qualify as a KBA, it must meet one or more of the standardized
IUCN criteria grouped under five categories (i.e., geographically
restricted biodiversity, threatened biodiversity, ecological integrity,
biological processes, and irreplaceability) (IUCN, 2016; Robertson
et al., 2018). For instance, a forest stand identified with respect to
ecological integrity (EI) must be characterized as a wholly intact
ecological community (IUCN, 2016). Additionally, a candidate
forest that is of high EI (i.e., intact ecological community) must
demonstrate little to no natural or anthropogenic disturbance of the
forest structure, species composition, and function (IUCN, 2016).
This is because forest disturbances have direct impacts on the
vegetation cover and can influence the important ecosystem
services they provide (DeFries et al., 2007; Huang, 2018). The
preservation of biodiversity sustains ecosystem services such as
carbon sequestration and climate regulation to help combat
climate change and the associated global warming (Birdsey et al.,
2013). As deforestation escalates, carbon is released into the
atmosphere to cause both an increase in the atmospheric
concentration of carbon dioxide (greenhouse gas emissions) and
a reduction in the sequestration potential of forests (DeFries et al.,
2007; Lawrence et al., 2022; Nunes, 2023). These ecosystem services
among others are some of the benefits associated with forests with
high EI, thus necessitating their identification and protection.
Although, globally, over 16,000 KBAs have been delineated
(KBA, 2021), KBA identification is still an ongoing process, with
many identified KBAs currently unprotected (Butchart et al., 2012;
Beresford et al., 2020). This also calls for periodic monitoring of the
KBA status to help detect and mitigate biodiversity disturbance.

Several methods have been used for the identification of KBAs to
prioritize their conservation (Fraser et al., 2009; Reza and Abdullah,
2011; Jenkins et al., 2013; Kullberg et al., 2019; Li et al., 2020). These
methods range from the use of the ranking of an area’s species
richness at coarser spatial scales (e.g., 10 km × 10 km) (Jenkins et al.,
2013) to local-scale biodiversity hotspot analysis (Meerman, 2007).

Other studies have relied on existing tools such as the Management
Effectiveness Tracking Tool (METT) (Stolton and Dudley, 2016)
and Zonation conservation planning software (University of
Helsinki, Finland) (Moilanen et al., 2014) for KBA assessments.
Over the past decades, advancement in remote sensing technologies
and the improved accessibility of remotely sensed data presents an
opportunity to map KBAs to detect their periodic changes at
different scales (Iverson et al., 1989; Toth and Jóźków, 2016).
With these advancements (e.g., high spatial, spectral, and/or
temporal resolutions), there is an opportunity to monitor the
KBAs in near real time instead of the traditional one-time
assessments to allow for cross-site comparisons over time
(Beresford et al., 2020). Additionally, remote sensing offers a
standard approach, which has been shown to be efficient for
monitoring ecosystem changes for indications of landscape scale
anthropogenic modifications (Rocchini, 2010; Nagendra et al., 2013;
de Araujo Barbosa et al., 2015; Lamboj et al., 2019). The challenge,
then, is to define a remotely sensed index that can capture important
facets of the property of interest to be monitored, which in this
case is EI.

The spectral reflectance of forest canopies from optical remotely
sensed data can provide information about the vegetation’s
compositional, functional, and structural variations to help
characterize the vegetation structure and function (e.g., climate
change effects and EI) across multiple spatiotemporal scales
(Skidmore et al., 2021; Schweiger and Laliberté, 2022). For
instance, Arroyo-Mora et al. (2018) employed Sentinel-2 (S2)
multispectral satellite imagery to assess the short-term
phenospectral (i.e., spectral variation as a function of
phenological changes) dynamics of vegetation from a peatland
ecosystem and found that these datasets can be useful for
landscape scale detection of short-term phenological changes. In
Canada, multitemporal Earth observation data have been used to
monitor and assess the status and EI of the national parks at a
landscape scale (Fraser et al., 2009). On the global scale, some efforts
have focused on landscape scale quantification of forest EI
(Grantham et al., 2020). By integrating multiple datasets such as
the forest extent, observed and inferred human pressures, and
alteration in forest connectivity, Grantham et al. (2020)
quantified the Forest Landscape Integrity (FLI) index to describe
the extent of forest alteration on a global scale. Beyer et al. (2020)
also proposed a metric sensitive to habitat loss and fragmentation
that can help delineate areas of high EI (intactness) at multiple scales
(e.g., ecoregion). Moreover, the utility of modeling tools available in
software, such as TerrSet (Clark University, Worcester, MA,
United States of America), has also been shown to support the
identification of key biodiversity areas with respect to ecosystem
integrity (Li et al., 2020).

Despite this progress, stand-level quantification of EI using
remotely sensed data that can potentially be applied to KBAs
over large geographic scales is uncommon in the remote sensing
literature. Although quantifying EI can be achieved at the local or
small scale using traditional field-based protocols to support KBA
identification (Beresford et al., 2020), it is impossible to rely on field
measurements alone to efficiently map out potential areas of high EI
at the national to global scales (Asner and Martin, 2016). A single,
consistent, and repeatable methodology that can be scaled to a larger
geographic scale for identifying the stand-level high EI areas is a key
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gap in the literature. Thus, our study seeks to fill this gap by
proposing a phenospectral similarity metric as a proxy for EI
that can be applied to KBA determination at multiple scales (e.g.,
from the national to global scales).

The proposed phenospectral similarity metric provides a way of
determining the potential similarity between target ecological units
(unknown forest stands) and reference forest stands of known high
EI as a proxy to measure potential areas of high EI aimed to inform
conservation initiatives (e.g., KBAs) at different scales (local,
regional, and national/global). The rationale for using a spectral
similarity is that spectral variation in forest canopies has been shown
to be strongly related to its taxonomic, functional, and/or
phylogenetic diversity (Féret and Asner, 2014; Rocchini et al.,
2016; Schweiger et al., 2018; Schweiger and Laliberté, 2022).
Although high spectral resolution is ideal for estimating
biodiversity, lower spectral resolution data can still be useful,
particularly if captured at a high temporal resolution, which
allows phenological profiles of different tree species to be
monitored (hence phenospectral). The central assumption of our
approach is that forest ecosystems that are similar in terms of their
canopy tree species composition, structure, and past and current
disturbance regimes will also be similar in the way they reflect light
across the growing season. The reflected light captured by
multitemporal images acquired by different sensors across the
growing season can highlight temporal phenological changes
(i.e., from green up to leaf senescence) (Sheeren et al., 2016) with
the potential to improve the spectral separability among the tree
species (Sheeren et al., 2016; Persson et al., 2018; Grabska
et al., 2019).

