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The importance of pollutant abatement has been steadily growing in recent
times, prompting an increased focus on developing effective regulatory
mechanisms. This paper introduces a novel approach by combining theories
of evolutionary games and opinion dynamics to formulate a coevolutionmodel of
game and preference. Recognizing the challenges posed by limited supervision
ability and enterprises’ heterogeneous risk preferences, we propose a smart
supervision mechanism. This mechanism incorporates the concepts of
whitelist capability and observation period to establish intelligent supervision.
Simulation results demonstrate the regulator’s ability to accurately discern
enterprises’ preferences based on decision-making differences. The smart
supervision mechanism proves to be more effective in achieving pollutant
abatement goals compared to random supervision. Furthermore, our findings
indicate that with higher supervision ability, increasing whitelist capability
enhances cooperation rates. Conversely, lower supervision ability necessitates
a shorter observation period and increased whitelist capability to achieve optimal
pollutant abatement results. The study highlights that enterprises with a high
cooperation rate experience more significant benefits, while risk-seeking
enterprises benefit less due to heightened regulator attention at the same
cooperation rate.
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1 Introduction

The industrialization process leads to a significant surge in pollutant emissions, particularly
pronounced in developing countries (Carraro and Sgobbi, 2008). This surge in pollutant
emissions contributes to a myriad of issues encompassing environmental, healthcare, and social
concerns (Wang and Yang, 2016). Consequently, addressing pollutant emissions becomes an
imperative matter. Various approaches to achieve pollutant abatement have been explored.
Globally, certain environmental organizations are dedicated to funding initiatives aimed at
reducing pollution and promoting global sustainable development. However, these efforts often
lackmandatorymechanisms. On a regional governmental level, pollutant abatement is enforced
by government regulators through the imposition of punitive taxes or the closure of non-
compliant enterprises (Wu et al., 2020).

Evolutionary game theory has emerged as a prominent framework in recent years for
studying pollutant abatement, offering a powerful tool to analyze the dynamics between
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regulators and enterprises (Xu et al., 2021; Gu et al., 2022; Ning et al.,
2022). This paper aims to delve into the practical application of
evolutionary game theory in the context of pollutant reduction,
specifically examining how businesses evolve their cooperative
strategies in the face of collective risks, with a particular focus on
navigating the societal dilemma between economic interests and
environmental protection. By synthesizing supporting literature, we
will conduct an in-depth exploration of the tangible impacts of
evolutionary game theory in addressing the complex interactions
between regulatory agencies and businesses. The study seeks to
unveil the potential contributions of evolutionary game theory in
propelling more effective and sustainable solutions for pollutant
abatement, providing novel insights for future research endeavors.

The system of regional pollutant abatement contains regulators
and a bunch of enterprises. In this system, enterprises cooperate on
pollutant abatement with regulators’ supervision under collective
risk (Liu et al., 2023; Yu et al., 2023; Zeng et al., 2023). Enterprises,
especially energy-intensive ones, are the central responsible bodies
of pollutant emissions. However, enterprises put the economic
benefits in a more critical position than environmental protection
(Bahel, 2018). Achieving more economic benefits requires higher
consumption of resources leading to more pollutant emissions,
which is a social dilemma putting back cooperation willingness
of pollutant abatement (Chen et al., 2014). Due to the lack of
supervision, the failure of pollutant abatement occurs in some
regions, making human beings suffer from environmental
deterioration (Vasconcelos et al., 2014). To some extent,
regulators’ supervision promotes enterprises’ pollutant abatement
(Liu and Li, 2019). Common supervision ways include rewarding
and punishing (Wang et al., 2010; Jeon et al., 2015; Wang and Shi,
2019). However, it is hard for regulators to supervise all enterprises
in the region considering the supervision ability. In the absence of
supervision, some enterprises may take risks to emit pollutants lured
by higher benefits (Xu et al., 2019). Thus, achieving a better effect
under limited supervision ability is a valuable research issue.

In reality, different enterprises have heterogeneous opinions or
attitudes, namely, preferences, towards pollutant abatement. Some
enterprises prefer abating pollution to avoid punishment, and others
prefer adopting a non-abatement strategy for potentially higher benefits
when regulators fail to supervise them. The hypothesis of bounded
rationality holds that decision-makers cannot make completely rational
decisionswhen facing complex problems due to incomplete information,
inconsistent preferences, and limited cognitive ability (Di and Liu, 2016).
Moreover, due to the influence of the social environment, enterprises’
preferences may change (Acemoglu and Ozdaglar, 2011). Opinion
dynamics hold that others influence an agent’s opinion in the
system. Agents may change their opinions by comparing with other
agents’ performance (Mäs et al., 2010). As a result, both enterprises’
strategies and preferences coevolve in pollutant abatement games.
Besides, heterogeneous risk preferences cause behavior differences
between enterprises. Regulators should consider the heterogeneous
risk preferences when selecting supervised enterprises. Thus, a new
supervision mechanism is proposed considering the limited supervision
ability and heterogeneous risk preference.

