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Land cover classification is of great value and can be widely used in many fields.
Earlier land cover classification methods used traditional image segmentation
techniques, which cannot fully and comprehensively extract the ground
information in remote sensing images. Therefore, it is necessary to integrate
the advanced techniques of deep learning into the study of semantic
segmentation of remote sensing images. However, most of current high-
resolution image segmentation networks have disadvantages such as large
parameters and high network training cost. In view of the problems above, a
lightweight land cover classification model via semantic segmentation,
DeepGDLE, is proposed in this paper. The model DeepGDLE is designed on
the basis of DeeplabV3+ network and utilizes the GhostNet network instead of
the backbone feature extraction network in the encoder. Using Depthwise
Separable Convolution (DSC) instead of dilation convolution. This reduces the
number of parameters and increases the computational speed of the model. By
optimizing the dilation rate of parallel convolution in the ASPP module, the “grid
effect” is avoided. ECANet lightweight channel attention mechanism is added
after the feature extraction module and the pyramid pooling module to focus on
the important weights of themodel. Finally, the loss function Focal Loss is utilized
to solve the problem of category imbalance in the dataset. As a result, the model
DeepGDLE effectively reduces the parameters of the network model and the
network training cost. And extensive experiments compared with several existing
semantic segmentation algorithms such as DeeplabV3+, UNet, SegNet, etc. show
that DeepGDLE improves the quality and efficiency of image segmentation.
Therefore, compared to other networks, the DeepGDLE network model can
be more effectively applied to land cover classification. In addition, in order to
investigate the effects of different factors on the semantic segmentation
performance of remote sensing images and to verify the robustness of the
DeepGDLE model, a new remote sensing image dataset, FRSID, is constructed
in this paper. This dataset takes into account more influences than the public
dataset. The experimental results show that on the WHDLD dataset, the
experimental metrics mIoU, mPA, and mRecall of the proposed model,
DeepGDLE, are 62.29%, 72.85%, and 72.46%, respectively. On the FRSID
dataset, the metrics mIoU, mPA, and mRecall are 65.89%, 74.43%, and
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74.08%, respectively. For the future scope of research in this field, it may focus on
the fusion of multi-source remote sensing data and the intelligent interpretation of
remote sensing images.

KEYWORDS

semantic Segmentation, remote sensing image, land cover classification, attention
mechanism, classification of surface objects

1 Introduction

Land cover classification is of great value and can be widely used
in many fields such as agricultural and forestry planning, urban and
rural planning, meteorological changes, military, environmental
protection, and biodiversity research. In recent years, with the
continuous improvement of the observation capability of high-
resolution satellites, the amount of high-resolution remote
sensing image data has increased dramatically, and accurate and
rapid segmentation and extraction of land cover information has
become the focus of research in the field of remote sensing images
(Shao et al., 2020). Semantic segmentation of remote sensing images
refers to the assignment of each pixel point in a multispectral or
hyperspectral remote sensing image to a different feature category
for automatic feature identification and classification. The main goal
of this technique is to segment the input remote sensing image into
multiple regions and assign a semantic category label to each pixel.
This pixel is then indicated to which object or region of the pixel
belongs. Compared to traditional remote sensing image
classification, semantic segmentation requires not only classifying
the entire image, but also classifying each pixel point. Therefore, it
has high level of accuracy and detail (Li et al., 2018).

Traditional image segmentation techniques include threshold-
based segmentation (Cao et al., 2019), cluster-based segmentation
(Li et al., 2021), and edge-based segmentation (Pan et al., 2021),
several methods have their own advantages and disadvantages
(Kaur, 2015). The greatest advantages for the three traditional
methods are their relative simplicity and intuition, computational
efficiency, ability to perform automated segmentation, and
adaptability. But they have more disadvantages. There are
problems such as over-sensitivity to light and noise, difficulty in
handling complex textures and difficult shape conditions, and
sensitivity to initial parameters. The advantages of these three
methods cannot eliminate the effects of the disadvantages.
Therefore, for remote sensing images with high spatial resolution,
complex background and many targets, the traditional image
segmentation methods cannot fully and comprehensively extract
the information in remote sensing images and cannot achieve good
segmentation results. So, there is a need to incorporate advanced
techniques in deep learning for segmentation studies of remote
sensing images.

The research gaps in the field of semantic segmentation of
remote sensing images are mainly reflected in the aspects of data
acquisition and processing, algorithms and models, evaluation
criteria and methods, and application scenarios. For the research
objectives in the field of semantic segmentation of remote sensing
images, the main focus is on improving the segmentation accuracy,
reducing the computational complexity, expanding the application
scenarios, and promoting the intersection of disciplines.

In the early days Jonathan et al. (2015) proposed full
convolutional neural networks (FCN). The model uses a fully
convolutional layer instead of a fully connected layer, which
greatly reduces the number of parameters and computation. It
incorporates the features of the intermediate layer and accepts
input images of arbitrary size, and is an end-to-end semantic
segmentation on the basis of pixel level. Fu et al. (2017) used
FCN to classify high-resolution remote sensing images. Yuan
et al. (2021) used the PSPNet network to do land cover
classification of high spatial resolution multispectral remote
sensing images. Hou et al. (2021) utilized the UNet network to
extract remote sensing roads. Weng et al. (2020) utilized SegNet
network to segment the waters. The above research has made some
contribution to remote sensing image segmentation, but there is still
much room for improvement in terms of accuracy and other aspects.

The Deeplab (Chen et al., 2014) semantic segmentation family
combines a deep convolutional neural network and a probabilistic
graph model to increase the sensory field of the convolutional
operation process and maintain the resolution through null
convolution. This series proposes and improves Atrous Spatial
Pyramid Pooling (ASPP) (Chen et al., 2018a). ASPP enables the
full fusion of different levels of semantic information, combined
with spatial convolution with different dilation rates (Chen et al.,
2017). Therefore ASPP module can effectively capture scale
information. DeeplabV3+ (Chen et al., 2018b) combines the
advantages of the encoding-decoding structure and the ASPP
module, and has a relatively good impact in the field of semantic
segmentation. At this stage DeeplabV3+ has become a semantic
segmentation algorithm with superior comprehensive performance.
In terms of image information extraction, DeepLabV3+ has better
segmentation results than commonly used segmentation models
such as FCN and PSPNet Du et al. (2021) combined DeeplabV3+
and object-based image analysis for semantic segmentation of ultra-
high resolution remote sensing images. Yao et al. (2021) utilized a
lightweight DeeplabV3+ model on the basis of the attention
mechanism for optical remote sensing image detection with
overall better segmentation results.