Considering forests with high EI, the attributes of such intact
forest stands can be expressed in the spectral response measured
at the canopy level. Correspondingly, forest stands that have
experienced anthropogenic impacts (loss of EI) such as habitat
loss, forest fragmentation, and degradation of unit areas alter the
spectral response at the canopy level to reflect those impacts.
Thus, the degree of phenospectral similarity between an
unknown ecological unit and that of a reference stand with
high EI could depict differences in plant species composition,
phenological patterns of the species present, and spatiotemporal
dynamics associated with changes in EI. Therefore, we
hypothesize that if an ecosystem is phenospectrally similar to
a reference ecosystem of high EI, then the EI of the unknown
ecosystem must also be high.

Using S2 and PlanetScope (PS) Dove satellite imagery, we
compare the phenospectral similarity metric (PSpecM) of small
(~4 ha) ecological units to that of reference units of high EI over the
growing season at two spatial scales in a forest ecosystem. Our
specific objectives were first to examine the utility of PSpecM to
compare unknown ecological units (forest stands) to a reference
forest of high EI to help identify potential additional stands of high
EI. Our second objective seeks to scale up the approach to a large
spatial scale using a network of reference sites to create a spatially
representative reference distribution against which to compare and
aggregate high EI forest stands with the Google Earth Engine (GEE)
geospatial platform. The results from this study illustrate the
potential application of our approach for measuring EI in
support of KBA initiatives at large spatial scales (national to
global) to complement conservation efforts.

2 Materials and methods

2.1 Study area

The proof-of-concept implementation of PSpecM was
conducted over approximately 25 km2 area within Mont-Saint-
Bruno (MSB) National Park. The MSB is a protected deciduous
forest located in southern Quebec, Canada (Figure 1). It falls within
Quebec’s hardwood forest subzone (sugar maple–bitternut hickory
domain) of the northern temperate vegetation zone (Ministère des
Ressources naturelles, 2016). The predominant tree species at MSB
are Acer saccharum, Carya cordiformis, Quercus rubra, and Tsuga
canadensis. The MSB is an area of high floristic diversity, with more
than 500 vascular plants growing in the park (Beauvais, 2015). Next,
a larger area equivalent to 12,300 km2 in the Laurentian region,
Quebec (Figure 1), and constituting an ecoregion (sugar
maple–yellow birch domain) according to Quebec’s vegetation
zones and bioclimatic domains (Ministère des Ressources
naturelles, 2016) was chosen for testing the scalability of PSpecM
at a larger geographic scale.

2.2 Datasets

2.2.1 Satellite imagery
The analysis was conducted using multi-temporal imagery

from both the PlanetScope Dove constellation (Dove PS) and
Sentinel-2 (S2) satellite imagery (Table 1; Figure 2). These
datasets were selected to determine the utility of their spatio-
spectral and temporal resolutions for phenospectral similarity
analysis. We selected relatively cloud-free (<10%) imagery for
four dates covering the growing season from July to September.
The Dove PS images have a 3-m spatial resolution and are
comprised of four multispectral bands from the blue
(465–515 nm), green (547–585 nm), red (650–680 nm), to
near-infrared (845–885 nm) wavelengths (Planet Lab Inc,
2016). For the proof-of-concept at MSB, the imagery was
downloaded as atmospherically compensated surface
reflectance from the Planet Explorer data portal (Planet Lab
Inc, 2021a). Clouds and shadows were masked followed by
mosaicking of the individual image tiles in ENVI 5.5
(L3Harris Geospatial, Melbourne, FL). Similarly, relatively
cloud-free S2 satellite images were downloaded from the
USGS Earth Explorer directory (U.S. Geological Survey, 2021).
The images were corrected from top-of-atmosphere (TOA: level
1 C) reflectance to bottom-of -atmosphere (BOA: level 2A)
reflectance using Sen2Cor 2.2.1 (Müller-Wilm, 2016). Ten
bands from S2 spanning from blue (band 2) to shortwave
infrared (SWIR—band 12) were used for the analysis
excluding the 60 m bands: band 1 (443 nm–coastal and
aerosol), band 9 (940 nm), and band 10 (1,375 nm–cirrus).
The bands with a 10 m pixel size were resampled to match the
20-m pixel size bands. Clouds were masked out of the S2 images
using the scene classification file (SCL) generated from Sen2Cor.
For the large-scale analysis, we utilized surface reflectance data
from S2 and Dove PS imagery to compute PSpecM through the
GEE platform. Due to a missing 2018 S2 image collection
(i.e., surface reflectance) within GEE for the Laurentian
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region, the 2019 S2 image collection (surface reflectance product)
was used for the large spatial scale analysis.

2.2.2 Selection of reference and target
ecological units

The phenospectral similarity metric approach requires
defining the target ecological units (forest stands with
unknown EI) and a reference ecological unit that is known to
be of high EI. As shown in Figure 2, a baseline or reference
ecosystem known to be of high EI (see section 2.2.3) is compared
to a set of target ecological units (i.e., unknown forest stands)
within a broad ecological unit (e.g., Ecoregion). For MSB and the
Laurentian region, 158 target polygons and ~200,000 target
polygons constituting different candidate stands (see section
2.2.4) were assessed in comparison to 1 and 14 reference
ecological units, respectively. These reference data were
selected from an exceptional forest ecosystem (i.e., “ancient”
or old-growth forest) geospatial dataset produced by the
province of Quebec (see section 2.2.3 for details).