The main contributions of this paper are as follows. First, we
consider the enterprises’ preference evolution of pollutant
abatement based on opinion dynamics. The coevolution of game
and preference runs synchronously. This innovation assists

regulators in supervising enterprises pertinently according to the
agents’ heterogeneous preferences. Thus, our approach promises to
complement the research on pollution control in the case of
bounded rationality. Second, we propose a smart supervision
mechanism considering heterogeneous risk preference and
limited supervision ability and compare the effect of the smart
supervision mechanismwith the random supervisionmechanism: 1)
regulators supervise enterprises randomly under the random
supervision mechanism; 2) regulators mainly supervise
enterprises with a negative attitude towards pollutant abatement
under the smart supervision mechanism. Thus, this paper provides
new insight into reforming the supervision mechanism to achieve a
better abatement effect.

The remainder of this paper is organized as follows. The next
section reviews the literature on supervision and preference. In
Section 3, we construct the gamemodel for pollutant abatement with
two different supervision mechanisms based on preference
evolution. Then, Section 4 explores and compares two different
supervision mechanisms under different supervision abilities by
simulations. In Section 5, we give conclusions and discuss policy
recommendations and limitations.

2 Literature review

2.1 Punishment and supervision mechanism

The evolutionary game is a standard tool for studying social
dilemmas. The issue of pollutant abatement involving regulators and
enterprises using evolutionary game theory has been explored
recently (Zu et al., 2018; Wang and Shi, 2019; Zhang et al., 2019;
Kou et al., 2021; Zhou et al., 2022). Enterprises select the abatement
or non-abatement considering benefits maximization and the risk of
punishment (Chang et al., 2015). More recent works studied the
threshold public goods game (TPGG) by increasing the collective
risk to promote cooperation. In TPGG, enterprises need to achieve
common goals to avoid collective risk (Santos and Pacheco, 2011;
Tavoni et al., 2011). However, maximizing self-benefits is contrary
to common goals, which causes the collapse of cooperation. Thus,
punishment is introduced to the TPGG model, and enterprises
cooperate to avoid potential losses caused by punishment
(Barrett, 2013; Schmidt, 2017).

Some research discusses the enterprises’ strategy selection given
the punishment (Zu et al., 2018; Wang and Shi, 2019). For example,
Gupta et al. investigated the relationship between environmental
protection supervision and factory compliance in developing
countries, and proved that supervision and factory pollution
discharge are interrelated (Gupta et al., 2019). Under the
punishment, Jiao et al. considered an evolutionary game between
governments and enterprises with carbon emission constraints.
Moreover, some research discusses enterprises’ reactions towards
different punishment methods (Jiao et al., 2017). Common forms of
punishment include punitive tax, fining, and even shutdown. For
example, considering static and dynamic punishment, Wang and
Shi constructed an evolutionary game model of industrial pollution
between local government and enterprises (Wang and Shi, 2019).

Punishment is a critical method of regulators’ supervision.
Recent studies focus on punishment methods considering
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collective risk and risk preferences, such as collective fining and
random fining (Alpízar et al., 2004; Camacho-Cuena and Requate,
2012). Under collective fining, regulators punish the whole polluters
if the pollutant emission exceeds the level set by regulators. In
contrast, one potential polluter is chosen randomly under random
fining, irrespective of being one of the actual polluters. For example,
Alpízar et al. presented an experimental study of two different
punishment methods: collective and random fining to supervise
pollution behavior (Alpízar et al., 2004). Camacho-Cuena and
Requate proposed an experimental study including random
fining and collective fining considering risk preferences, and the
result showed that risk-seeking agents worsen the effect of pollutant
abatement (Camacho-Cuena and Requate, 2012). However, the
above punishment methods have some deficiencies. First,
collective fining does not consider the limited supervision ability
and the difficulty of the actual implementation. Second, random
fining is hard to optimize the limited supervision resources due to
the lack of supervision pertinence.

Some supervision mechanisms based on various factors have been
proposed. Fan et al. proposed three supervision strategies for enterprises
that apply for subsidies considering the supervision cost (Fan et al.,
2017). Xu et al. built an evolutionary game model of third-party
supervision, including governments, environmental services
companies, and pollutant enterprises, to analyze the effect of critical
factors on cooperation (Xu et al., 2019). However, little research is
related to optimizing supervision mechanisms under limited
supervision ability. Besides, in earlier research, the literature on
pollutant emission reduction regulatory mechanisms initiated a
preliminary exploration, proposing the concept of supervising agents
based on heterogeneous risk preferences under the assumption of
limited supervisory ability (Wang et al., 2023). However, these prior
studies primarily focused on evolutionary game theory and complex
network theory, concentrating on the optimization of regulatory
mechanisms while neglecting the influence of the evolution of risk
preferences on strategic choices. In comparison, our study emphasizes
the application of evolutionary game theory and opinion dynamics,
with a specific focus on the evolving risk preferences of enterprises
during the game. Simultaneously, this research addresses some gaps
present in previous studies by introducing opinion dynamics and the
coevolution of strategies and preferences.