However, the DeeplabV3+ model still has some shortcomings.
First of all, the model complexity is high, its feature extraction
network Xception (Chollet, 2017) has more network layers and large
number of parameters. Moreover, the convolution method in the
ASPP module is ordinary convolution, which does not reduce the
number of parameters well. This makes the whole model deeper and
more complex, and increases the requirements for hardware devices.
This will lead to slower model convergence and reduce the speed of
network training. Second, the extraction of feature information is
not complete enough. The process of feature extraction at the coding
end gradually reduces the spatial dimensions of the input data,
resulting in the loss of useful information. The details of the features
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are not better restored at the time of decoding. Finally, low accuracy
for target edge recognition. Although the ASPPmodule can improve
the extraction ability of the model to the target boundary, it cannot
completely simulate the connection between the local features of the
target. This makes the target segmentation has a hollow
phenomenon, and there are problems such as low recognition
accuracy and poor edge recognition effect.

To address the problems above, and in order to achieve the
research objective of being able to segment geographic information
remote sensing images more accurately and efficiently, DeepGDLE
(a lightweight land cover classification model via semantic
segmentation on the basis of DeeplabV3+ accompanied with
the GhostNet, DSC, Focal Loss, and ECANet) is proposed in
this paper. The model is on the basis of DeeplabV3+ model,
which replaces the backbone feature extraction network
Xception with the lightweight GhostNet (Han et al., 2020)
network to reduce the number of parameters and the memory
footprint. Replacing all normal convolutions in the ASPP module
with Depthwise Separable Convolution (DSC) reduces the number
of parameters and computational cost, and lightens the model.
Modifying the dilation rate of parallel convolution in the ASPP
module to avoid the “grid effect”. The ECANet attention
mechanism (Wang et al., 2020) is added after the feature
extraction network module and the ASPP module, which
effectively avoids the effect of dimensionality reduction on the
learning effect of channel attention. And the accuracy of feature
extraction is improved by the local cross-channel interaction
strategy without dimensionality reduction. The semantic
segmentation loss function, Focal Loss (Lin et al., 2017), is used
to balance the weights of different dataset categories. The overall
model ultimately improves the efficiency and accuracy of
processing information, resulting in the training of more
accurate segmentation models.

In summary, the main contributions of this paper include three
aspects, which are listed as following.

(1) A new comprehensive model, DeepGDLE, for land cover
classification via semantic segmentation is proposed, which is
an improved model on the basis of DeeplabV3+, by
introducing the advantages of GhostNet, DSC, Focal Loss,
ECANet and other models. It can realize lighter weight and
more accurate performance.

(2) The influences of some important factors to the performance
of land cover classification were examined by extensive
experiments using DeepGDLE. The factors include the
main category in the image and its percentage, the shadow
percentages in the image, the categories count in the image,
and so on. The results of experiments also verified the
robustness of DeepGDLE.

(3) A new dataset of remote sensing images with land cover
information, FRSID (Fuyang Remote Sensing Image Dataset),
is constructed and shared in this paper. The dataset meets the
requirements of the robustness validation experiments of the
DeepGDLE model. The dataset consists of 4,500 original
maps as well as labeled maps, and there are eight
classifications in the overall dataset: cropland, vegetation,
building, water body, general road, parking lot, main road,
and playground.

The rest of the paper is organized as follows. The second section
details the main structure of the DeepGDLE model proposed in this
paper and the basic principles involved. The third part describes the
experimental environment and the specific program of the
experiment, the experimental steps, and the collection and
processing of the data set. The results of the experiments as well
as the analysis of the results of the ablation comparison experiments
are presented in the fourth section. Finally, Part V summarizes and
looks forward to the work of this paper.

2 Materials and methods

2.1 Main ideas

In the traditional DeeplabV3+ model, the Xception network
with a large number of parameters was used for the feature
extraction network. Due to its excessive number of network
layers and the use of ordinary convolution in the ASPP module
after feature extraction, the complexity of the model is large. This
leads to an increase in the difficulty of model training and can cause
problems such as slower speed of network training and convergence.
In addition, in the encoder part, the shallow network information is
directly input to the decoder due to the loss of effective information
caused by dimensionality reduction. This leads to poor edge
segmentation between categories.

In order to improve the segmentation performance and training
speed of the model, this paper proposes a lightweight network
applied to high-resolution remote sensing image segmentation. It
is improved on the basis of DeeplabV3+ network, DeepGDLE, is
proposed in this paper. Its structure is shown in Figure 1. The overall
methodology flow is shown in Figure 2.

The main ideas of DeepGDLE proposed in this paper includes
the following five aspects.

(1) Replacing Xception with GhostNet. On the basis of the
DeeplabV3+ framework, the backbone feature extraction
network Xception is replaced with the lightweight
GhostNet network, which can significantly reduce the
amount of parameter computation of the model, lower the
memory occupation, and improve the computational speed of
the model.

(2) Replacing normal convolution with Depthwise Separable
Convolution (DSC). The ordinary convolution in the ASPP
module is replaced with depthwise separable convolution to
further reduce the number of parameters and computational
cost of the model, and improve the computational speed of
the model.

(3) Optimizing the dilation rate of parallel convolution in the
ASPP module. When the dilation rate of the parallel cavity
convolution is not set properly, it is easy to cause the “grid
effect”. Therefore, the dilation rate in the original ASPP
module was optimized, and the dilation rate with better
results was selected after trying multiple dilation rates.

(4) Adding lightweight channel attention mechanism ECANet.
Adding ECANet attention mechanism after the backbone
feature extraction module and ASPP module. By utilizing
appropriate cross-channel interactions, the impact of
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dimensionality reduction on the learning effect of channel
attention is effectively avoided, and the accuracy of feature
extraction is improved.

(5) Replacing the Cross Entropy Loss Function with Focal Loss.
In order to reduce the impact of large differences in the
proportion of feature categories on the accuracy of model

FIGURE 1
DeepGDLE model structure.

FIGURE 2
Methodology flow chart.
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feature classification, the Focal Loss is used to optimize the
weights of the categories occupying different weights in the
dataset, and to reduce the problems caused by data imbalance.