2.2.3 Reference ecological units (exceptional
forest ecosystem)

In the province of Quebec, Canada, the delineation of sites as
exceptional forest ecosystems (EFEs) is done by the Ministry of
Energy and Natural Resources (MRN). The EFEs are classified as
rare forest, old-growth forest, or a forest that is a refuge (i.e., forests
that serve as a home for threatened or endangered species)
(Ministère des Forêts de la Faune et des Parcs, 2021b). An EFE is
a special status designated by the MRN based on certain biophysical
criteria. For instance, for old-growth forests (ancient or ancienne in
French), EFE candidates must be forest stands without
anthropogenic or major natural disturbance (Bouchard, 2005).
The forest must be composed of very old trees and must be
characterized by special features including, but not limited to,
senescent and dead trees with the forest floor littered with large
trunks in varying stages of decomposition (Ministère des Ressources
naturelles, 2003c). Key quantitative definitions and criteria for the
identification of old-growth forests in Quebec are described in detail
by Villeneuve and Brisson (2003). Currently, a total of 256 sites have

FIGURE 1
Two areas selected for the implementation of the phenospectral similarity metric: (A) Mont-Saint-Bruno National Park (MSB) classified under the
sugar maple–bitternut hickory domain in Quebec and (B) ecoregion within the Laurentian region classified under the sugar maple–yellow birch domain.
Panel (C) shows the approximate extent of the two study areas in relation to the province of Quebec and Canada.
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been delineated as EFEs across the province of Quebec, out of which
14 (old-growth forest category, see Supplementary Table S1) were in
the Laurentian region (Ministry of Forests, 2016). Since the above
definition of old-growth forest is consistent with the IUCN standard
for sites delineated with respect to EI (IUCN, 2016), in this study, the
old-growth forest (ancienne) polygons were deemed to have high EI
and, hence, were utilized as the reference ecological units to serve as
inputs for PSpecM implementation, as described in 2.2.2 above.

2.2.4 Target ecological units from the eco-forestry
inventory (peuplements forestiers)

Over half of the province of Quebec’s territory is forested
(i.e., ~900,000 km2) (Ministère des Forêts de la Faune et des
Parcs, 2016). Forest inventories over the years have been focused
on ecological and dendrometric data (e.g., ecological classifications
and tree height (LiDAR)) to allow delineation of forest cover,
disturbed areas, and others that make up the Quebec forest
landscape (e.g., Southern Quebec eco-forest inventory—IEQM)
(Ministère Des Forêts De La Faune et Des Parcs, 2021a). In this
study, publicly accessible forest inventory data (peuplements
forestiers) provided by the Ministry of Forest, Wildlife, and Parks
(Ministry of Forests, 2021), which provides information on the
management and sustainable development of forest ecosystems in
Quebec, were used. The forest inventory data were used as candidate
stands (target ecological units) to identify potential ones of high EI,
as required in section 2.2.2. The median area of the peuplement
forestier layer (i.e., unknown ecological units) covering our study
area is approximately 4 ha, and the land cover type of each target
polygon falls within either the deciduous stand (F) (49.84%), mixed
stands (M) (30.16%), or softwood (R) and other (not defined)
category (20%).

2.3 Computation of the phenospectral
similarity metric (PSpecM)

The mean reflectance of each target ecological unit (peuplement
forestier polygon) was computed for each time period (Table 1). The
spectral angle (Eq. (1)) was then computed between the reference
and the target ecological units separately for each temporal data, and
the spectral angles were also averaged across all dates within the
growing season. The spectral angle has been commonly applied to
image classification, target detection, and related questions (Kumar
et al., 2015; Panda and Pradhan, 2015). The algorithm computes the
“angle” in the multi-dimensional space between a target and
reference spectrum by treating them as vectors in space with
dimensionality, which is equal to the number of bands (Kruse
et al., 1992; Yuhas et al., 1992; Kruse et al., 1993; Rashmi et al.,
2014). The computed spectral angle thus serves as a quantitative
measure of the similarity between the target and reference spectra.
The spectral angle computed using reflectance data is relatively
robust to illumination and albedo effects (Kruse et al., 1993).

The spectral angle (α) between a reference (r) and a target (t)
spectrum is computed according to Equation 1 as follows:

a � Cos−1
∑nb

i�1tiri�����∑nb
i�1t

2
i

√ �����∑nb
i�1r

2
i

√⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠, (1)

where nb represents the number of bands.

2.3.1 Determining the spectral angle threshold
The real value–area fractal technique (Shahriari et al., 2014) was

adopted to determine a suitable spectral angle threshold for
delineating stands with high EI. This method has been shown to

TABLE 1 Selected dates within the growing season and other characteristics of the PlanetScope Dove and Sentinel-2 satellite images used for the
phenospectral similarity analysis.

Scale Imagery Date Pixel size (meters) Location

Small spatial extent (proof of concept) Sentinel-2 15 June 2018 20 Mont-Saint-Bruno National Park

30 July 2018

24 August 2018

13 September 2018

PlanetScope (Dove PS) 19 June 2018 3 Mont-Saint-Bruno National Park

20 July 2018

19 August 2018

14 September 2018

Large spatial extent (Ecoregion) Sentinel-2 23 June 2019 20 Laurentian region

8 July 2019

2 August 2019

16 September 2019

PlanetScope (Dove PS) 21 June 2018 3 Laurentian region

15 July 2018

31 August 2018

24 September 2018
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be a less biased approach for determining thresholds for applications
such as density slicing and image classification/segmentation
(Shahriari et al., 2014). Equation 2 is used to establish a
power–law relationship between an area (A: number of polygons
(target ecological units) with a spectral angle (α) above a certain
threshold (s)).

A α≥ s( )∝ αb, (2)
where A(α) represents the area occupied by the target polygons with
a spectral angle greater than or equal to a particular threshold (s) and
b represents the fractal dimension.

By plotting a log–log of A(α) versus α, segments or straight
lines are typically derived, with each segment corresponding to a
group of spectral angles less than or equal to a particular
threshold. To determine a spectral angle threshold from the
log–log plot, an intersection of the segments/lines is selected,
and the corresponding value on the X-axis is extracted. The
threshold is then computed by taking the exponent of the
extracted value to help with delineating polygons with high EI.
The intersection of the second segment has been recommended
for the computation of the threshold value for each temporal data

and the average spectral angles across the growing season
(Shahriari et al., 2014).

2.4 Google Earth Engine

Google Earth Engine (GEE) provides a cloud-based platform
and tools for planetary scale analysis, making satellite imagery
spanning about 4 decades available (Gorelick et al., 2017; Amani
et al., 2020). Through GEE, the methodology can be reproduced at
multiple scales and shared with multiple users. In this study, scaling
the analysis to a large spatial scale (ecoregion) was undertaken on
the internet-accessible GEE environment that is programmable
using JavaScript (Gorelick et al., 2017).