Our study is concentrated on revealing how strategies and
preferences coevolve in enterprise decision-making. Through the lens
of opinion dynamics, we offer a distinctive analytical perspective that
accentuates the dynamic processes underlying individual decision-
making in the game, thereby expanding our comprehension of
pollutant emission reduction regulatory mechanisms.

2.2 Preference evolution

The hypothesis of bounded rationality holds that there are no
completely rational decision-makers manifesting as bounded
rationality in decision-makers’ preferences (Camerer, 1997; Di
and Liu, 2016). Camerer proposed and introduced social
preferences into the game theory (Camerer, 1997). Social
preferences have been used to explore complex system issues
about social dilemmas, such as fair preference (Fan et al., 2017),
reciprocal preference (Wu, 2014), and altruistic preference (Fan

et al., 2019). Risk preferences demonstrate enterprises’ attitudes
towards the potential risk, including risk-averse (RA), risk-neutral
(RN), and risk-seeking (RS) (Camacho-Cuena and Requate, 2012;
Larue et al., 2017). RA agents prefer a safe strategy to avoid losses
caused by potential risks, while RS agents, on the contrary, prefer an
adventurous strategy for higher profits. Bontems and Nauges
considered a model of pollution supervision for RA agents
involving hidden information and moral hazard (Bontems and
Nauges, 2019). Camacho-Cuena and Requate proposed three
supervision mechanisms, including collective fining, random
fining, and a tax-subsidy scheme, and compared the strategy
selection of RA and RS enterprises under different supervision
mechanisms (Camacho-Cuena and Requate, 2012).

Two aspects have been rarely explored in the aforementioned
studies. First, agents in a complex system could be a multi-
preference group. Different agents have heterogeneous
preferences. For example, by introducing social preference, Chen
et al. divided the preferences of Internet users into egoistic, altruistic,
and fair preferences (Chen et al., 2020). They studied the effects of
different social preferences on public opinion. Second, social
preferences are static in most previous studies, but the
preferences could be dynamic over time. Agents’ preferences
could be influenced by interacting in the system and change in
the evolutionary game process. Variability in the external
environment might affect agents’ decisions and force a change in
agents’ preferences. The theory of opinion dynamics is a new
approach to simulating dynamic preference evolution (Acemoglu
and Ozdaglar, 2011; Axsen et al., 2013; Liang et al., 2019; Chen et al.,
2020). Axsen et al., for example, investigated the roles of social
influence in the formation of consumer preferences for pro-
environment technologies, and the result showed that preferences
change through social interaction (Axsen et al., 2013). The effect of
preference evolution on social cooperation is underestimated.

The theory of opinion dynamics is a powerful tool for describing
an interactive group and exploring preference evolution (Liang et al.,
2019; Zhang et al., 2019). Opinion denotes the agents’ views or
attitudes in opinion dynamics (Chen et al., 2023). The Hegselmann
and Klause model (HK model) is one of the original opinion
dynamics models (Hegselmann and Krause, 2002). In the HK
model, opinions are described as real numbers in a fixed interval,
and agents interact with each other if their opinions are similar.
Agents update their opinions by averaging all similar opinions
within the confidence threshold at each discrete time. There are
variously improved models based on the original HK model (Fu
et al., 2015; Han et al., 2019). In a modified HKmodel, agents update
opinions considering the game payoff (Bauso and Cannon, 2018).
Motivated by the above research, this paper introduces a preference
evolution model considering the weight based on the game payoff.

Combined with opinion dynamics, some studies on preference
evolution involve social issues. Liang et al. argued that preferences
would be dynamically evolved and developed a preference evolution
model based on online interactions through a communication tool
(Liang et al., 2019). The research of preference evolution focuses on a
social complex system, but the problem of pollutant abatement with
preference evolution is yet to be explored. Therefore, we introduce
the theory of opinion dynamics to fill the gap in the study of
pollutant abatement among regional enterprises with
preference evolution.
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3 Model

First, we introduce a preference evolution model using the
opinion dynamics theory. Next, we propose an evolutionary
game model for pollutant abatement involving regulators and
enterprises. Simultaneously, we develop a smart supervision
mechanism based on the random supervision mechanism to
reduce pollutant emissions.

3.1 Preference evolution of enterprises

After each game, agents update their preferences
synchronously considering benefits. If an enterprise has a
higher benefit at this time, the enterprise has a strong impact
on others’ preferences.