2.2 Replacing Xception with GhostNet

DeeplabV3+ is an improvement of the DeeplabV3 network,
where the overall model replaces the underlying network with a
residual network, adding a simple and effective encoder-decoder
structure to optimize the segmentation results. On the coding side,
DeeplabV3+ network utilizes Xception network to extract features
from the input image. The image features are fused using ASPP
module to avoid information loss. Where Xception is a deep
convolutional neural network containing input, intermediate and
output streams, and ASPP is a feature extraction module containing
multiple multi-scale pyramids. Utilizing the ASPP structure to solve
multiscale problems. Bilinear interpolation up-sampling is
performed at the decoding end to improve the accuracy of
network segmentation.

In this paper, the backbone feature extraction network of
DeeplabV3+ is modified to the more lightweight GhostNet
network. GhostNet has shallower network layers, fewer
parameters, lower model complexity, and faster network training
and convergence compared to Xception networks. Compared to
lightweight networks such as MobileNet (Howard et al., 2017) and
ShuffleNet (Zhang et al., 2018) on different datasets, GhostNet has
the smallest parameter size, faster training speed and best
training accuracy.

GhostNet consists of a bunch of Ghost bottlenecks, which are
built on Ghost modules. The first layer is a standard
convolutional layer with 16 convolutional kernels, followed by
a series of Ghost bottlenecks with progressively more channels.
These Ghost bottlenecks are categorized into different stages on
the basis of their input feature map size. All Ghost bottlenecks are
applied with stride = 1, except for the last Ghost bottleneck in
each phase, which has stride = 2. Finally, the feature maps are
converted into 1280-dimensional feature vectors for final
classification using global average pooling and convolutional
layers. The SE module is also used for residual layers in some
Ghost bottlenecks. In contrast to MobileNetV3 (Howard et al.,
2019), GhostNet swaps out the Hard-swish (Zoph and Le, 2017)
activation function with the ReLU (Glorot et al., 2011)
activation function.

There are two Ghost modules in a G-bneck module. The first of
these Ghost module is used to increase the number of channels in the
dilation layer, specifying the ratio between the number of output and
input channels as the dilation ratio. The second Ghost module
reduces the number of channels to match the channels in the
shortcut branch. When the step size is 2, a deep convolutional
layer with a step size of 2 is added between the two Ghost modules.
The specific G-bneck module structure is shown in
Supplementary Figure S1.

The GhostNet model consists of a stack of Ghost modules,
G-bneck stands for Ghost Bottleneck. #exp stands for dilation size.
#out stands for the number of output channels. SE indicates whether
the SE module is used. Stride stands for the step size. The network
structure is shown in Table 1.

2.3 Replacing normal convolution with
depthwise separable convolution

The main role of the convolutional layer is to perform feature
extraction, where the input feature map is subjected to a convolution
operation by the convolution kernel. The convolution kernel also
learns the spatial and channel properties in the feature
map. Depthwise Separable Convolution (DSC) adds a transition
layer to the standard convolution process, decomposing it into
Depthwise convolution (Tan and Le, 2019) and 1 × 1 point-by-
point convolution (Guo et al., 2018), which is used to consider spatial
correlation and channel correlation, respectively. Depthwise separable
convolution divides it into two layers, one for filtering and one for
combining. This decomposition process is able to drastically reduce
the computational and parametric quantities of the model without
losing much accuracy.

Assume that the size of the input feature map is DK × DK × M
and the size of the convolution kernel is DF × DF × M, and its
number is N. Assuming that a convolution operation is performed
for each point in the spatial location of the corresponding feature
map, a total of DK × DK × DF × DF × M computations are required
for a single convolution, as shown in Supplementary Figure S2 for
the standard convolution operation process. The spatial dimension
of the feature map consists of a total of DK × DK points, while the

TABLE 1 GhostNet network model structure.

Input Operator #Exp #Out SE Stride

2242 × 3 Conv2d 3 × 3 - 16 - 2

1122 × 16 G-bneck 16 16 - 1

1122 × 16 G-bneck 48 24 - 2

562 × 24 G-bneck 72 24 - 1

562 × 24 G-bneck 72 40 1 2

282 × 40 G-bneck 120 40 1 1

282 × 40 G-bneck 240 80 - 2

142 × 80 G-bneck 200 80 - 1

142 × 80 G-bneck 184 80 - 1

142 × 80 G-bneck 184 80 - 1

142 × 80 G-bneck 480 112 1 1

142 × 112 G-bneck 672 112 1 1

142 × 112 G-bneck 672 160 1 2

72 × 160 G-bneck 960 160 - 1

72 × 160 G-bneck 960 160 1 1

72 × 160 G-bneck 960 160 - 1

72 × 160 G-bneck 960 160 1 1

72 × 160 Conv2d 1 × 1 - 960 - 1

72 × 960 AvgPool 7 × 7 - - - -

12 × 960 Conv2d 1 × 1 - 1280 - 1

12 × 1280 FC - 1000 - -
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computation of the convolution operation for each point is the same
as the size of the convolution kernel, which is DF × DF × M. As
shown in Supplementary Figures S3, S4, the process of depthwise
separable convolution operation is shown. Supplementary Figure S3
shows the deep convolution process, Supplementary Figure S4
shows the point-by-point convolution process. The calculation of
the formula is derived from the article published in CVPR by
(Howard et al., 2017) in 2017.

So, for a single convolution, the total amount of computation is
as follows. Where DK denotes the height and width of the
convolution kernel, DF denotes the depth of the input feature
map, which is the number of channels contained in the input
feature map, M denotes the number of channels included in the
feature map. Details as shown in Eq. 1.

DK × DK × DF × DF × M (1)
For N convolutions, the total number of computations is as

shown in Eq. 2.

DK × DK × DF × DF × M × N (2)

In depthwise separable convolution, for depth convolution, the
computation is as shown in Eq. 3.

DK × DK × DF × DF × M × N (3)

For point-by-point convolution, the computation is as shown in
Eq. 4.

DK × DK × M × N (4)
So, for one depthwise separable convolution, the total amount of

computation is as shown in Eq. 5.

DK × DK × DF × DF × M + DK × DK × M × N (5)

The ratio of the computational effort of the depthwise separable
convolution with respect to the ordinary convolution is as shown in
Eq. 6.