2.4.1 Spatial aggregation of the target ecological
units based on the proximity to a reference

At the large spatial scale, a spatial aggregation of the target
ecological units based on their proximity to a reference stand of
high EI was carried out (Supplementary Figure S9). Assigning the
target ecological unit to the closest reference site was deemed an

FIGURE 2
Comparison of the phenospectral changes of unknown ecological units (forest stands) and a reference forest stand of known high EI. A1 to
A3 illustrates target ecological units (unknown forest stands) based on Sentinel–2 satellite imagery. The spectra presented represent the example spectra
of a selected target ecological unit and a reference stand at MSB.
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appropriate stratification approach since nearer stands of the same land
cover type will be more related than the distant stands (Pun-Cheng,
2016; Waters, 2018), and it also helps reduce temporal lag in
phenological activity due to latitudinal or altitudinal variations. The
14-reference ecological unit from the EFE (old-growth forest) layer was
split into two, and seven reference polygons served as a representative
reference distribution to be compared to approximately 200,000 target
ecological units across the study area in the Laurentian region, Quebec.
The remaining seven were added to the large target ecological units to

test the PSpecM method. Next, to aggregate the large set of target
ecological units, a spatial proximity analysis was conducted in ArcGIS
10.7.1 (Esri, Redlands, CA, United States, 2019) to determine which
reference polygon is nearest to a target polygon.

In this study, filtering of the target ecological units (peuplements
forestiers) was done to exclude water bodies. Additionally, after the
implementation of PSpecM, we compared the environmental
conditions (e.g., drainage and surface deposits), age, and terrain
types of the delineated polygons to that of the reference sites.

FIGURE 3
Flow chart summarizing the workflow to be followed during the implementation of PSpecM in Google Earth Engine (GEE).
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Supplementary Table S2 presents the key environmental
characteristics of the reference sites, as determined by
superposing the seven reference polygons on the eco-forest
classification (peuplements forestiers) in Quebec (Ministère Des
Forêts De La Faune et Des Parcs, 2021a).

2.4.2 Scaling the implementation of phenospectral
similarity in Google Earth Engine

To evaluate the scalability of the PSpecM at the ecoregion scale, the
image collections (Table 1) were imported andmosaicked inGEE.Next,
the cloud/shadow mask was applied (Justin, 2022), and the mosaics
were clipped to the extent of the study area. Subsequently, we applied
the mean reducer in GEE to extract the mean spectrum for each target
and the corresponding reference polygon. The extracted means were
used to compute the spectral angle between each target and the
corresponding reference ecological unit. The computed value is then
assigned to each record in the target ecological unit layer, and a
threshold is applied (section 2.3.1.) to identify the potential areas of
high EI. Figure 3 illustrates the flow chart summarizing the PSpecM
workflow in GEE.

To assess the robustness of PSpecM, a time sequence analysis was
conducted at MSB using S2 surface reflectance available in GEE for the
years 2019, 2020, and 2021 (Table 2). Missing datasets in June for the
selected years were replaced with S2 imagery acquired in May.

3 Results

3.1 Comparison of phenospectral changes
from Sentinel-2 and PS dove of the
reference forest stand (Mont-Saint-Bruno
proof of concept)

Figures 4A and B show the mean reflectance spectra and
reflectance differences extracted from PS Dove imagery for the

reference forest (MSB) throughout the growing season. The
chlorophyll absorption in the blue and red bands decreased
gradually from the start (June) to the end of the growing season
(September). However, the differences recorded were negligible, for
example, approximately 0.3% and 0.1% for the blue and the red
bands, respectively. Similarly, the reflectance in the green band
recorded at the beginning of the growing season reduced slightly
by a similar amount to that in the red band in the month of
September. Considering the Dove PS imagery, the highest
changes in the mean reflectance were recorded in the near-
infrared band, which decreased from 44.3% to 33.7% (i.e., 10.6%)
at the end of the growing season.

The mean reflectance of the reference forest throughout the
growing season, along with their differences extracted from the
S2 satellite imagery and standard deviation, is presented in Figures
4C–F. The reflectance recorded at the beginning of the growing
season for the blue and red bands increased slightly by
approximately 3% and 2%, respectively, by August and started to
decline further by a similar amount in September. Additionally, the
reflectance in the green band increased up to 1.5% in August and
decreased by 2.3% during the end of the growing season in
September. The bands covering the red-edge portions of the
electromagnetic spectrum exhibited a steady decline in reflectance
from June to September. Lastly, the SWIR bands recorded a decrease
in the mean reflectance of up to 2.5% between June and September
(Figures 4C, D).

3.2 Single-year spectral angle from Mont-
Saint-Bruno (proof of concept)

The summary of the 90th percentile range of the spectral angles
computed using reflectance from Dove PS Imagery for the target
ecological units is presented in Figure 5A. At the beginning of the
growing season in June (2018), an average spectral angle of 0.025 ±
0.031 (minimum: 0.0007 and maximum: 0.164) was determined for
the selected forest stands at MSB. Subsequently, the average spectral
angle slightly increased between July (0.026 ± 0.036) and August
(0.022 ± 0.025). The maximum of 0.173 and 0.121 and the minimum
of 0.0008 and 0.0003 spectral angles were recorded for July and
August, respectively. In September, the mean spectral angle was
0.029 ± 0.032, while the minimum and maximum were 0.0009 and
0.131, respectively. The mean spectral angle recorded across the
growing season for the Dove PS imagery was 0.026, while the
threshold value was determined to be 0.014. When this threshold
is applied, 79 (796.6 ha) target ecological units out of a total of
158 polygons were determined to be phenospectrally similar to the
baseline polygon for the Dove PS imagery (Figure 6). In comparison,
when separate thresholds are applied to each temporal data across
the growing season, 54 polygons (581 ha) were selected for PS Dove
imagery. Table 3 shows the number of polygons and the thresholds
applied to each temporal data including the mean spectral angles
using PS Dove imagery.

Furthermore, the mean spectral angle computed for S2 imagery
at the beginning of the growing season in June (0.031 ± 0.034) and
July (0.029 ± 0.035) was lower compared to that in August (0.048 ±
0.039) and September (0.061 ± 0.0.084). An average of 0.056 ±
0.063 was recorded for the June–September period (Figure 5B).

TABLE 2 Selected dates for Sentinel-2 satellite imagery used for time series
analysis to assess the robustness of the phenospectral similarity analysis at
the Mont-Saint-Bruno National Park site.

