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In Atlantic Europe, on poorly drained grasslands soils, compaction negatively
affects soil health when trafficked in wet conditions, while optimum grass growth
cannot be achieved in excessively dry conditions. In Ireland, daily soil moisture
deficit (SMD) information is forecasted at regional scale for all soil drainage
classes. Optimal paddock conditions can occur between trafficking (10 mm)
and optimum grass growth (50mm) SMD thresholds for an identified drainage
class. The objective of this farm scale study is to improve the identification of
optimum conditions in time and space by combining high resolution spatial soil
moisture estimates with soil drainage class specific SMD data. For that purpose,
Sentinel- 2 (S-2) data was used in a modified Optical Trapezoid Model (OPTRAM)
to derive normalised surface soil moisture (nSSM) estimates at farm level. In-situ
soil moisture sensors providing daily estimates of volumetric soil moisture were
used for validation of OPTRAMwith an RMSE of 0.05. Cumulative 7-day SMDprior
to the date of each S-2 image was analysed for each year from 2017-2021 to
select nSSM maps corresponding to negative, 0 or −0 and positive SMD. Results
established a relationship between nSSM and SMD indicating optimal conditions
changed spatially and temporally. The months of April, May, August and
September always presented at least 35% of the farm area available for
optimum management operations. Future refinement of this methodology
utilising daily high resolution remote sensing data could provide near real-
time information for farmers.
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1 Introduction

Globally, grasslands are one of the major ecosystems, covering one-third of the earth’s
landmass (Lemaire et al., 2011; Bengtsson et al., 2019). In Europe, permanent grasslands
cover 34% of the agricultural area and provide a wide variety of ecosystem services (Habel
et al., 2013; Schils and Milazzo, 2022). They are also diverse due to natural factors such as
climate and soil, but also due to varying intensities of management practices resulting in
gradients of fertilisation and grazing intensities (Blüthgen et al., 2012). Permanent
grasslands in Europe have been the main source of livestock production and nutrient
cycling on farms for centuries (Hejcman et al., 2013; Schils and Milazzo, 2022). Grass
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remains the cheapest source of high-quality feed for meat and dairy
production (Schils and Milazzo, 2022).

In Atlantic Europe, excess of soil moisture is the main
biophysical constraint to farm management (Schulte et al., 2012)
and one of the main grassland soil threats is compaction induced by
animals and machinery traffic, especially when the soil is excessively
wet (Piwowarczyk et al., 2011; Newell-Price et al., 2013; Tuohy
et al., 2015; Lepore et al., 2023). Over 90% of the agricultural land
in Ireland consist of grasslands, pasture or hay which are an
important source of feed for Irish livestock (Bondi et al., 2021).
In Ireland, 56% of the livestock farms contain land classified as Less
Favourable Area (areas that are difficult for cultivation because
of natural factors such as steep slopes, soil productivity, etc.)
(Schulte et al., 2012) and 30% of grasslands are on poorly
drained soils (Teagasc, 2021b)

Soil moisture is commonly expressed in terms of soil moisture
deficit (SMD), which is the amount of rainfall (mm) required to
return the soil to field capacity (FC) i.e., the volume of water that can
be present in the soil against gravity (“Met Éireann” n.d.). SMD is
independent of pore space or rooting depth and can be used as a
proxy for volumetric water (VW) content and requires fewer
variables for measurement as compared to VW (Herbin et al.,
2011; Schulte et al., 2012). In Ireland, Schulte et al. (2005)
developed the hybrid SMD model for grassland capable of
predicting daily SMD applicable to five soil drainage classes. At
present, Met Éireann (National Meteorological Service) utilises this
model and publishes daily SMD values across all soil drainage classes
at regional scale. Daily SMD values can vary between −10 mm and
110 mm. For the farmer, this regional scale information can inform
paddock scale decisions when the paddock soil drainage class is
known. In terms of management decisions at −10 mm the soil is sub-
optimal and saturated, between 10 and 50 mm the soil presents as
optimal while drought like conditions are evident around 75 mm
and the wilting point is reached at 110 mm (Schulte et al., 2012). The
10 mm and 50 mm thresholds are important from a farm
management perspective and can be observed for any paddock of
known drainage class. Although thresholds exist for SMD
conditions related to soil and crop health, no such thresholds
have been defined for soil moisture content.