DK × DK × DF × DF × M + DK × DK × M × N
DK × DK × DF × DF × M × N

� 1
N
+ 1
DF × DF

(6)

2.4 Optimizing the dilation rate in the
ASPP module

In the ASPP module, if the dilation rate of the parallel cavity
convolution is not properly chosen, the “grid effect” (Wang et al.,
2018) will easily occur, which interferes with the accuracy of the
model segmentation. For the encoding part, the use of dilated
convolute on can expand the sense field and reduce the use of
downsampling, but it will lead to a more serious loss of detail in the
downsampling.

The goal of optimizing the dilation rate is to have the final feeler
field fully cover the entire region without any voids or missing edges.
Define the maximum distance between two non-zero points as
follows. where Mi denotes the size (width or height) of the ith
layer of the feature map, ri denotes the radius size of the convolution

kernel corresponding to the feature map of the ith layer. Details as
shown in Eq. 7.

Mi � max Mi+1 − 2ri,Mi+1 − 2 Mi+1 − ri( ), ri[ ] (7)
In the formula, Mn � rn and the goal is to have M2 ≤K.
For a common dilated convolutional kernel size K � 3, if

r � [1, 2, 5], the Eq. 8 can be obtained.

M2 � max M3 − 2r2,−M3 + 2r2, r2[ ] � max 1,−1, 2[ ] � 2 (8)
At this point, M2 � 2≤K � 3, which satisfies the objective. The

schematic diagram of the design is represented in
Supplementary Figure S5.

If r � [1, 2, 9]. The Eq. 9 can be obtained.

M2 � max M3 − 2r2,−M3 + 2r2, r2[ ] � max 5,−5, 2[ ] � 5 (9)

At this point, M2 � 5>K � 3, which does not satisfy the
objective. The schematic diagram of the design is represented in
Supplementary Figure S6.

The dilation convolution strategy using different dilation rates is
given as a form of sawtooth wave variation. Sawtooth wave can fulfill
the segmentation requirements for both small and large objects.
Convolution within a group should not have a fixed transform
factor. Therefore, conventions greater than 1 should not be used,
otherwise there is no way to reduce the grid effect. A dilation rate of
the same or equal proportions loses a lot of information, and a
dilation rate of a sawtooth waveform covers a much larger area while
the parameters remain unchanged.

2.5 Adding lightweight channel attention
mechanism ECANet

In the field of deep learning, the attentionmechanism focuses on
significant feature differences, extracting from a large number of
data features to select the information that is more important for the
task at hand.

Common attention mechanisms include channel attention
mechanisms and spatial attention mechanisms. The channel
attention mechanism module enables the neural network to
automatically determine the importance of channels and provide
appropriate weights for channels, which show high response to the
target object. The spatial attention mechanism can transform the
data of various deformations in space and automatically capture
important regional features.

In this paper, the ECANet attention mechanism module is
added after the feature extraction module and the ASPP module.
ECANet is an improvement on the SENet channel attention
mechanism. It is shown that the dimensionality reduction
operation used by SENet negatively affects the prediction of
channel attention, acquiring dependencies inefficiently and
operating unnecessarily. Based on this, an efficient channel-
attentive ECANet module for CNNs is proposed, which avoids
the dimensionality reduction operation and effectively realizes
cross-channel interaction. Its overall performance surpasses that
of the SENet (Hu et al., 2018) and CBAM (Woo et al., 2018)
attention mechanisms.
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The ECANet attention mechanism module uses one-
dimensional convolution to capture local cross-channel
interaction information through adaptive channel coverage k,
allowing the ECANet module to add only a small number of
parameters while significantly improving network performance.
The channel coverage k is defined as the surrounding k
neighboring channels that participate in the attention
calculation for that channel. The overall structure is shown
in Figure 3.

The ECANet generates weights for each channel by a one-
dimensional convolution of size K. Where ω denotes the output
value. Details as shown in Eq. 10.

ω � σ C1DK y( )( ) (10)

In the formula, C1D denotes a one-dimensional convolution, y
denotes a channel, and σ denotes a Sigmoid activation function; the
larger the channel dimension, the larger the range of local cross-
channel interactions. The mapping between the channel dimensions
C and K is as shown in Eq. 11.

C � ∅ K( ) ≈ exp γ × K − b( ) (11)
K is calculated by the Eq. 12.

K � φ C( ) � log2 C( )
γ + b

γ

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣odd (12)

In the equation, C denotes the input feature channel dimension,
|t|odd denotes the closest odd number to t, the value of γ is set to 2,
and the value of b is set to 1.

2.6 Replacing the Cross Entropy Loss
Function with focal loss

Loss refers to the difference between the output value of themodel
and the true value of that sample, and the loss function describes that
difference. For a deep learning model, the neural network weights in
themodel are trained by loss back propagation. Thus, the loss function

plays an important role in the training effectiveness of the model. The
paper uses a focal loss function instead of a cross-entropy loss function
to cope with the problem of multiple categorizations and the
imbalance in the proportion of categorized objects.

Focal Loss is on the basis of binary cross entropy (CE), which
is a dynamically scaled cross entropy loss. With a dynamic scaling
factor, the weight of easily distinguishable samples during
training can be dynamically reduced to quickly focus on those
that are difficult to distinguish. The calculations for the following
formulas are derived from the article published by Lin et al.
(2017) at the ICCV conference in 2017.

The formula for cross-entropy loss is as shown in Eq. 13.

CE p, y( ) � − log p( ) if y � 1
− log 1 − p( ) otherwise

{ (13)

In the above equation, y takes the values of 1 and −1,
representing foreground and background, respectively. The value
of p ranges from 0–1 and is the probability that the model predicts
belonging to the foreground. Next define a function with respect to
p. Details as shown in Eq. 14.

pt � p if y � 1
1 − p otherwise

{ (14)

Combining the above equations, Eq. 15 can be obtained.

CE p, y( ) � CE pt( ) � − log pt( ) (15)

Balanced Cross Entropy (BCE) is a common solution to class
imbalance. A weight factor α ∈ [0, 1] is introduced, which is α when
it is a positive sample and 1 − α when it is a negative sample. So, the
loss function can also be rewritten as shown in Eq. 16.