Imagery Year Date Pixel size (meters)

Sentinel-2 2019 6 May 2019 20

30 July 2019

29 August 2019

13 September 2019

2020 20 May 2020 20

4 July 2020

8 August 2020

22 September 2020

2021 9 June 2021 20

24 July 2021

3 August 2021

7 October 2021
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Additionally, for the S2 data, the threshold for the mean spectral
angle recorded was 0.018 (Figure 5B). Based on this mean spectral
angle threshold, 45 target ecological units (412.8 ha) were found to
be phenospectrally similar to the reference condition when S2 data

are used for the analysis (Table 3). However, the application of
separate thresholds month-by-month resulted in the selection of
27 polygons (246.4 ha) as potential areas of high EI. Table 3 and
Figure 7 present the thresholds determined for each temporal

FIGURE 4
(A) Mean reflectance spectra extracted from Dove PS across the growing season (June–September). (B) Mean reflectance spectra extracted from
Sentinel-2 imagery for the reference forest at Mont-Saint-Bruno National Park throughout the growing season (June–September). (C) Differences in
Dove PS reflectance between June and the months of July, August, and September. (D) Differences in Sentinel-2 reflectance between June and the
months of July, August, and September. (E) Standard deviation between June and the months of July, August, and September of Dove PS imagery.
(F) Standard deviation between June and the months of July, August, and September of Sentinel-2 imagery.
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dataset, the spatial distribution of the selected polygons, and number
of areas delineated as potential areas of high EI.

3.3 Assessment of PSpecM robustness for
the delineation of potential areas of high EI
(multi-year)

3.3.1 Mean spectral angle
For the time sequence analysis at MSB, the proportion of sites

delineated as potential areas of high EI when the mean spectral angle
across the selected dates is used for 2019 was 41 target ecological
units (429.7 ha) (Figure 8A). Furthermore, for 2020 and 2021, the
delineated stands reduced slightly to 35 (374.6 ha) and 36
(386.78 ha) target ecological units, respectively (Figures 8B and
C). A year-on-year (2019–2021) comparison of the proportions
of areas determined to be of potentially high EI shows that the
2019–2020-year range recorded the lowest temporal variability. The
year 2019–2020 recorded the highest number of commonly
delineated polygons (33 target ecological units, 347.55 ha),
followed by 2019–2021 (31 target ecological units, 352.58 ha),
with the highest temporal variability (17 ecological units
delineated, 204.70 ha) recorded between 2020 and 2021. Eight
ecological units constituting 111 ha were delineated three times
across the 3 years’ time sequence analysis (Figures 8A, B, and D).

3.3.2 Multi-year analysis accounting for seasonal
variation in spectral reflectance

The results when separate spectral angle thresholds are applied
to each temporal data for the time sequence analysis at MSB are
presented as follows; for 2019, the PSpecM analysis at MSB
identified 31 target ecological units (356.76 ha) as potential areas
of high EI (Figure 9A). In 2020, the delineated target ecological units
increased slightly to 36 polygons (379.92) (Figure 9B). Additionally,

the delineated stands were somewhat lowered for 2021 as
18 polygons (386.78 ha) were identified as potential areas of high
EI (Figure 9C). A year-on-year (2019–2021) comparison of the areas
found to potentially have high EI for the chosen years are presented
as follows. The lowest temporal variability was found in the
2019–2020 year range accounting for twelve identified polygons,
whereas the highest temporal variability (eight ecological units
delineated) was found in the 2-year interval between 2019 and
2021. Five ecological target ecological units (70.42 ha) were
identified by the PSpecM analysis across the selected years
(Figure 9D) in comparison to eight units when the growing
season average threshold was used (Figure 8D).

3.4 Identification of potential areas of high EI
over large spatial extents in Google
Earth Engine

The maps in Supplementary Figures S1–S4 illustrate the
variability of spectral angles calculated for each unknown
ecological unit across the growing season and the corresponding
multitemporal images from both sensors. Considering Dove PS
imagery, the computation of the average spectral angle across the
growing season resulted in a mean (0.033 ± 0.039) and a minimum
and maximum spectral angle of 0.00009 and 0.762, respectively. The
threshold value calculated for the Dove PS imagery at the ecoregion
scale for selected months within the year and the mean are presented
in Table 4 and Supplementary Figure S5. When these thresholds are
applied to each temporal data and their average spectral angles
(Supplementary Figure S5F), 112,483 (6,397.1 km2) and 65,172
(3722.84 km2) target ecological units, respectively, were found to
be phenospectrally similar to the reference polygons, which
constitutes 30% and 52% of the total area, respectively
(Supplementary Figure S5E). Moreover, for the S2 imagery

FIGURE 5
Violin plot of the 90th percentile range of the spectral angle for MSB (June–September 2018 and the mean) computed across the growing season
and the mean over the entire temporal period from (A) PS Dove and (B) Sentinel-2 Satellite. The red dashed lines represent the median, whereas the dark
dotted line represents quartiles. The blue dot and dashed lines show the threshold for the mean spectral angles across the growing season in radians.
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analysis at the large spatial scale, after averaging the spectral angles
across the growing season, the minimum and maximum spectral
angles for S2 were 0.003 and 1.03, respectively, and a mean of
(0.043 ± 0.052). The threshold value as determined for S2 for all
months and the mean spectral angles are presented in Table 4. Based
on these thresholds, using the mean spectral angle data,
121,370 polygons (7,128.4 km2) equivalent to 58% of the total
area were identified to be phenospectrally similar to the reference
stands. When the thresholds are applied month-by-month to
account for seasonal variation in reflectance, 95,996 target
ecological units were identified by PSpecM as potential areas of
high EI, which also constitute 46% of the total area of the study site
(Supplementary Figure S6). Comparing both PS Dove and S2 results,
for the mean data, approximately 94,691 ecological units

corresponding to a total area of 55,005 km2 were delineated by
both sensors (Figure 10A). However, 47,222 (2,773.55 km2)
polygons equivalent to 22.5% of the total area were identified by
a multi-year comparison of S2 and the Dove PS data that account for
the phenological effect on reflectance (Figure 10B).