Satellite remote sensing technology provides a mechanism to
measure soil moisture at sub-field (100′s m2), sub-catchment
(0.1–1 km2) and catchment (1–80 km2) scales. Many optical
satellites such as Landsat, Sentinel-2 etc. offer high resolution
data that has been used to estimate soil moisture (Q. Wang
et al., 2020; West et al., 2018; Urban et al., 2018). High
resolution microwave sensors such as Sentinel 1 have the added
advantage of operating in all weather conditions and have been used
to estimate high resolution soil moisture (Singh et al., 2020;
Bhogapurapu et al., 2022; Chaudhary et al., 2022). Such
technologies can help bridge the gap in existing decision support
systems (e.g., hybrid SMDmodel coupled with farmer knowledge of
paddock specific soil drainage class) by providing real or near real
time spatial and temporal information to farmers about on-farm
optimal operational conditions. However, both optical and radar
satellites have limited penetration capabilities (Mohanty et al., 2017)
and have been evaluated for soil moisture estimation at coarser
spatial scales, especially with microwave sensors (S. Wang and Fu,
2023). Thus, they have restricted abilities at finer spatial and

temporal scales, and therefore cannot be used for precision-
agricultural applications (Babaeian et al., 2019). This is especially
true for Ireland where persistent cloud cover is a reality.

The objective of the present study is to develop a methodology
and application at high spatial resolution, whereby areas of a farm
that are indicative of optimal/favourable trafficable and grass growth
conditions can be identified both spatially and temporally. This is
achieved by using a combination of daily SMD data which gives
temporal information and Sentinel-2 derived normalised surface soil
moisture (nSSM) which provides high resolution spatial
information (10 m) on soil moisture conditions on the farm. The
focus of the study is a dairy grassland farm in Ireland dominated by
poorly drained heavy textured soils which tend to remain wet for
very long periods especially after a rainfall event. Existing models for
farm management are based on SMD thresholds alone and
advisories for farm management in Ireland are based on these
SMD thresholds (Eireann, 2023). Since SMD values do not have
a spatial component/spatial information, any decision support tool
based on SMD alone does not include spatial information crucial for
decision making on the ground. To address this knowledge gap and
to improve existing forecasts based on SMD estimates, this study
uses optical satellite data from Sentinel-2 to estimate high-resolution
normalised surface soil moisture (nSSM) using the Optical
Trapezoid Model (OPTRAM) in conjunction with existing SMD
based models. Estimates of nSSM are combined with an SMDmodel
to define specific soil moisture thresholds for grass growth and
trafficability on this farm to develop a decision support tool for
farmers for designing targeted paddock-based management
intervention. This study is aimed at developing soil moisture
thresholds for defining favourable farm management conditions
using a combined nSSM and SMD approach. The results are
validated using in situ soil moisture data and through regular
monitoring of farm conditions.

2 Materials and methods

2.1 Study area

The study farm (40 Ha) is located in Rossmore, Co. Tipperary
(52° 36′N, 8° 01′W) and is part of the Teagasc Heavy Soils
Programme (HSP) (Teagasc, 2021b). The farm mostly has a flat
terrain and receives approximately 980 mm of rainfall annually.
Annual grass production on this farm in 2022 was 13178 kg DM/Ha,
being 11608 kg DM grazed and 1570 kg DM as silage conserved.

A soil survey at paddock scale was conducted on the farm in
2015, with every paddock assigned to a soil subgroup and associated
drainage class in accordance with protocols developed for the Irish
Soil Information System (ISIS) project The ISIS project was
established in 2008 with the objective of constructing a national
soil map at 1:25,000 scale to provide spatial and quantitative
information about the soil type in Ireland. All the soils belong to
one of the 11 soil Great Group and can be further classified into sub-
groups (Simo et al., 2008; Environmental Protection Agency, 2014).
Mapping of the soil type for each paddock on the farm was carried
out using an auger and test pit survey. For every Ha, an auger bore
was driven into the soil to a depth of 1 m and soil features such as
colour, texture, mottling, etc. were recorded and soil type and
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drainage class (as shown in Figure 1B) assigned. Additionally,
3–4 soil pits, each at depth of 1–2 m were dug on the farm to
further analyse the dominant soil type (Teagasc, 2021b). The
dominant soil subgroup is Surface-Water Gley, which are wet,
acidic soils and have gleying within 40 cm (Teagasc, 2014). The
soil texture is mostly sandy loam and the paddocks are generally
poorly drained (i.e., those that are saturated during a rainfall event
and continue to hold excess water for multiple days after such
events), except for paddocks 8,10, and 21 (Figure 1B) which are well
drained (i.e., those that hold excess water during a rainfall event but
not afterwards) (Schulte et al., 2015; Tuohy et al., 2018). Knowledge
of the paddock drainage class enabled the correct SMD values to be
assigned to each paddock.