We consider a population composed of N enterprises. The
preference of enterprise i at discrete time t is described by xi(t).
In the initial state, preferences of all enterprises on pollutant
abatement are uniform distribution in the range of [-0.5, 0.5]. If
xi(t)< 0, agent i has a preference for RA. On the contrary, if
xi(t)> 0, agent i has the preference for RS. Likewise, if xi(t) � 0,
agent i is RN and selects strategy only according to the benefit
comparison. Besides, the greater the absolute value of xi(t) is,
the stronger the preference degree is. In the original HK model, ε
is the bounded confidence. Agent i interacts with agent j if
|xi(t) − xj(t)|≤ ε and i ≠ j (Hegselmann and Krause, 2002).
Meanwhile, agent j is a neighbor of agent i. An agent updates
preference by averaging its and its all neighbors’ preferences,
written as

xi t + 1( ) �
∑

j∈Ni t( )
xj t( )

Ni t( )‖ ‖ + 1
. (1)

whereNi (t) denotes the set of agents interacting with agent i at time
t, and ‖Ni (t)‖ is the members’ number of Ni (t).

We consider a modified HK model to depict preference
evolution. In the modified model, each preference has a
weight based on the proportion of benefits, that is, the larger
the benefit of an agent is, the more influential its preference is.
Similarly, agent i interacts with agent j if |xi(t) − xj(t)|≤ ε and
i ≠ j. The preference of agent i evolves according to the opinion
updating rule, written as

xi t + 1( ) �
mi t( )xi t( )

bi t( ) + ∑
j∈Ni t( )

mj t( )xj t( )
bi t( ) , Ni t( )‖ ‖> 0& bi t( )> 0

xi t( ), Others

⎧⎪⎪⎨
⎪⎪⎩ .

(2)
wheremi(t) denotes the benefit of agent i at time t, and bi(t) denotes
the total benefits of agent i and agents in the set Ni(t), that is,
bi(t) � mi(t) + ∑

j∈Ni(t)
mj(t). When ‖Ni(t)‖ � 0 or bi(t) � 0 agent i

still sticks to its preference at time t + 1. As time passes, preferences
in multi-agent systems change from disorder to order and form
several preference clusters, namely, subpopulations, or reach the
state of preference consensus. Enterprises in the same subpopulation
have the same preference.

3.2 Evolutionary game of
pollutant abatement

Some enterprises emit pollution in the production process. To
protect the environment in the region in charge, regulators supervise
the behavior of enterprises’ pollutant abatement. Enterprises select
the pollutant abatement strategy (strategy C) or non-abatement
strategy (strategy D) according to benefit comparison and their
preferences.

There are two goals of pollutant abatement. A maximum goal
(T′) can be obtained if all enterprises adopt strategy C. Regulators set
a tolerable minimum goal (T<T′) to prevent environmental
deterioration. We consider that all enterprises have a
homogeneous scale of production. Thus, the goal of each
enterprise is T′/N.

The parameter e represents the total amount of pollutant
abatement in the region. Regulators adopt different punishment
methods according to the effect of pollutant abatement. Regulators
shut down supervised enterprises adopting strategy D if e<T.
Otherwise, regulators only fine supervised enterprises
adopting strategy D.

In the initial state, each enterprise selects strategy C or D with
equal probability. W, q, and c denote initial endowment,
pollutant emission without abatement, and the unit pollutant
abatement cost. Besides, regulators collect taxes, and the tax rate
of unit pollutant is μ. Considering the limited supervision ability,
we introduce p′ ∈ [0, 1] to denote the supervision ability:
regulators supervise p′N enterprises. If an enterprise is shut
down, the benefit is 0. If an enterprise is fined, the amount of
the fine is f.

Based on the above assumptions, the benefit of each enterprise
that is shut down is 0. the benefit of each enterprise that is fined is
W − μq − f. The benefit of each enterprise selecting strategy D
without being supervised is W − μq. The benefit of each
enterprise selecting strategy C is W − cT/N − μ(q − T/N). The
evolutionary game process of pollutant abatement of regional
enterprises under supervision is shown in Figure 1.

In previous studies, the Fermi rule is a common strategy
updating rule. This paper proposes a modified Fermi rule
combining the classic Fermi rule and the enterprise’s preference,
as shown in Eq. 3.

PSi→Sj t( ) �

1

1 + exp mi t( )-mj t( )( )/κ[ ] + xi t( ) if xi t( )< 0 and Sj � D

1

1 + exp mi t( )-mj t( )( )/κ[ ] − xi t( ) if xi t( )> 0 and Sj � C

1

1 + exp mi t( )-mj t( )( )/κ[ ] Others

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

.