3.5 Testing of identified potential areas of
high EI with the reference polygons

The results obtained using the testing reference sets described in
2.4.1 are presented in Supplementary Figure S8. For both sensors,
Baie Amélia differed the most, recording an average spectral angle of
0.045 (Dove PS) and 0.035 (S2). Conversely, Lac-Saint-Paul and Lac

FIGURE 6
Spatial distribution of the selected potential areas of high EI from PlanetScope (Dove) imagery at MSB (A) June image (α < 0.0169), (B) July image (α <
0.0157), (C) August image (α < 0.0099), (D) September image (α < 0.0113), (E)mean (α < 0.0141), and (F) polygons that are consistently selected across the
selected dates in the growing season. The acquisition dates of the PS Dove images used for the PSpecM analysis falls within the growing season
(June–September 2018).
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Gagnon were phenospectrally similar to the reference polygons
recording the spectral angle range of 0.004–0.008 for Dove PS
and 0.013–0.014 for S2 (Figure 11). Overall, when individual
thresholds are applied to each temporal data to account for the
phenological effect at the ecoregion scale, five of seven (71.4%) were
identified as potential areas of high EI for both sensors. Meanwhile,
the use of means spectral data produced six out seven (85.7%) testing
polygons identified as areas of high EI in the case of Dove PS, while
five out seven (71.4) were selected for S2 imagery. The S2 spectral
angle range representative of the target ecological units delineated as
potentially low EI areas varied between 0.039 and 1, with a mean
spectral angle of 0.06 larger than the remaining categories
(Figure 11). The mean spectral angle for potential high EI areas
(both multi-year and single year) ranged between 0.010 and 0.018,
while the mean spectral angle for the testing polygons delineated as
potential high EI areas (multi-year) was 0.014.

3.6 Comparison of the land cover type and
environmental conditions of the reference
sites versus the identified potential areas of
high EI

For both sensors and taking into consideration the phenological
effect, out of the over 47,222 commonly delineated target ecological
units as potential areas of high EI, 93.2% were classified with surface
deposit types consistent with that of the reference sites (1AY, 1A,
1AM, or R1A) (Supplementary Figure S7). Additionally, as shown in
Supplementary Table S2, the potential areas of high EI identified had
a similar drainage classification range (classes 10, 20, 30, 31, and 40)
as the reference sites. This suggests that if a reference used for
comparison had a drainage class of 10, then the corresponding areas
of high EI will also have a class of 10. Moreover, the predominant age
class identified for S2 delineated potential areas of high EI were old

uneven stand, young uneven stand, and an old irregular stand
(>80 years) classifications, which is also consistent with that of
the reference sites. All the delineated potential high EI stands are
classified under the land category of the terrain type. Finally, 98% of
the delineated polygons of high EI can be categorized under
deciduous and mixed stand land cover types, which is consistent
with that of the reference sites.

4 Discussion

In this study, we have shown the use and implementation of a
phenospectral similarity metric (PSpecM) as an index of EI for
identifying potential areas of high EI over a large spatial scale to
prioritize them for conservation interventions. To the best of our
knowledge, our study represents the first attempt to utilize a PSpecM
to delineate potential stand level areas of high EI. Moreover, our
study did so at a large geographic scale via Google Earth Engine’s
geospatial analysis platform to complement the existing
conservation tools and potentially support the ongoing KBAs
initiative. It is important to highlight that our proposed
approach, PSpecM, provides a way of estimating EI and not a
way to determine the location and extent of KBAs. However, the
results from PSpecM implementation could be useful in the
determination of KBAs.

Our analysis shows that the utilization of forest canopy spectral
changes across the growing season (phenospectral) highlights the
spectral–temporal dynamics (Figure 4) to aid in large-scale
identification of potential areas of high EI at the stand level. The
PSpecM approach is sensitive to the canopy phenological
characteristics, composition, and biophysical and structural
attributes of the delineated potential high EI forest stands. In the
forest zone of southern Quebec, Canada, these attributes form part
of the key considerations for classifying sites as exceptional forest

TABLE 3 Number of selected polygons and spectral angle thresholds determined for each temporal data and that of the mean spectral angle at the Mont-
Saint-Bruno National Park site using PS Dove imagery and Sentinel-2 satellite imagery.

Month (Dove PS) Threshold Number of polygons selected Area (ha)

June 0.0169 85 840.6

July 0.0157 88 869.6

August 0.0099 66 669.0

September 0.0113 62 633.6

Average 0.0141 80 796.6

Selected month-by-month 54 581.0

Month (Sentinel-2) Threshold Number of polygons selected Area (ha)

June 0.0178 79 754.5

July 0.0146 61 596.4

August 0.0182 35 311.9

September 0.0251 72 673.3

Average 0.018 45 412.8

Selected month-by-month 27 246.4
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ecosystems (Villeneuve and Brisson, 2003). Thus, the usefulness of
PSpecM in narrowing the potential areas of high biodiversity and the
opportunity to monitor periodic changes of their extent can be
explored further to support the province’s biodiversity management
efforts. Additionally, in Canada, the identification of key biodiversity
areas with respect to EI (criterion C) has been deferred pending the
development of methods to identify KBAs for Canada (KBA Canada
Coalition, 2021). Criterion-C KBA sites are large areas
(>10,000 km2), with one or two expected per ecoregion across the
globe. Due to the scalable nature of our approach, successful
implementation of this metric at the ecoregion scale in Quebec is
a good indication that PSpecM can be refined to complement the
existing tools (Beyer et al., 2020) for large-scale monitoring and
prioritization of high EI areas.

For a candidate stand that is phenospectrally similar to a
reference forest, a smaller spectral angle is expected to serve as a
quantitative measure of spectral similarity of that ecological unit
to the reference site. Over the years, utilization of the spectral
angle as a mapping approach has been shown to be robust, and it
provides better classification and target detection outcomes
compared to traditional classifiers (Sohn and Rebello, 2002).
Our results for the time series analysis show that, although
there were some uncertainties in the delineated areas of high
EI, a considerable number of target ecological units were
consistently delineated as areas of high EI across the selected
years (Figures 8 and 9) when either the mean spectral angle is
used or when separate thresholds are applied month-by-month
to account for phenological effects.