2.2 Satellite and in-situ data for estimation
and validation of normalised surface soil
moisture (nSSM)

Optical data from Sentinel-2 (S-2) is used in an Optical
Trapezoid Model (OPTRAM) to estimate normalised surface soil
moisture (nSSM) for the study area. The farm is equipped with in-
situ soil moisture sensors, installed at a depth of 15 cm, providing
daily estimates of volumetric soil moisture (VSM), based on soil
resistivity and capacitance (Eireann, 2024), used for validation of
OPTRAM. S-2 level 1 C product (ESA, 2013) was downloaded from
the United States Geological Survey (USGS) Earth Explorer website
(USGS Earth Explorer, 2024). The level 1C products comprise of
ortho-rectified, Top of Atmosphere (TOA) reflectances, based on a
UTM/WGS 84 projection reference system (Baillarin et al., 2012).
The images were selected based on an initial visual interpretation of

cloud cover and through an analysis of daily rainfall and
Evapotranspiration (ET) data available from weather stations
installed on the study area so as to ensure that the data
represented all weather conditions for the study area, covering
both wet and dry periods. A total of 30 S-2 images were
downloaded from 2017-2021, that included cloudy and
cloud-free data.

All the S-2 level 1C products were atmospherically corrected in
QGIS using the Semi-automatic Classification Plugin and the Dark
Object Subtraction (DOS) algorithm (Chavez, 1988; Gilmore et al.,
2015). The cloudy Sentinel-2 data were masked using a cloud mask
available with the Sentinel 1 C product as part of the quality
information (Coluzzi et al., 2018).

2.3 OPTRAM

OPTRAMwas developed to estimate soil moisture using satellite
data. OPTRAM (Sadeghi et al., 2017) is an improvement over the
Thermal-Optical Trapezoid Model (TOTRAM), which is one of the
most popular approaches to mapping soil moisture using remote
sensing. OPTRAM improved TOTRAM by replacing Land Surface
Temperature (LST) in TOTRAM with the short wave infrared band
as a measure of soil moisture, thereby, eliminating the need for
calibration of each satellite observation since LST depends on
parameters such as surface air temperature, wind speed and
relative humidity. This modification makes OPTRAM suitable to
be used even with those satellites that do not have a thermal band
(Sadeghi et al., 2017). OPTRAM has been found to perform better
than TOTRAM (Burdun et al., 2020) with the former reaching
positive correlation values of upto 0.8 and the latter with low

FIGURE 1
(A) Study area is within the orange polygon (B) paddock boundaries and paddock drainage class distribution in the study area, i.e., orange paddocks
are poorly drained and white paddocks are well drained.
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negative correlation values with water table depth. This model uses
vegetation index (VI) and the Shortwave Transformed Infrared
Reflectance (STR), calculated from short wave infrared (SWIR)
band to map soil moisture in the STR-VI space., STR has been
tested successfully for its sensitivity to soil moisture over vegetated
surfaces, assuming a linear relationship between soil and vegetation
water content. Though, originally developed over arid and semi-arid
climatic conditions, in recent years, OPTRAM has been successfully
applied over a variety of land cover including wetlands and
peatlands (Burdun et al., 2020; Burdun et al., 2023; Mokhtari
et al., 2023). Similarly, Basu et al., 2024 also applied OPTRAM to
estimate soil moisture in the same study site as in this paper, which is
also dominated by wet conditions.

Studies have shown that the VI-STR relation for high vegetation
cover may be non-linear (Mananze and Pôças, 2019; Hassanpour
et al., 2020) and that non-linear parametrization of OPTRAM lead
to better accuracies in soil moisture estimates as compared to linear
parametrization (Ambrosone et al., 2020). Following from such
studies, this study also modified OPTRAM by using a non-linear
double logistic function instead of a linear function to determine the
wet and dry edges in the STR-VI space. In this study, S-2 band 12
(i.e., SWIR band centred at 2190 nm) has been used to compute STR.
The normalised surface soil moisture (nSSM) for each pixel is
calculated as a linear distance between the dry edge and the wet
edge using Eq. (1) as:

nSSM � X − d( ) ⁄ w − d( ) (1)
where, X is the STR of the pixel for which nSSM is to be calculated, d
is the STR on the dry edge curve and w is the STR on the wet edge
curve. All other pixels would thus, have nSSM values
between 0 and 1.