(3)

where PSi→Sj denotes the probability that enterprise i follows the
strategy of enterprise j at time t + 1. Si refers to the current strategy
of enterprise i. Based on the strategy updating rule, enterprise i
randomly chooses an enterprise in the set ofNi(t). As seen in Eq. 3,
RA enterprises prefer adopting strategy C, whil RS enterprises prefer
adopting strategy D. The parameter of κ represents the decision
noise, and usually κ � 0.1.
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3.3 Supervision mechanism

There are two supervision mechanisms: general supervision
(GS) and smart supervision (SS). In previous studies (Alpízar
et al., 2004; Camacho-Cuena and Requate, 2012; Fan et al.,
2017), regulators could only randomly choose a part of
enterprises to supervise without considering preferences, which is
named GS mechanism in this paper.

In the SS mechanism, regulators cannot distinguish the enterprises’
preferences in the initial state. Regulators establish a file for each
enterprise, which is described as a vector λi � (λi1, λi2,/λir/). λi
refers to the supervision file of enterprise i, and λir is the rth supervision
result of enterprise i. If enterprise i adopts strategy C under supervision,
λir � 1. Otherwise, λir � 0. If enterprise i is not supervised, λi does not
change at that time.

The parameter of m is the observation period. If the last m
supervision results in the λi are all 1, regulators identify enterprise i
as a RA agent and add enterprise i into the whitelist. In addition,
enterprises have no idea about the whitelist.

y(t) refers to the set of members in the whitelist at time t, and
y′(t) denotes the set of real RA agents in the whitelist at time t. Since
the judgment of regulators might be wrong, we introduce the
parameter py(t) � ‖y′(t)‖/‖y(t)‖ to measure judgment accuracy,
where ‖y(t)‖ and ‖y′(t)‖ are the members’ numbers of y(t) and
y′(t) respectively. At next time, regulators do not supervise the
enterprises in the whitelist and choose p′N enterprises in the rest of
N − ‖y(t)‖ enterprises to supervise.

The whitelist evolves dynamically: 1) At each time, regulators
add enterprises that newly meet the condition to the whitelist. 2) The
whitelist capability, namely, the maximum number of enterprises in
the whitelist, is k. Besides, ‖y(t)‖≤ k≤ (N − p′N). 3) If ‖y(t)‖> k
after adding enterprises to the whitelist, regulators should remove
the ‖ ‖y(t)‖ − k enterprises who have stayed the longest time in the
whitelist and keep ‖y(t)‖ � k. The process of the SS mechanism is
shown in Figure 2.

4 Numerical simulation and results

4.1 Initialization settings

According to previous studies of opinion dynamics, we first
consider a population with homogeneous bounded confidence ε.

FIGURE 1
The game process of pollutant abatement of regional enterprises.

FIGURE 2
The process of the smart supervision mechanism.
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Apparently, a larger ε leads to a smaller amount of preference
clusters (Npc). According to opinion dynamics, the results of
opinion evolution are primarily characterized by opinion
dispersion, opinion convergence, and opinion consensus. Based
on this, we select several states as the research scenarios: (1)
Npc � 2, (2) Npc � 3. Let ε � 0.15, 0.20 respectively, and the
results of preference evolution are shown in Figure 3.

In Figure 3, each line represents the preference evolution path of
an enterprise: (1) in Figure 3A–C, Npc � 2, 3 and 4 when ε � 0.15,
(2) in Figure 3D–F, Npc � 1, 2, and 3 when ε � 0.20. We find that
Figures 3B, E are obtained in most cases. Thus, we select the
following scenarios to study the impact of supervision
mechanisms on the behavior of pollutant abatement: (1) Npc � 3,
ε � 0.15, (2) Npc � 2, ε � 0.20.

The relevant parameters are set as follows: we set the total
number of nodes in the complete graph asN � 1000; the minimum
goal of pollutant abatement as T � 2000; the higher goal of pollutant
abatement as T′ � 3000; the probability that an enterprise chooses
strategy C in the initial state as p � 0.5; the initial endowment as
W � 10; the pollutant emission without abatement as q � 10; the
unit pollutant abatement cost as c � 0.5; the tax rate of unit pollutant
as μ � 0.4; the penalty amount as f � 0.4; the inspection period as
m � 10. Besides, the above parameters are not changed in the
numerical simulation.

The evolution time is set to 2000 to stabilize the results. The
values of supervision ability and whitelist capability are set in the

range of p′ ∈ [0, 1] and k ∈ [0, (1 − p′)N] respectively. Notably,
k � 0 means that there is no whitelist, that is, the simulation of k � 0
is the result under the GS mechanism. Run 50 times under the same
values of parameters to stabilize the results. The final result is
determined by averaging the results of 50 times.