CE pt( ) � −αt log pt( ) (16)

Although BCE solves the problem of unbalanced positive and
negative samples, it does not distinguish between simple or complex
samples. When there are more simple negative samples, the entire
training process will revolve around the simple negative samples,
which in turn will drown out the positive samples and cause large

FIGURE 3
Structure of ECA module.
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losses. Therefore, a modulation factor is introduced for focusing
complex samples. By balancing for positive and negative samples as
well as simple and complex samples, the Eq. 17 for the final Focal
Loss can be obtained.

FL pt( ) � −αt 1 − pt( )γ log pt( ) (17)

In the formula, the inhomogeneity of the sample proportions
is balanced by the weights αt, which takes values in the range
[0, 1]. γ is a hyperparameter, and the value of γ is in the range of
[0, 5]. When the value of γ is 0, the focal loss is the traditional CE
loss. pt is the predicted probability of different categories, the
smaller the value of pt the more difficult it is to categorize, the
larger the value of the indicator of (1 − pt)γ, the easier it is to
categorize. For simple and easy-to-learn samples, the larger the
corresponding predictive probability, the smaller the
corresponding weight; the smaller the predictive probability,
the larger the weight for composite samples.

3 Experiments

3.1 Experimental software and hardware
configurations

PyTorch deep learning framework is used in this paper for
training and testing of network models. The specific experimental
software and hardware configurations are shown in Table 2.

3.2 Experimental datasets

Two main datasets are used for the experiments in this paper.
A publicly available dataset WHDLD (Shao et al., 2018) and a
home-made dataset FRSID. Since the data content of the dataset
WHDLD as well as other publicly available datasets are mostly
remote sensing images of an area as a whole, there is no careful
differentiation between research objects or influencing factors.
Therefore, a new dataset FRSID is created by ourselves. It
containing land cover remote sensing images classified
according to several factors affecting segmentation accuracy
such as main categories and percentages, shadow percentage,
number of categories, etc. The dataset is used to test the influences
of different factors on the segmentation accuracy, so as to verify
the robustness of the DeepGDLE network proposed in this paper.

3.2.1 WHDLD
WHDLD is the WuHan Dense Labeled Dataset, is a publicly

available dataset. The dataset includes 4,940 images taken by
Gaofen-1 and Ziyuan-3 satellite sensors in Wuhan, with a
standard resolution of 256*256 pixels RGB images and a spatial
resolution of 2 m.

The image annotation categories in the dataset are organized
into six categories: bare land, building, sidewalk, water body,
vegetation, and road.

3.2.2 FRSID
FRSID is the Fuyang Remote Sensing Image Dataset, is the new

dataset created in this paper. The content of the dataset is the remote
sensing images of the Fuyang District area of Hangzhou City,
Zhejiang Province in 2021. The study area is located in the
northwestern part of Zhejiang Province, between 119°25′ and
120°19.5′E longitude and 29°44′ and 30°11′N latitude. It has a
humid subtropical monsoon climate and the topography is
dominated by hills and mountains.

This dataset contains 900 original remote sensing images around
the main urban area of Fuyang, and the resolution is standardized as
600*600 pixels RGB images. All contained categories in the dataset
were labeled and stored through the graphical interface labeling
software LabelMe (Russell et al., 2008), JSON files were generated.
The data labels were converted into binarized png images using the
JSON to dataset command. The dataset is stored in the PASCAL VOC
(Vicente et al., 2014) data format. Using the data enhancement tool, the
dataset is augmented with a combination of operations including but
not limited to random rotation, mirroring, etc. to expand the dataset
and finally increase the number of datasets to 4500 RGB images to
improve the generalization ability. The spatial resolution is 2 m.

The image annotation categories in the dataset are categorized
into eight categories: cropland, vegetation, building, water body,
general road, parking lot, main road, and playground.

3.3 Dataset classification

In order to test the impact of different factors present in the
dataset on the semantic segmentation performance of rural land
cover remote sensing images to validate the robustness of the
DeepGDLE model proposed in this paper, the FRSID dataset is
classified in this paper according to the following three factors that
affect the segmentation accuracy: 1) main category and its
percentage; 2) shadow percentage; 3) category count. This results
in three sub-datasets: Dataset with different Main Categories and
Percentages (DataMCP), Dataset with different Shadow Percentages
(DataSP), and Dataset with different Categories Counts (DataCC).

3.3.1 Dataset with different main categories and
percentages (DataMCP)

This dataset is primarily divided on the basis of the main category
of the image and its percentage. Firstly, the data images were divided
according to the different main categories in the data images, which
were building cover, vegetation cover, cropland cover and water body
cover, four types in total. These four main categories were identified as
the main body in the respective data image as they occupied more
than 50% of the whole image and the rest of the categories were less

TABLE 2 Experimental hardware and software configuration.

Item Detail

CPU AMD Ryzen 7 5800H with Radeon Graphics at3.20 GHz

GPU RTX 3090 (24G)

RAM 16 GB

Operating system Windows 11 64-bit

CUDA 11.3

Python 3.8

PyTorch 1.10.0

Frontiers in Environmental Science frontiersin.org08

Wang et al. 10.3389/fenvs.2024.1329517

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1329517


than 50%. The data images were then further subdivided according to
the percentage ranges of 50%–75% and 75%–100% to obtain eight
sub-datasets. The samples of the DataMCP dataset are shown in
Supplementary Figure S7, and the details are shown in Table 3.

3.3.2 Dataset with different shadow
percentages (DataSP)

This dataset is mainly divided on the basis of the shadow
percentage in the data images. The shadow percentage is one of
the factors affecting the segmentation accuracy, but the percentage
of shadows in most of the data images is relatively small, and most of
the shadows are below 15%. In order to better test the influence of
shadow percentage on segmentation accuracy, the data images with
shadows are divided according to four percentage intervals: 0%–5%,
5%–10%, 10%–15%, and 15%–100%, and four sub-datasets are
obtained. The data samples in the DataSP dataset are shown
below in Supplementary Figure S8, and the contents of the
dataset are shown in Table 4.

3.3.3 Dataset with different Categories
Counts (DataCC)

This dataset is primarily divided on the basis of the category
count in the image. Different categories represent different levels of
complexity in the image. A total of eight different categories exist in
the dataset and four sub-datasets are obtained by dividing them
according to the number of categories {1, 2}, {3, 4}, {5, 6}, {7, 8}.
Samples of the DataCC dataset is shown in Supplementary Figure
S9. The contents of the dataset are shown in Table 5.