Additionally, another modification made to OPTRAM in this
study is the use of the Enhanced Vegetation index (EVI) instead of
the Normalised Difference Vegetation Index (NDVI) as used
originally in OPTRAM. EVI has several advantages over NDVI
especially with respect to saturation issues over vegetated lands,
where its sensitivity decreases with increasing biomass (Rocha and
Shaver, 2009; Antunes Daldegan et al., 2020; Ojha et al., 2021) and
based on class separability, it has also been shown to be an optimum
VI for studying Irish grassland using S-2 data (Saadeldin et al.,
2022). nSSM maps for the farm were obtained at a spatial resolution
of 10 m (Figure 2). The model has been validated using volumetric
soil moisture data from in-situ soil moisture sensors installed on the
farm. There are 6 in situ soil moisture sensors installed on the farm
at a depth of 15 cm, providing daily estimates of volumetric soil
moisture. An RMSE of 0.05 and an R2 of 0.4 was obtained between
modelled nSSM and in situ volumetric soil moisture (Basu et al.,
2024). The range of volumetric soil moisture is between 0.1 and
0.6 m3/m3.Further details about the methods and validation of
OPTRAM used in this study area is available in Basu et al., 2024.

2.4 Soil moisture deficit (SMD)

SMD is calculated using the grassland hybrid model of Schulte
et al. (2005, 2015) using site specific data from the meteorological
weather station on the farm, i.e., daily max and min temperature,
rainfall, wind speed and solar radiation. It is a water mass balance
model that calculates SMD from a cumulative balance of rainfall,
evapotranspiration and drainage using Eq. (2) as:

SMDt � SMDt−1 − Raint + ETt + Draint (2)

FIGURE 2
Linear regression between SMD and mean nSSM for (A) poorly drained and (B) well drained soils.
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Where, SMDt and SMDt−1 are SMDs on day t and t-1
respectively in mm. Raint is the daily rainfall (mm/hr), ETt is
daily actual evapotranspiration (mm/hr) and Draint is the water
that is drained daily through percolation and/or surface flow. Daily
estimates of rainfall and ET from the weather station on the farm is
used in this model that enable daily SMD to be calculated for
individual paddocks on the farm for three drainage classes: well-
drained, moderately-drained and poorly-drained. For a well-drained
soil/paddock, SMD would never exceed the filed capacity (SMD =
0 mm), a moderately drained paddock takes 24 h after a rainfall
event to reach field capacity and a poorly-drained paddock can take
upto days to achieve the same (Schulte et al., 2005).

As paddocks on the farm are either poorly or well-drained
(Figure 1B), the SMD model was run for these two drainage
classes for the years 2017–2021, co-incident with the time period
of S-2 data. The SMD time series for the farm represents temporal
information where each value in the time series is a value/point in
time and does not have a spatial component. SMD values in
general can be interpreted as follows: negative SMD represents
wet soils/wet conditions on the farm, 0 or nearly 0 SMD
represents field capacity (FC) i.e., the maximum amount of
water a soil can hold against gravity and positive SMD
represents dry soil/dry conditions on the farm. More
specifically, at an SMD of −10 mm, the soil is considered
saturated, percolation commences at 0 mm, and the hydraulic
conductivity increases from 0 SMD to a maximum value (soil
saturation) which is specific to a drainage class (Schulte et al.,
2005; 2012).

2.5 Development of optimal thresholds
using nSSM and SMD

To develop a relationship between nSSM and SMD, firstly, a
cumulative sum of 7-day SMD prior to the date of each S-2 image
collected in the period from 2017 to 2021 was calculated. This helped
in selecting specific S-2 dates from the time series which
corresponded to negative, 0 and positive SMD values, covering
the entire range of SMD conditions on the farm for the study
period. 11 such S-2 images were finally selected out of the
30 available S-2 images that represented very wet to very dry
conditions of soil moisture on the farm.To calculate a
relationship between SMD and nSSM, two linear regression
models were developed between mean nSSM for the 11 selected
S-2 images for the farm and the corresponding SMD estimates on
those 11 dates for poorly and well drained soils, respectively.This
model was run using the lm function from the stats package in R
(The R Foundation, 2018). The lm function uses an ordinary least
squares (OLS) method for modelling the relationship between the
dependent and independent variables. The mean nSSM was
calculated as a spatial average of all the pixels on a particular day
covering the farm. This enabled direct comparisons between the
time series of SMD and mean nSSM.