In the first scenario, whenNpc � 3 and ε � 0.15, we can see there
are three subpopulations, and the preference values are
approximately 0.27, 0.00, and −0.27, respectively, upon reaching
a stable state. Three subpopulations, including RS, RN, and RA, are
generated. Similarly, in the second scenario, when Npc � 2 and
ε � 0.20, there are two subpopulations, including a RA
subpopulation and a RS subpopulation, where the preference
values are approximately 0.19 and −0.19, respectively. Moreover,
the number of members in each subpopulation is similar. For
example, in the first scenario, the number of members in each
subpopulation is basically 333.

4.2 Effect of pollutant abatement

Figure 4 shows the results of the trend of pollutant abatement
with p′ and k in the cases of GS and SS mechanisms. From an overall
perspective, all enterprises select strategy D due to a low supervision
ability if p′≤ 0.4. In Figure 4A, B, it is clear that a higher supervision
ability can enhance the effect of pollutant abatement under both GS
and SS mechanisms. Thus, supervision is a necessary condition to

FIGURE 3
Path of preference evolution when ε � 0.15 and 0.20. Each line represents the evolutionary path of an enterprise’ preferences. In the initial stage, the
enterprise’s preferences obey a uniform distribution. Over time, several subpopulations with the same preference are formed in the population.
(A) ε = 0.15, Npc = 2, (B) ε = 0.15, Npc = 3, (C) ε = 0.15, Npc = 4, (D) ε = 0.20, Npc = 1, (E) ε = 0.20, Npc = 2, (F) ε = 0.20, Npc = 3.
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promote pollutant abatement. Moreover, the result of the SS
mechanism is influenced by both supervision ability and whitelist
capability. When p′ � 0.45 and 0.50, the overall effect of pollutant
abatement decreases with the increase of whitelist capability. When
p′ � 0.55 and 0.60, the overall effect increases first and then
decreases with the increase of k. When p′≥ 0.65, increasing the
value of k can enhance the overall effect of pollutant abatement.

In the scenario of ε � 0.20, p′≥ 0.65 can satisfy the minimum
goal of pollutant abatement under the GS mechanism, while p′≥
0.60 can achieve the minimum goal in most cases under the SS
mechanism. Considering the maximum goal, regulators need a high
supervision ability (p′≥ 0.90) to achieve the goal under the GS
mechanism, while p′≥ 0.70 and k≥ 250 can reach that goal. In the
scenario of ε � 0.15, shown in Figures 4A, B similar result can be
obtained. Thus, compared with the GS mechanism, the SS
mechanism can promote achieving the abatement goal with a
lower supervision ability.

From the perspective of the subpopulations, in the scenario of
ε � 0.20, the conditions for the emergence of cooperative behavior in
the RA and RS subpopulations are p′> 0.45 and p′> 0.55 under the
GS mechanism, respectively. However, under the SS mechanism,
some RS enterprises select strategy C when p′< 0.55. For example,
when p′< 0.50 and k � 100, regulators can supervise enterprises
outside the whitelist, where most enterprises are RS agents. Thus,
some RS enterprises adopt strategy C. However, enterprises in the
whitelist cannot be supervised, which causes a decline in the overall
abatement effect. If p′≥ 0.65, the supervision ability is high enough.
At this time, regulators maintain balanced supervision of different
subpopulations. Thus, it can further improve the overall effect of the
cooperation level by increasing the whitelist capability.

Similarly, in the scenario of ε � 0.15, under the GS mechanism,
abatement behavior appears in the RA subpopulation first
(p′≥ 0.45), then in the RN subpopulation (p′≥ 0.50), and finally

in the RS subpopulation (p′≥ 0.60). Meanwhile, under the SS
mechanism, with a lower supervision ability (p′ � 0.50 − 0.60),
the behavior of pollutant abatement in the RS subpopulation
emerges with the increase of k, while the proportion of the
abatement behavior in other subpopulations decreases. However,
with a higher supervision ability (p′≥ 0.65), the proportion of the
pollutant abatement behavior in the RA and RN subpopulations
does not decrease with the increase of k, which promotes the overall
abatement effect.

4.3 Effect of enterprises’ benefits

As can be seen in Figure 5A, when p′ � 0.50, the benefit of the
RS subpopulation has an upwards trend with the increase of the
whitelist capability, especially in the case of k � 550. However, due
to the decrease in abatement behavior, the benefits of RA and RN
subpopulations are weakened with the increase of k, which also
causes the overall abatement effect to decrease. In Figure 5B if p′ �
0.60 and 0≤ k≤ 250, the overall benefit increases with the increase of
k due to the stable abatement behavior in the RA and RN
subpopulations and the abatement improvement in the RS
subpopulation. However, when k> 250, regulators strengthen
supervision of the RS subpopulation and neglect other
subpopulations, which causes the proportion of enterprises
selecting strategy D increases. Thus, the number of punished
enterprises increases in the RA and RN subpopulations, and the
overall benefits trend downward. In Figure 5C, with a higher
supervision ability, the benefits of the RS subpopulation and
overall population increase with the increase of k due to the
promotion of abatement behavior.