FIGURE 7
Spatial distribution of selected potential areas of high EI from Sentinel-2 imagery at MSB: (A) June image (α < 0.0169), (B) July image (α < 0.0157), (C)
August image (α < 0.0099), (D) September image (α < 0.0113), (E) mean (α < 0.0141), and (F) polygons that are consistently selected across the selected
dates in the growing season. The acquisition dates of the Sentinel-2 images used for the PSpecM analysis falls within the growing season
(June–September 2018). These dates are presented in Table 1.
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Phenology is closely related to biodiversity and ecosystem
dynamics. Therefore, it is important, when possible, to consider
the effect of phenological cycles on the spectral variation in forest
canopies (phenospectral) by analyzing the imagery on a month-by-
month basis throughout the growing season. From Figures 8D and
9D, yellow polygons will normally not be selected as candidates
because they were only selected in 1 year. Ideally polygons selected
3/3 times will be considered candidate stands of high EI, and special

consideration will be given for the ones selected twice before
inclusion. The temporal consistency observed in the time
sequence analysis is a good indication of the usefulness of the
PSpecM approach for rapid delineation of potential high EI
areas. The observed temporal variation in the delineated stands
of high EI can be improved by exploring different spectral angle
thresholds. Additionally, temporal changes in vegetation dynamics
(e.g., deforestation) and image contamination by clouds and

FIGURE 8
Time sequence PSpecM analysis using Sentinel-2 satellite imagery acquired between (A) 2019 (mean spectral angle threshold (α) = 0.0283), (B) 2020
(mean spectral angle threshold (α) = 0.0184), and (C) 2021 (mean spectral angle threshold (α) = 0.0324). (D) Map showing the number of times the
ecological units or target polygons were selected across the years. This analysis uses the mean spectral angle across the growing season.
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shadows could also explain the differences in the delineated stands
(temporal variation) observed across the selected years.

To detect candidate stands of high EI over a large geographic
extent (i.e., from ecoregion to national to global scales), the use of
GEE for the implementation of the PSpecM is recommended for an
optimized workflow. GEE serves as an effective online environment

to extract and integrate either freely available (e.g., Sentinel-2 and
Landsat) or access-restricted (e.g., Planet data) multitemporal
imagery into a complex analytical workflow (Tassi and Vizzari,
2020). As demonstrated in this study, by implementing PSpecM in
GEE, the workflow (described in Section 2.2.1) decreased in part
because most of the preprocessing steps such as atmospheric

FIGURE 9
Time sequence PSpecM analysis using Sentinel-2 satellite imagery acquired between (A) 2019 (May threshold (α) = 0.0215, July threshold (α) =
0.0286, August threshold (α) = 0.0237, and September threshold (α) = 0.0343), (B) 2020 (May threshold (α) = 0.0266, July threshold (α) = 0.0332, August
threshold (α) = 0.0353, and September threshold (α) = 0.0313), and (C) 2021 (June threshold (α) = 0.0323, July threshold (α) = 0.0270, August threshold
(α) = 0.0260, and October threshold (α) = 0.0323). (D) Map showing the number of times the ecological units or target polygons were selected
across the years.
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correction had already been applied to the S2 imagery in the catalog.
With these available images, implementation of the PSpecM would
be straightforward, following filtering of the image collections. The

entire computation can be automated programmatically using
JavaScript, thus permitting the repetition and reproduction of the
workflow on different image collections (Gorelick et al., 2017). At

TABLE 4 Number of selected polygons and spectral angle thresholds determined for each temporal data and that of the mean spectral angle at the large
spatial scale (ecoregion) using Dove PS satellite imagery and Sentinel-2 satellite imagery.

Month (Dove PS) Threshold Number of polygons selected Area (ha)

June 0.0233 111,694 6,291

July 0.0224 115,118 6,519

August 0.0254 122,792 7,023

September 0.0208 91,179 5,235

Average 0.023 112,483 6,397

Selected month-by-month 65,172 3,723

Month (Sentinel-2) Threshold Number of polygons selected Area (ha)

June 0.0328 123,277 7,314

July 0.0354 130,883 7,648

August 0.0322 116,284 6,750

September 0.0396 131,123 7,588

Average 0.034 121,370 7,128

Selected month-by-month 95,996 5,690

FIGURE 10
Spatial distribution of potential areas of high EI (deep green) delineated using multi-year satellite imagery (i.e., both Sentinel-2 and PlanetScope
(Dove) satellite imagery). (A) Multi-year delineated polygons by averaging spectral angles across the growing season; (B) multi-year reduced delineated
polygons when individual thresholds are applied on a month-by-month basis for each year to account for the phenological cycle effect across the
growing season. The acquisition dates of the Sentinel-2 and PS Dove images used for the PSpecM analysis falls within the growing season
(June–September 2018 and 2019). These dates are presented in Table 1.
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the national or global scale, manual download and implementation
of the analytical methods (described under Section 2.2.1) can be a
daunting and time-consuming task due to the high volume (e.g.,
ecoregion scale: ~40 GB) of satellite imagery and the requirement of
computing capacity for such an amount of data. These constraints
can be overcome by adopting the GEE platform, which serves as a
catalog of satellite imagery and other geospatial datasets with global
coverage (Gorelick et al., 2017; Amani et al., 2020; Hu et al., 2020)
and provides digital processing capacity to reduce the amount of
time needed to analyze such large datasets locally (Daldegan et al.,
2019). Unlike the proof-of-concept analysis (MSB), in GEE, there is
no need to manually download and process individual tiles locally
(Daldegan et al., 2019). Juxtaposing these benefits with promising
results from previous research (Tracewski et al., 2016; Beresford
et al., 2020) and the focus of ongoing conservation projects such as
the Cambridge Conservation Initiative (2019), it is inevitable that
soon, GEE will be widely adopted by conservationists across the
globe for large-scale KBA identification and assessments.

Comparing the results from the Dove PS imagery to that of
S2 satellite imagery at a small spatial scale, the extent of the forests
identified as high EI reduced (e.g., from 54 to 27 polygons at MSB)
with imagery with a greater spectral resolution (Figures 9A and B).
The Dove PS imagery has the advantage of high spatial resolution
(3 m) at the expense of spectral resolution (4-bands), while S2 has a
coarser spatial resolution (20 m) but a higher spectral resolution in
comparison (Planet Lab Inc, 2016; Radoux et al., 2016). In both
multi-spectra datasets, in the visible bands, the spectral
characteristic of vegetation is similar since the vegetation exhibits
photosynthetic absorption in the blue and red wavelengths and
higher reflectance in the green region of the electromagnetic

spectrum (Gates et al., 1965). Additionally, the most common
applications of the coarse spectral resolution of Dove PS imagery
have been for mapping the temporal phenology and tracking of
small-scale ephemeral forest cover dynamics (Pickering et al., 2021).
This implies that undisturbed stands (irrespective of species
composition difference compared to a reference site) could be
captured as potential areas of high EI, which explains why more
target ecological units were identified to be of high EI when Dove PS
Imagery was used for the analysis. However, with S2, there are
additional spectral bands in the red-edge, near-infrared (NIR), and
shortwave infrared (SWIR) (Radoux et al., 2016). These bands help
maximize species-specific differences (Grabska et al., 2019) and
highlight canopy leaf structural and biochemical compositions
(chlorophyll and water content) (Brown et al., 2019).
Additionally, for a sub-canopy pixel size, it is possible to observe
the spatio-temporal variability induced by external factors, such as
shading at separate times of the year. These factors could explain
why the number of stands identified to be of high EI for S2 imagery
differed from that of Dove PS.