As discussed previously, values in literature suggest that 10 mm
and 50 mm are the thresholds that represent conditions of restricted
trafficability on soils (Schulte et al., 2012; Vero et al., 2014) and grass
growth, respectively (Teagasc, 2021a). Any SMD value between
these two thresholds should be considered an optimum “window

of opportunity” for both soil and crop. Therefore, SMD thresholds of
10 and 50 were applied to the each of the two regression models to
arrive at corresponding nSSM thresholds of 0.235 and
0.315 respectively. Thus, three categories (i.e., <0.235,
0.235–0.315 and >0.315) of nSSM were obtained corresponding
to “excessively dry,” “optimum” and “excessively wet” conditions
respectively. Proportions of farm area falling under each of these
nSSM categories were calculated. The middle category of nSSM
(0.235–0.315) represents the optimum “window of opportunity” in
terms of safe soil and crop utilisation on the farm and will be referred
to as the “optimum” category in this study henceforth. The optimum
nSSM category represents general favourable conditions for
trafficability and grass growth in the study area. A flowchart of
the methodology is presented in supplementary information.

The patterns of soil moisture in the optimum nSSM category
as well as in the other categories are shown in Figure 3. These
results have been validated using expert knowledge about the
drainage and soil characteristics of the farm as well as by
interaction with farmers. Since the farm is part of the Teagasc
Heavy Soils Programme, there is complete access to and detailed
knowledge about farm conditions and data such as SMD,
weather, and farm management activities.These farms have
been visited multiple times thorughout the year during the
study period and have been visually assessed for soil moisture
conditions during those times which confirm to their respective
drainage classes at that time. This fine scale knowledge and data
was used to validate the results.

2.6 Calculation of proportion of farm area
within the optimum category at a daily
time step

To examine the proportion of farm area within the optimum
nSSM category, a piecewise linear regression function (from
segmented package in R) (Muggeo, 2008) was fitted between the
proportion of farm area in the optimum category of nSSM for the
11 selected S-2 images (as obtained in Section 2.5) and the
corresponding SMD on these dates. Using this function, the
proportion of farm area falling within the optimum category was
predicted at daily time steps from the daily SMD estimates. The daily
values were averaged into monthly values for the time series to
identify trends of trafficability and grass growth for the farm across
the time series (Figure 5).

3 Results

3.1 Optimal threshold range for nSSM

3.1.1 Regression between SMD and nSSM
Figures 2A, B show the linear regression models between mean

nSSM of the 11 selected S-2 images and the corresponding SMD for
both poorly and well drained soils, respectively. The slopes for both
soil types is identical (0.002) and the intercept is similar with
minimal difference. The co-efficient of regression is highly
significant for both soil types. However, since most of the
paddocks on the farm are poorly drained (Figure 1B), the
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regression model for the poorly drained soil type was finally selected
for all subsequent analysis and this model was used to calculate
thresholds for soil moisture regime based on SMD thresholds of
10 mm and 50 mm.

Three categories of nSSM values.i.e., “Excessively Dry”
(<0.235), “Optimum” (0.235–0.315) and “Excessively Wet”
(>0.315) were obtained from the regression model between
mean nSSM and SMD. For each of these categories, the
propotion of farm area falling within the partcicular category
was calculated as shown in Table 1. The optimum category of
nSSM (0.235–0.315) corresponding to SMD between 10mm and
50 mm represents the moisture range for optimum soil and crop
conditions on the farm.

3.2 Spatial and temporal patterns of nSSM on
the farm

Examples. of nSSM maps for negative, −0, within the optimum
range and maximum SMDs in the time series are shown in Figure 3.
The maps show spatial variability of nSSM in the farm for different
SMD conditions. It is important to note that this spatial variability is
not paddock specific and shows a spatial continuum. The optimum
category of nSSM (0.235–0.315), is coloured in low to high shades of
green. As can be seen for the figure, this green region is spatially
variable across the farm under different conditions of SMD and
merges across paddocks. Blue areas on the farm represent wetter

FIGURE 3
Example of nSSMmaps for negative, −0, optimum category and positive SMD. Green regions represent soil in the “optimum” category, blue regions
represent wetter than optimum conditions and red region represent drier than optimum conditions. Units of SMD are in mm.
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than the optimum condition and red areas correspond to drier than
optimum conditions. Specifically, the soils in the blue regions on the
farm would be susceptible to poaching/surface damage in case of
trafficking by animals or machinery while those in the red region are
mostly limited by grass growth potential with trafficability not being
a key constraint (although compaction may remain a risk to soil
health). It is interesting to note that even on the day of highest SMD
(75.4 mm), which represents very dry conditions and in this case,
almost a drought situation, there is still a small proportion of the
farm where the soil moisture status is such that grass growth is not
restricted. Similary, on a relatively wet day (SMD −10 mm), small
patches of green and red areas can be seen. Most of the red regions
on this image correspond to man-made features such as the fringes
of the farm yard or farm roads, while the green regions represent soil
within the optimum category. It is also important to understand that
on the ground, the green region representing ideal soil conditions is
not a rigid boundary and would merge with other classes of nSSM
preceeding and following it.