3.4 Evaluation indicators

In this experimental study, the following metrics were used in
order to evaluate the segmentation performance of the high-
resolution remote sensing image dataset, mean Intersection over
Union (mIoU), mean Pixel Accuracy (mPA) and mean Recall
(mRecall). This metric is a common evaluation metric in the
field of computer vision to measure the performance of a model
in tasks such as semantic segmentation and target detection.

3.4.1 mean Intersection over Union (mIoU)
The mIoU is the most commonly used evaluation metric in

experimental studies of semantic segmentation. mIoU first
calculates the ratio of the intersection and concatenation of the
two sets of true and predicted values on each category, and then
averages the intersection and concatenation ratios over all
categories. The formula is as shown in Eq. 18.

mIoU � 1
n
∑n

i�0
pii∑n

j�0pij +∑n
j�0pji − pii

(18)

3.4.2 mean Pixel Accuracy (mPA)
The mPA is the average of the ratio of correctly predicted pixel

points to total pixel points for all categories. The formula is as shown
in Eq. 19.

mPA � 1
n
∑n

i�0
pii∑n

i�0∑n
j�0pij

(19)

TABLE 3 Size of DataMCP dataset.

Main category Percentage (%) Size (before enhancement) Size (after enhancement)

Cropland 50%–75% 174 348

75%–100% 62 310

Building 50%–75% 100 300

75%–100% 16 160

Water body 50%–75% 67 355

75%–100% 11 110

Vegetation 50%–75% 177 354

75%–100% 281 281

Total 888 2198

TABLE 4 Size of DataSP dataset.

Shadow percentage Size (before enhancement) Size (after enhancement)

0%–5% 163 326

5%–10% 128 256

10%–15% 65 325

15%–100% 26 260

Total 382 1167
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3.4.3 mean Recall (mRecall)
mRecall is the average of the sumof the ratios of the number of pixel

points correctly categorized in each category to the number of pixel
points predicted to be in that category. The formula is as shown in
Eq. 20.

mRecall � 1
n
∑n

i�0
pii

pii +∑n
i�0pji

(20)

In this formula, n is the total category, pij represents the number
of pixels that would have belonged to category i but were predicted
to be in category j, pij represents the number of pixels that would
have belonged to category j but were predicted to be in category i, pii
represents the number of correct predictions, and pij and pji are false
positive and false negative, respectively.

3.5 Experimental schemes

3.5.1 Determination of training parameters
Each dataset for the experiments was divided into a training set

with 80% data, a validation set with 10% data, and a test set with 10%
data. All models were implemented using PyTorch. The accuracies
of the model DeepGDLE under different learning rates and batch
sizes using publicly available remote sensing image datasets were
tested, and the final selection of training parameters is shown in
Table 6. In order to improve the accuracy of model segmentation,
GhostNet pre-training weights are loaded before model training.
The focal loss function, Focal Loss, is used to reduce the impact of
the large difference in the proportion of feature categories in the
dataset on the accuracy of model feature classification.

3.5.2 Experimental scheme for dilation rate
selection in ASPP modules

In order to study the performance of segmentation under different
dilation rate settings for parallel convolution in the ASPP module, four
cases with different dilation rates are selected to test the relationship of
the dilation rate on the network. Four dilation rates, 1/2/5/9, 1/5/9/17,
1/6/12/18, and 1/2/7/15, were selected. The mPA, mRecall, and mIoU
were selected as metrics to evaluate the comparison.

3.5.3 Experimental scheme for performance
comparison

In order to test the performance of DeepGDLE, the model
proposed in this paper, in remote sensing image segmentation
tasks, comparative experiments are conducted with DeepGDLE
and traditional semantic segmentation methods such as SegNet,

PSPNet, UNet, and DeeplabV3+. The mIoU, mPA, and mRecall are
selected as metrics to test the segmentation performance of this
paper’s method. Training time, single-image prediction time and
number of parameters are selected as metrics to test the
segmentation efficiency of the method in this paper.

3.5.4 Experimental scheme for robustness analysis
In order to test the generalization ability of DeepGDLE proposed

in this paper and the robustness of the method, experiments are
conducted on the DataMCP dataset containing different main
categories and their percentages, the DataSP dataset containing
different shadow percentages, and the DataCC dataset containing
different Categories counts, which are classified according to different
factors. The mIoU, mPA, and mRecall are selected as metrics to test
the robustness of the method in this paper.

3.5.5 Scheme of ablation experiments
In order to verify the contribution to segmentation performance

of the DeepGDLE aspects proposed in this paper, four different
improvement modules are used to perform segmentation
performance ablation experiments and segmentation efficiency
ablation experiments on two differently categorized total datasets.
Because the introduction of Focal Loss is an optimization of the loss
function of the model calculation results, it has little effect on the
model structure. Therefore, this experiment combines Focal Loss
with the traditional DeeplabV3+ model.

In order to verify the segmentation performance of DeepGDLE,
GhostNet is considered to be able to acquiremore image information by
using linear operations to generatemore featuremappings. The ECANet
attentionmechanism learns the channel attention of each convolutional
block, uses one-dimensional convolution to avoid dimensionality
reduction operations, efficiently realizes cross-channel interactions.
This provides appropriate weights for the channels, and brings
significant performance gains to the architecture of the network.
And the ECANet attention mechanism was added at two different
sites. Therefore, a total of seven modelling experiments are conducted
for comparison, as described in detail as follows.

(1) DeepL: In the original DeeplabV3+ model, the Focal Loss
function is introduced.

TABLE 5 Size of DataCC dataset.

Categories counts Size (before enhancement) Size (after enhancement)

{1, 2} 221 442

{3, 4} 268 526

{5, 6} 369 369

{7, 8} 42 210

Total 900 1557

TABLE 6 Optimal training parameters.

Epoch Batch size Lr Input-shape

500 16 7e-1 512 × 512
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(2) DeepGL: On the basis of DeepL, the feature extraction
network was replaced with the GhostNet network.

(3) DeepLE1: On the basis of DeepL, only the ECANet Attention
module is added after the Feature Extraction module.

(4) DeepLE2: On the basis of DeepL, add the ECANet Attention
module to DeepL after the ASPP module only.

(5) DeepLE: On the basis of DeepL, the ECANet attention
module is added after the feature extraction module and
ASPP module at the same time, i.e., the scheme proposed
in this paper.