From Supplementary Figure S7, it can be deduced that the
environmental conditions (e.g., surface deposits and drainage) of
the delineated potential stands of high EI were similar to that of the
reference ecological units. Less than 6% of the delineated stands of
high EI had different surface deposit types compared to the reference
sites (Supplementary Figure S7). This suggests that the
environmental conditions of the reference sites could play a key
role in the selection of potential sites of high EI. In this study,
filtering of the target units in terms of environmental conditions was
not included in the workflow prior to PSpecM implementation. As a
result, phenospectral dissimilarity of a candidate stand may not

FIGURE 11
Comparison of PSpecM results for single-year andmulti-year (2018/2019) analyses with the testing sets. The red curve illustrates the statistics of the
target ecological units and spectral angle with statistics for distinct categories, including the reference sites (potential areas of low and high EI (multi–year)
and potential areas of high EI for single year). Potential areas of high EI (multi-year) constitute areas selected by both sensors (PlanetScope (Dove) and
Sentinel-2) in 2018/2019. The triangles are the mean, and the ends of the whiskers are the maximum and minimum spectral angles for their
respective category.
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necessarily imply that a site has low EI but could constitute
differences in the environmental conditions. For instance, non-
filtering of target polygons based on the similarity of land cover
type and environmental conditions as reference sites (e.g., peatland
vs. peatland and forest vs. forest) could result in the delineation of an
undisturbed forested peatland as having low EI relative to an old-
growth mesic reference forest on well-drained soil. Although both
sites may have high EI, phenospectral dissimilarity could be
observed because of the compositional and structural differences
caused by their respective environmental conditions (Mosseler et al.,
2003; Andersen et al., 2011).

For both multispectral datasets, the Baie Amélia reference site
differed most from the reference polygon (Lac Cuillèrier) used for
the comparison. Although Baie Amélia and Lac Cuillèrier exhibit
similarity in terms of species composition (e.g., both sites have sugar
maple and yellow birch trees), they differ with respect to topographic
complexity (Ministère des Ressources naturelles, 2003a, ministère
des Ressources naturelles, 2003b). The reference site Lac Cuillèrier is
characterized by gentle to moderate slopes (relatively less rugged
terrain), whereas Baie Amélia is characterized by rugged relief
(Ministère des Ressources naturelles, 2003a, ministère des
Ressources naturelles, 2003b). Phenological variations
(phenospectral) are typically driven by topographic, edaphic, and
climatic factors of a unit area (Cho et al., 2010). Topographic effects
result in substantial shadowing to cause variable canopy reflectance
values (Nath and Ni-Meister, 2021). Apart from the topographic
complexity (such as slope, elevation, and aspect), structural
complexity resulting from variations in tree height and rugosity
can also influence the spectral reflectance measured at the forest
canopy (Nath and Ni-Meister, 2021). These dynamics could explain
the phenospectral dissimilarity observed with regards to the
reference (Lac Cuillèrier) and testing (Baie Amélia) polygons.

The key challenge in the implementation of the phenospectral
similarity metric on a large spatial scale is limited data for the
reference sites (key limitation), spatiotemporal satellite data
acquisition throughout the growing season, and the availability of
cloud-free satellite imagery. Cloud, shadow, and haze contamination
compromise the usability of satellite imagery. Although the
JavaScript functions developed incorporates cloud and shadow
removal for S2 imagery (Justin, 2022), clouds and shadows are
generally difficult to eliminate; thus, remaining clouds may
contribute to incorrect estimates of PSpecM for the affected
stand. In cases with an extensive cloud cover, a combination of
available cloud-free multi-temporal data from multiple spaceborne
sensors should be explored and utilized for the PSpecM analysis.
Additionally, the target ecological units employed in the PSpecM
analysis are accessible as file geodatabase and ESRI shapefile formats,
with only the latter currently supported in GEE. However, the ESRI
shapefile format has a size limit of 2 GB (ESRI, 2021); hence, the
target ecological units from which to select candidate stands of high
EI cannot exceed this limit unless a different format or multiple
shapefiles are used.

It is important to note that, in temperate climate, since most
trees in deciduous forest lose their foliage at the end of the growing
season, there is a limited window (i.e., during the growing season),
for which this methodology would be appropriate. Future studies
should consider including the leaf senescence period where many
deciduous tree species change color to assess the usefulness of those

periods for delineating stands of high EI. Moreover, for other forest
types (e.g., evergreen), multitemporal data across different seasons
could be explored to determine the appropriate image dates for
PSpecM analysis. Additionally, considering that forest stands exhibit
similar spectral characteristics (especially in the visible and near-
infrared range for Dove PS and Sentinel-2) during the growing
season, future studies could explore the use of a greater number of
temporal images (not only four) to reduce temporal uncertainties.

5 Conclusion

Using Sentinel-2 and PlanetScope (Dove PS) satellite imagery,
we have illustrated at two spatial scales the usefulness of the
phenospectral (reflectance changes across the growing season)
similarity metric in identifying potential sites of high EI.
Phenospectral similarity can be associated with species
composition and phenological, structural, and functional
biodiversity of the forest canopy to enable the delineation of
stand-level potential areas of high EI over large spatial scales
(i.e., thousands of km2).

The main benefit of our approach is in its ability to integrate
taxonomic, phylogenetic diversity, and structural aspects of
vegetation that are important for EI at the stand level. Hence,
PSpecM can serve as an important first step to narrow down
important biodiversity areas at broader geographic scales using
Earth observation satellite data. Due to the scalable nature of the
PSpecM, it is expected that our approach will contribute to
measuring EI that can potentially be applied to KBAs
identification at multiple spatial scales. The key limitation of
our approach is the availability of reference sites of known high
EI to act as reference ecological states. The implementation of
PSpecM requires a reference stand known to be of high EI and
unknown target ecological units of the same land cover type and
environmental conditions (e.g., drainage and surface deposits)
for comparison to delineate potential areas of high EI. As Canada
leads the implementation of new and systematic approaches to
identify KBAs, our approach could potentially serve as a novel
complementary conservation tool to contribute to KBA
identification (i.e., the EI criterion could be measured using
our approach, which could lead to an improved outcome)
countrywide and potentially at the global scale.
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