3.3 Relationship between proportion of farm
area in the optimum category and SMD

Figures 4A, B shows the piecewise regression between
proportion of farm area in the optimum, and drier and wetter
than optimum category of nSSM, repsectively, for the 11 selected S-2
images and the corresponding SMD on these dates. In the absence of
a daily S-2 time series, this model was used for predicting daily farm
area proportions in the optimum nSSM category. This ensured that
the temporal scale of SMD and nSSM time series matches, necessary
for identifying trends of trafficability and grass growth (Figure 5).
The variability in scatter in Figure 4 is evident, with SMD values
greater than 0 showing an almost linear relationship with optimum
farm area proportions. We, however, retain all observations to not
further limit the data points and also to avoid introducing any bias in
themodel. Themodel was able to explain 76%% (R2) of the observed
variability. The residual standard error of the model was 9.125 on
7 degrees of freedom. The Cook’s distances were less than 1 and

TABLE 1 SMD values and farm area proportions (%) within the identified nSSM categories.

Saturated FC Drought

SMD (mm) −10 −10 −10 −8.7 −4.6 0.6 8.9 19.1 36.8 58.3 75.4

Month/Year* Jan/17 Jan/19 Mar/20 Nov/21 Oct/18 Apr/18 Apr/20 Jun/17 Sep/19 Jul/21 Jul/18

nSSM categories Farm Area Proportions (%)

Excessively Dry (<0.235) 3 3 1 3 20 16 41 58 12 49 97

Optimum (0.235–0.315) 19 27 2 13 51 35 40 41 24 21 3

Excessively Wet (>0.315) 78 70 97 84 29 49 19 1 64 31 0

Abbreviations used in the table: SMD = soil moisture deficit; FC = Field Capacity of nSSM, map that matches SMD, condition.

FIGURE 4
(A) Proportion of farm area in the optimum category of nSSM. (B) Proportion of farm area in the drier and wetter than optimum category. Note:
Dashed lines are the piecewise regression model between the variables.
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hence individual observations did not unduly influence
the model fit.

Figure 5 shows the time series of the daily estimates of farm area
proportions in the optimum nSSM category predicted using the
second order polynomial function (Figure 4). This proportion
ranges from 20% to 50% % during the study period. Generally,
the proportion of area deemed optimum peaked between the
months of April- October, with up to −50% of the farm area
being within the optimum category of nSSM in these months
across the study period. In other words, up to half of the farm
would have been optimal for carrying out farm management
operations safely for both soil and crop in this period. This
proportion is relatively low for the year 2018 in these months
(between 10% and 40% vs. −50%% in the other years) as
expected since this was a year of extreme weather variability in
Ireland when persistent rain in spring and early summer gave way to
drought conditions by mid-summer. As such soil moisture
conditions fluctuated towards the extremes more commonly than
in other years.

Figures 6A, B show the monthly mean proportions of farm area
in the optimum nSSM category for the time series for the months of
January-June and July-December respectively. In the study period,
the months April, May, August and September typically saw the best
conditions where soil moisture was at an optimum level over a wider
area and excessively wet or excessively dry conditions are avoided. In
these months, approximately 35% of the farm area was in the
optimum nSSM category at all times during the period of
analysis. This percentage is slightly less for the year 2018,
especially for August (Figure 6C) due to the extreme conditions
as mentioned earlier. Typically, the months of October to March are

limited by excessively wet conditions while June and July have seen
severe moisture deficits. Increasing variability in climate and
localised weather imposes extremes in the typical soil moisture
regimes in a given year.

4 Discussion

4.1 Overall advantage of using optimal nSSM
thresholds ranges over SMD alone

SMD based decision support tools are valuable for aiding
decision making, where the farmer has knowledge of the drainage
class of individual paddocks. Examples of where the SMD tool
was used include Piwowarczyk et al. (2011) who used this model
to predict the risk of damage from animal grazing on grassland
soils and Vero et al. (2014) used this model to determine SMD
thresholds, incorporating it into a decision support tool for
trafficability and slurry spreading on farms. This model has
also been used to monitor nitrous oxide emissions from
grassland sites in Ireland, showing that higher soil moisture
on the day of fertiliser application tends to increase average
annual emissions (Hawkins et al., 2007). Estimates of SMD
obtained from this model has also been used to identify
opportunity for spring application of slurry in Ireland (Lalor
and Schulte, 2008). A study in Ireland confirmed the effectiveness
of such a decision support system which when combined with
farmers’ local knowledge about drainage conditions of paddocks
on their farms helped in reducing nutrient losses and managing
slurry spread so as to increase nutrient uptake by plants (Kerebel