(6) DeepGLE: On the basis of DeepLE, the feature extraction
network is replaced with a GhostNet network.

(7) DeepGDLE: The model proposed in this paper.

In order to verify the segmentation efficiency of DeepGDLE,
considering that the GhostNet network has a shallower number of
layers and fewer parameters, the complexity of the model is lower,
and the network is faster in both training and convergence.
Depthwise separable convolution divides a standard convolution
into two layers, one for filtering and one for combining. The amount
of computation and the number of parameters of the model are
drastically reduced while maintaining the accuracy upfront.
Therefore, a total of five modelling experiments are conducted
for comparison, as described in detail as follows.

(1) DeepL: In the original DeeplabV3+ model, the Focal Loss
function is introduced.

(2) DeepGL: On the basis of DeepL, the feature extraction
network was replaced with the GhostNet network.

(3) DeepDL: On the basis of DeepL, the ordinary convolution in
the ASPP module was replaced with depthwise separable
convolution.

(4) DeepGDL: On the basis of DeepDL, the feature extraction
network is replaced with a GhostNet network.

(5) DeepGDLE: The model proposed in this paper.

4 Results and analysis

4.1 Dilation rate selection in ASPP module

In this section, four cases with different dilation rates are
selected to test the relationship between the effects of dilation
rates on the network. Four dilation rates of 1/2/5/9, 1/5/9/17, 1/
6/12/18, and 1/2/7/15 were considered. The evaluation metrics are
mPA, mRecall, and mIoU. The specific results of the experiment are
shown in Table 7.

According to the indicators of performance using different
dilation rates in Table 7, the model’s mPA is 74.43%, mRecall is
74.08%, and mIoU is 65.89% when the dilation rate is 1/2/7/15,
which is overall better than the other three dilation rates. Hence the
final dilation rate is determined as 1/2/7/15.

4.2 Segmentation results

In order to validate the segmentation performance of the model
DeepGDLE proposed in this paper, the method is compared with

other semantic segmentation models SegNet, PSPNet, UNet,
DeepLabV3+(Xception), DeepLabV3+(MobileNetV2) models.
The segmentation comparison results for some of the images are
shown in Figures 4, 5.

From Figures 4, 5, it can be seen that the DeepGDLE
segmentation of this paper’s method outperforms the five
semantic segmentation models of SegNet, PSPNet, UNet,
DeeplabV3+(Xception), and DeeplabV3+(MobileNetV2).
DeepGDLE is better for segmentation of edges between
categories and has fewer segmentation errors and segmentation
misses, which proves that the method DeepGDLE in this paper has
better segmentation performance.

4.2.1 Segmentation performance
Using mIoU, mPA, and mRecall as metrics, the results for the

WHDLD dataset are shown in Table 8 and the FRSID dataset is
shown in Table 9.

From Tables 8, 9, it can be seen that the DeepGDLE method
proposed in this paper outperforms other networks. Regarding the
segmentation performance, the mPA of DeepGDLE in the WHDLD
dataset results is 72.85%, which is improved by 8.59%, 10.65%, 7.90%,
6.21%, and 5.21% over that of SegNet, PSPNet, UNet, DeeplabV3+
(Xception), and DeeplabV3+ (MobileNetV2), respectively. The
mRecall of DeepGDLE is 72.46%, which is improved by 8.55%,
11.15%, 7.43%, 6.06%, and 5.06% over that of SegNet, PSPNet,
UNet, DeepLabV3+ (Xception), and DeeplabV3+ (MobileNetV2),
respectively. The mIoU of DeepGDLE is 62.29%, which is improved
by 10.07%, 11.45%, 7.86%, 6.00%, and 4.04% over that of SegNet,
PSPNet, UNet, DeepLabV3+ (Xception), and DeeplabV3+
(MobileNetV2), respectively. The mPA of DeepGDLE in the
FRSID dataset results is 74.43%, which is improved by 8.26%,
10.68%, 7.92%, 3.27%, and 2.90% over that of SegNet, PSPNet,
UNet, DeepLabV3+ (Xception), and DeeplabV3+ (MobileNetV2),
respectively. The mRecall of DeepGDLE is 74.08%, which is improved
by 7.93%, 9.78%, 7.60%, 2.97%, and 2.66% over that of SegNet,
PSPNet, UNet, DeepLabV3+ (Xception), and DeeplabV3+
(MobileNetV2), respectively. The mIoU of DeepGDLE is 65.89%,
which is improved by 10.31%, 12.40%, 8.71%, 4.29%, and 3.05% over
that of SegNet, PSPNet, UNet, DeepLabV3+ (Xception), and
DeeplabV3+ (MobileNetV2), respectively.

The experimental results show that DeepGDLE outperforms the
other five comparison models on both datasets. The use of GhostNet
as a feature extraction network in DeepGDLE, as well as the
improvement of incorporating ECANet’s attention mechanism,
improves the feature extraction capability and segmentation
accuracy of various types of images in the test set of remote
sensing images, which further proves the performance of the
DeepGDLE method.

TABLE 7 Dilation rate comparison experiment.

Dilation rate mPA (%) mRecall (%) mIoU (%)

1/2/5/9 73.94 73.87 65.41

1/5/9/17 74.02 74.11 65.34

1/6/12/18 74.14 73.89 65.73

1/2/7/15 74.43 74.08 65.89
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4.2.2 Segmentation efficiency
Using training time, single image prediction time, and number

of parameters as metrics for comparison, the results for theWHDLD
dataset are shown in Table 10 and the results for the FRSID dataset
are shown in Table 11.

According to the data analysis of experimental results in Tables
10, 11. In terms of segmentation efficiency, the training time per
epoch of DeepGDLE in theWHDLD dataset is 134 s, the efficiency is
improved by 9.46%, 38.81%, 49.81%, 58.13%, and 21.64% over that
of PSPNet, UNet, DeepLabV3+ (Xception), and DeeplabV3+

FIGURE 4
Results of different methods by using WHDLD dataset.