Moreover, the benefits of subpopulations with the same
abatement proportion may differ according to supervision

FIGURE 4
Pollutant abatement effect for different p′ and k. (A) ε � 0.20, (B) ε � 0.15. The conditions in the red line are the results achieving theminimum goal of
T . The conditions in the blue line are the results achieving the maximum goal of T′.
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mechanisms. For example, in Figure 4B, we can see that pollutant
abatement effects of three subpopulations (RA, RN, and RS) are
similar if p′ � 0.60 and k � 350. The abatement proportions of three
subpopulations (RA, RN, and RS) are 0.4805, 0.4590, and 0.4640.
However, in the above case, the benefits of the three subpopulations
are 4.3593, 4.2401, and 3.3887, respectively, as shown in Figure 5B.
Regulators pay more attention to RS enterprises under the SS
mechanism, so RS enterprises are punished more at the same
cooperation level. Thus, the benefit of the RS subpopulation is
the least. The results prove that regulators can accurately
supervise the RS subpopulation.

In Figure 6, the benefit trend with the change of p′ and k when
ε � 0.20 is similar to the one when ε � 0.15. In a lower supervision
ability, the overall benefit decreases with the increase of k, while the
overall benefit increases with a higher supervision ability. Besides, the
difference between the subpopulation benefits is noticeable. In most
cases, the benefit of the RA subpopulation is higher, which is caused
by two reasons: 1) a higher cooperation level in the RA subpopulation,
and 2) regulators pay more attention to the RS enterprises.

4.4 Effect of judgment accuracy

Regulators need to judge the enterprise’s preference according to
the previous abatement behavior. However, regulators may
mistakenly identify RS enterprises as RA ones and add them to
the whitelist. We analyse the judgment accuracy of the whitelist
member’s preference in different cases based on the simulation result.

In Figure 7, we depict the judgment accuracy in the scenarios of
ε � 0.15 and 0.20 respectively. On the one hand, if the whitelist

capability remains unchanged, the judgment accuracy decreases as
the supervision ability increases. The reason is that the abatement
effect is improved with the rise of the supervision ability. Thus, all
enterprises’ behaviors are similar under a higher supervision ability,
which makes it difficult for regulators to find real RA enterprises. On
the other hand, if the supervision ability remains unchanged, the
judgment accuracy decreases with the increase of whitelist
capability. Due to the relatively fixed number of RA enterprises,
some RS or RN enterprises are added to the whitelist with the rise of
k, which leads to a decrease in judgment accuracy. However, if the
supervision ability is higher, the decline of the judgment accuracy
with the increase of k does not affect the abatement effect. Similar
behaviors among different subpopulations lead to a lower judgment
accuracy. Moreover, if all enterprises adopt the same strategy, the
judgment accuracy is close to 0.5.

Compared Figure 7A with 7(b), we can see some differences between
different ε. Set other parameters the same, judgment accuracy of ε � 0.20
is higher than that of ε � 0.15. For example,whenp′ � 0.65 and k � 150,
the values of judgment accuracy in Figures 7A, B are 0.8120 and 0.9598,
respectively. The reason is that there are RN enterprises when ε � 0.15
and the preference difference between RN subpopulation and RA
subpopulation is smaller than that of the RS subpopulation. Thus, it is
harder for regulators to find out true RA enterprises.

4.5 Effect of the observation period

As shown in Figure 4, the introduction of the SS mechanism
leads to the decline of the cooperation rate if p′ � 0.50. Therefore,
the SS mechanism may not constantly improve the level of

FIGURE 5
Average benefit of each subpopulation (ε � 0.15). (A) p’= 0.50, (B)
p’ = 0.60, (C) p’ = 0.70.

FIGURE 6
Average benefit of each subpopulation (ε � 0.20). (A) p’ = 0.50,
(B) p’ = 0.60, (C) p’ = 0.70.
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cooperation, especially in the case of a lower supervision ability. To
achieve a better effect of pollutant abatement, the observation period
in the SS mechanism is tested.

Figure 8 shows the effect of observation period on the fraction of
cooperators. In Figure 8, the change ofm has no significant effect on
the cooperation rate if k � 50. Besides, the cooperation rate in the
case of k � 50 is similar to the one under the GSmechanism. Second,
the cooperation rate first decreases and then increases with
increasing m in the cases of k � 200, 400, 450, and 500, and
finally remains a steady cooperation rate. Finally steady
cooperation rate is not significantly different from the one under
the GS mechanism. Third, a higher cooperation level can be
achieved if the observation period is short and the whitelist
capability is large. For example, if m � 2 and k � 200, the
cooperation rate is 0.886, higher than the one under the GS
mechanism. Fourth, with the increase in the observation period,

the number of enterprises that meet the conditions for entering the
whitelist decreases, and the dynamic adjustment of the whitelist
weakens. Some enterprises stay on the whitelist for a long time due
to the slow dynamic adjustment, which leads to the fluke of adopting
the defection strategy. Finally, with the further increase of the
observation period, especially if m≥ 20, the number of enterprises
who can enter the whitelist decreases and even becomes 0 due to the
strict restrictions. At that time, the whitelist is invalid, so the
cooperation rates under the SS and GS mechanisms are similar.