FIGURE 5
Daily estimates of farm area proportions (%) in the optimum nSSM category between 2017 and 2021, calculated using the piecewise regression
function between nSSM and SMD.
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et al., 2013). However, as discussed previously, current decision
support tools based on SMD alone have a temporal component
only. This is a crucial knowledge gap because information on
spatial variability of soil moisture conditions is also important for
effective farm management. Figure 3 also confirms that on a
particular day for a single value of SMD, the patterns in nSSM are
not same and vary through the spatial extent of the farm. This

means that it is prudent to use the SMD model within the current
methodology and to combine it with soil moisture content
information as shown in this study to produce the nSSM
categorisation for optimal operational conditions, and produce
both temporal and spatial information This new technique as
proposed in this study moves beyond the physical boundaries of
paddocks and displays data at a higher resolution in space and

FIGURE 6
(A)Monthly mean proportions of farm area in the optimum nSSM category from January-June of the time-series, (B)Monthly mean proportions of
farm area in the optimum nSSM category from July-December of the time-series (C) Monthly mean proportions of farm area in the optimum nSSM
category for the year 2018.
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time, and would thus help in taking more informed decisions for
farm management.

By including high resolution soil moisture data, this study
showed that moisture regimes are not paddock specific. The
national advisory in Ireland that generates valuable advice for
safe farm management issues one set of rules/advice at a regional
scale based on SMD values. However, Figure 3 shows that for a single
value of SMD which is specific to a praticular drainge class, the soil
moisture regime within the same drainage class also varies in space,
and exhibits a continuum, i.e., not following paddock boundaries.
Therefore, management decisions should also vary within a paddock
depending on the soil conditions. Decision support systems based
on SMD alone, though useful, may not always suffice because not all
areas on the farm behave uniformally at a given day/time and can
sometimes lead to under-utilisation of resources. This study shows
that across the time-series, most of the years had around 50% of farm
area with soil conditions that were at a lower risk of compaction as
compared to very wet conditions. Thus, these areas could have been
accessed safely, providing optimal management conditions. Using
this improved decision support system which uses high resolution
soil moisture estimates together with SMD data, farmers can ensure
complete utilisation of farm resources, not having to restrict
operations on the farm entirely. As shown in this study
(Figure 3), even on driest days, farmers can identify certain parts
of the farm that are optimum for grass growth and can, for example,
design targeted fertiliser applications to those areas. Similarly, on a
wet day (SMD = −10 mm), the green regions represent soil within
the optimum category probably due to topographical features, which
are at a higher elevation than the surroundings and slope to either
sides. This would minimise usage of excessive chemical fertilisers,
thereby reducing emissions from the farm, particularly with respect
to chemical nitrogen (N) fertilisers. This has important implications
for Ireland to meet the Government’s Climate Action plan that aims
to reduce chemical N fertilisers. As other information is available on
soil moisture through the use of remote sensing techniques this
offers finer scale possibilities, i.e., moving away from paddock
specific outcomes to those that may change for the same
paddock over time and space. Increasing variability in climate
and localised weather imposes extremes in the typical soil
moisture regime in a given year. This offers challenges to
standard farm management practices and results in increased
volatility, which impose significant stresses on the farm system.
Soil moisture data can help us understand recovery rates of farms to
get back within the “optimum window of opportunity” after a stress
event, such as a drought, as was the case in 2018. This information
can also help improve existing decision support tools, such that,
depending on recovery rates of different areas on farms, targeted
actions could be taken for farm management and precison farming
such as grazing management, fertiliser applications, etc. Farmers can
adopt a number of strategies to cope with sub-optimal conditions,
which at either extreme (wet or dry) require supplementary feed and
additional labour. However, further support in decision making
would ensure optimisation of management to increase overall
system sustainability, efficiency and profitability. This is
particularly important in light of efforts to mitigate the
environmental impacts of agriculture in line with agreed targets
and as weather extremes (saturated soils and drought) are likely to
occur with greater frequency in coming years.This model would be

most effective in designing precision agriculture strategies across
the world.

4.2 Future research

The first step would be to test this improved decision support
tool on other farms in Ireland, especially those dominated by
poorly draining soils and then expand this methodology to
similar farms across the world. The thresholds of nSSM
obtained in this study could be tested on other farms of the
Teagasc HSP sites to ascertain if the same moisture conditions are
valid across the farms for trafficability and grass growth. Since, all
HSP sites have similar soil and drainage characteristics, this
would help improve the model if needed and make it more
robust. A study similar to Kerebel et al. (2013) could be
designed where farmers’ knowledge about drainage conditions
on these farms could be used to validate the results from this tool.
It would also be interesting to test “before and after” scenarios to
understand if the farmers were able to utilise their farm resources
more optimally after using this tool and not having to restrict
operations on the farm during certain times of the year. It would
be hugely beneficial if the farmers could practically use spatial
maps as generated in Figure 3 to identify optimum areas on their
farm for crop growth and trafficability. The next step in the
development of this tool would be to use to use daily high-
resolution images such that a daily high resolution trafficability
and productivity map can be made available to farmers. This
could be achieved using drones and would be especially helpful in
countries like Ireland where persistent cloud cover makes it
difficult to obtain long time series of optical remote sensing
data. Daily images would help match the temporal scale of SMD
data, ensuring better comparison between the two variables
(SMD and nSSM) and would, thus, help improve the accuracy
of the model. This is a subject of further research and could lead
to the development of a predictive decision support tool for
farmers not just in Ireland but across the world, especially in
regions where targeted irrigation (precision agriculture) is
essential for achieving food security. Additionally, this study
acknowledges that even in Atlantic climates like Ireland,
droughts are becoming a recurrent phenomenon (Antwi et al.,
2022), which would result in soil compaction in dry soils. Thus,
the model would have to be updated to account for such
conditions and new thresholds might need to be defined for
favourable trafficability and grass growth conditions. Along with
trafficability, it would also be important to assess risk of
compaction in soils even under trafficable conditions, with the
help of available tools like (Terranimo, 2024) which helps assess
soil compaction by agricultural vehicles, taking into account soil
and vehicle properties such as clay content, tyre pressure, etc.
Such decision support tools could be improved even further if
local meteorological data is available for the farm representing
accurate local weather conditions, improving predictions. To test
this new decision support system, it would be important to test
this model on a subset of farms to test different scenarios a) how
well farmers local knowledge of their farms matches with the
predictions from the existing SMD model with regards to
accessibility of the farms b) if the predictions from the new
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model that also combines estimates of soil moisture with SMD
can help in achieving higher productivity from their farms.

A major threat to soil quality on farms in Ireland is from
traffcking by machinery and grazing by animals. Most of the
damage happens in the form of short-term compaction of top
soil or long-term depth compaction. Bondi et al. (2021) developed
a national Soil Trafficking Intensity Index in Ireland for
Compaction (STIC) which is a sum of compaction from
machinery and grazing to identify which management regime
poses more threat to soil structure and also the levels of such
management intensities that “soil can cope with” based on soil
conditions. In general, it was found that grazing management has
much lower risk of soil compaction because though the pressure by
animals is greater on soil as compared to machinery, the pressure is
evenly distributed on the farm as opposed to localised pressure by
heavy machinery. Farmers also thus follow grazing management
regime in Ireland. However, for poorly drained soils as in this
study, a closer investigation is required because such soils are in
particular more imapcted by trafficking from both management
operations. Combining this index with the proposed decision
support tool could be especially valuable for managing soil and
crop health on poorly drained soils. This could provide support to
different stakeholders such as farmers, contractors and
policymakers by providing high resolution spatial information
on soil condition on farms to develop tailored management
response within farms. Alternatively, since the reliability of
STIC depends on field scale data, a high resolution soil
moisture estimate could help improve this index.

5 Conclusion

This study presents one of the first attempts to assess
optimised management capabilities at the farm level and is a
proof of concept for improving existing decision support tools for
farm management applications using estimates of both SMD and
soil moisture regimes. This study focusses on a site dominated by
“heavy” or wet soils, however, previous studies have shown that
varying levels of compaction can occur across a range of moisture
conditions, including dry soils (Keller et al., 2019). The validation
of this study is based on expert knowledge about paddock soil and
drainage conditions and continuous monitoring of the farms
which gives information at very fine scales both spatially and
temporally. While this study acknowledges the effectiveness of
existing decision support systems, it also addresses the
knowledge gap of a missing threshold for soil moisture
regimes by developing an index for soil moisture for optimum
trafficability and grass growth on farms, equivalent to SMD
thresholds for same. This makes it more practically applicable
on farms, given the limitations associated with a single value of
used at farm scale. It is also essential to capture such differences
to ensure complete utilisation of resources, where a part of the
farm which is most susceptible to damage to soil or cannot
support grass growth can be closed for activities, while some
areas could still be used for crop production, etc. This decision
support tool also highlights specific months where maximum
usage of the farm can be made with minimum damage to the soil
and optimal production conditions.
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