Thus, facing the issue of reducing the cooperation rate caused by
the SS mechanism, a higher cooperation level can be achieved by
appropriately shortening the observation period and increasing the
whitelist capability.

5 Conclusion and implications

It is evident that supervision can improve the pollutant
abatement effect. To optimize supervision efficiency, we discuss
how regulators supervise enterprises under the collective risk of
pollutant abatement considering heterogeneous preferences and
limited supervision ability. First, a coevolution model for game
and preference is proposed based on the theories of the
evolutionary game and opinion dynamics. Second, by introducing
the concepts of the whitelist and observation period, we propose a
smart supervision mechanism considering enterprises’ preferences.
Besides, we prove that the smart supervision mechanism can
promote pollutant abatement more than the random supervision
through the simulation. Furthermore, some recommendations are
put forward to improve regulators’ supervision efficiency.

The results show that (1) the effect on pollutant abatement
under the smart supervision mechanism is better than that under the
random supervision mechanism. Although the smart supervision
mechanism leads to the decline of cooperation rate in a few cases
compared with the random supervision mechanism, shortening the
observation period and increasing the whitelist capability can

FIGURE 7
Judgment accuracy for different p′ and k. (A) ε � 0.15, (B) ε � 0.20.

FIGURE 8
The fractions of cooperators for different m and k.
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improve the effect of pollutant abatement. Thus, regulators can
achieve the abatement goal with a lower supervision ability in the
smart supervision mechanism. (2) Generally, a higher benefit can be
achieved if the pollutant abatement is better. However, regulators
pay more attention to the risk-seeking enterprises under the smart
supervision mechanism, so the risk-seeking ones are punished more.
It causes the risk-seeking enterprises have a lower benefit at the same
cooperation level compared with other enterprises. (3) Regulators
can accurately judge the enterprises’ preferences according to
historical decision differences. The judgment accuracy declines if
there are risk-neutral enterprises in the population or minor
decision differences.

Based on the research conclusions, we put forward the following
suggestions. (1) Under the limited supervision ability, regulators
should consider enterprises’ differences. Risk preferences can affect
the decision behavior and cause enterprises to implement pollutant
abatement with different probabilities under the same situation.
Thus, regulators should adopt a more targeted supervision
mechanism. (2) Regulators can use historical decision-making to
judge enterprises’ preference type. Moreover, regulators can
strengthen the supervision of enterprises that adopt the strategy
of non-abatement more. In this way, regulators can make the limited
supervision ability more efficient. (3) Combined with the
supervision ability, setting appropriate whitelist capacity and
observation period can achieve a better supervision effect. If the
supervision is higher, a larger whitelist capability can improve the
cooperation level. Notably, if the supervision ability is lower,
shortening the observation can achieve a better effect.

Considering practical applications, a similar supervision
mechanism has been implemented in 2023. In Xingtai City,
Hebei Province, China, the Market Supervision Administration
conducted a joint random inspection of key emission units from
November 6 to 30 November 2023 (Xingtai, 2023). The inspection
covered all key emission units (enterprises) in the city, with a
sampling rate of 10%. Leveraging the national Internet +
regulatory credit information, the Market Supervision
Administration employed a differentiated random inspection
based on enterprise credit risk. For those with lower credit risk,
the inspection rate was reasonably reduced, while for those with
higher credit risk, the inspection rate was increased. The Market
Supervision Administration categorized enterprise risks into four
levels, from low to high: A, B, C, and D. The sampling rate for B-risk
was 6%, for C-risk was 13%, and for D-risk was 40%. Whether the
supervision mechanism considering the differences in enterprises’
preferences can improve the environment in practice still requires
long-term observation. However, the regulatory authorities’ ability
to use differentiated inspections based on credit informationmarks a
progress in management.

Nevertheless, some limitations still exist. We assume enterprises
have a preference for selecting strategies in this paper. Besides, the

amount of pollutant abatement is unchanged if the enterprise is a
cooperator. Namely, we only consider the influence of preferences
on strategy selection and neglect the impact on the amount of
pollutant abatement. A better understanding of decision preference
is needed to enrich further the research on the supervision
mechanism of pollutant abatement among regional multi-
enterprises. Besides, this study places a greater emphasis on
theoretical framework construction and exploration, laying the
foundation for empirical research. Future research endeavors may
pivot towards empirical data collection and analysis to substantiate
and enhance the feasibility and applicability of our
theoretical model.
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