FIGURE 5
Results of different methods by using FRSID dataset.
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(MobileNetV2), respectively. The prediction time single image of
DeepGDLE is 34 ms. The efficiency is improved by 2.86%, 15.00%,
19.05%, 40.35%, and 8.11% over that of PSPNet, UNet,
DeeplabV3+(Xception), and DeeplabV3+(MobileNetV2),
respectively. The training time per epoch of DeepGDLE in the
FRSID dataset is 128 s. The efficiency is improved by 9.22%, 40.47%,
51.52%, 59.24%, and 23.35% over that of PSPNet, UNet,
DeepLabV3+ (Xception), and DeeplabV3+ (MobileNetV2),
respectively. The prediction time single image of DeepGDLE is
34 ms. The efficiency is improved by 5.88%, 15.79%, 27.27%,
43.86%, and 25.00% over that of PSPNet, UNet,
DeeplabV3+(Xception), and DeeplabV3+(MobileNetV2),
respectively. Regarding the number of parameters, DeepGDLE is
17.97 mb, which is 2.47 mb, 26.21 mb, 77.33 mb, 190.75 mb, and
4.22 mb lower than the number of parameters of PSPNet, UNet,
DeeplabV3+(Xception), and DeeplabV3+(MobileNetV2),
respectively.

Overall, since the model DeepGDLE uses GhostNet to replace
the Xception feature extraction network for extracting information
and replaces the normal convolution in the ASPP module with a
depthwise separable convolution, it reduces the overall number of
parameters of the model compared to other network models in the
experiments, making the model lighter, reducing the training and
prediction time, and improving the segmentation efficiency.

4.3 Robustness analysis

In order to test the robustness of the method, experiments were
done to compare the segmentation effects on the DataMCP dataset

containing different main categories and their percentages, the
DataSP dataset containing different shadow percentages, and the
DataCC dataset containing different Categories counts, using the
models trained from the FRSID dataset. Using mPA, mRecall, and
mIoU as evaluation metrics.

4.3.1 Influence of main category and percentage
Segmentation experiments are performed on the DataMCP

dataset. Using mPA, mRecall, and mIoU as evaluation metrics.
The comparison results for DataMCP dataset are shown in Table 12.

As can be seen in Table 12, the segmentation exhibited in the
dataset dominated by cropland and water cover is more effective. The
mIoU can reach up to 72.49% and 80.14%, mPA can reach up to
81.28% and 89.34%, and mRecall can reach up to 80.89% and 89.04%,
respectively. The overall segmentation is better than in cases where
complex buildings or vegetation cover are the mainstay. The mIoU
was 56.47% and 61.64%, the mPA was 66.39% and 70.89%, and the
mRecall was 66.14% and 70.48% for the case where complex buildings
and vegetation cover were the mainstay, respectively.

In the case of four different main categories, the dataset with
cropland and water body cover as the main categories has clear
boundaries between categories in the image, which interferes less
with segmentation, and the shape of the labels is more regularized
and the segmentation is more effective, compared to the dataset with
complex buildings and vegetation cover as the main category. Also,
when the categories are the same, the larger the percentage, the
better the segmentation.

4.3.2 Influence of shadow percentage
Segmentation experiments are performed on the DataSP dataset.

Using mPA, mRecall, and mIoU as evaluation metrics. The
comparison results for DataSP dataset are shown in Table 13.

From Table 13, it can be seen that in the presence of shadows,
different shadow percentages lead to a decrease in segmentation.
The best performing DeepGDLE model mPA is 75.85%, mRecall is
75.64%, and mIoU is 66.94% when the shadow percentage is in the
0%–5% range. The best performing DeepGDLE model mPA is
75.28%, mRecall is 75.08%, and mIoU is 66.38% when the
shadow percentage is in the 5%–10% range. The best performing
DeepGDLE model mPA is 72.48%, mRecall is 72.17%, and mIoU is
64.89% when the shadow percentage is in the 10%–15% range.

The larger the percentage of shadows in the dataset image, the
worse the overall segmentation will be. Shadows can lead to wrong
scores as well as missed scores because the shading interferes with the
overall segmentation. Shadows themselves are not part of the
categories delineated in the dataset, and the greater the percentage
of shadows, the greater the impact on category segmentation. But
while shading is also a factor that affects segmentation accuracy, the
effect is not as large as that of the category and its percentage and
category counts.

4.3.3 Influence of category count
Segmentation experiments are performed on the DataCC

dataset. Using mPA, mRecall, and mIoU as evaluation metrics.
The comparison results for DataCC dataset are shown in Table 14.

From Table 14, it can be seen that the more category counts in the
image, the more the segmentation accuracy of the model decreases to
some extent. The best performing DeepGDLE model with category

TABLE 8 Segmentation performance results of different methods for
WHDLD dataset.

Method mPA (%) mRecall (%) mIoU (%)

SegNet 67.05 66.75 56.59

PSPNet 65.84 65.19 55.89

UNet 67.51 67.45 57.75

DeeplabV3 + (Xception) 68.59 68.32 58.76

DeeplabV3 + (MobileNetV2) 69.24 68.97 58.87

DeepGDLE 72.85 72.46 62.29

TABLE 9 Segmentation performance results of different methods for FRSID
dataset.

Method mPA (%) mRecall (%) mIoU (%)

SegNet 68.75 68.64 59.73

PSPNet 67.25 67.48 58.62

UNet 68.97 68.85 60.61

DeeplabV3 + (Xception) 72.07 71.94 63.18

DeeplabV3 + (MobileNetV2) 72.33 72.16 63.94

DeepGDLE 74.43 74.08 65.89
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TABLE 10 Segmentation efficiency results of different methods for WHDLD dataset.

Method Training Time/Epoch(s) Single image prediction Time (ms) Parameter Quantity (mb)

SegNet 148 35 20.44

PSPNet 219 40 44.18

UNet 267 42 95.3

DeeplabV3 + (Xception) 320 57 208.72

DeeplabV3 + (MobileNetV2) 171 37 22.19

DeepGDLE 134 33 17.97

TABLE 11 Segmentation efficiency results of different methods for FRSID dataset.

Method Training Time/Epoch(s) Single image prediction Time (ms) Parameter Quantity (mb)

SegNet 141 34 20.44

PSPNet 215 38 44.18

UNet 264 44 95.3

DeeplabV3 + (Xception) 314 57 208.72

DeeplabV3 + (MobileNetV2) 167 36 22.19

DeepGDLE 128 32 17.97

TABLE 12 Comparison of segmentation performance for DataMCP.

Methods Evaluation
indicators

Building Vegetation Cropland Water body

50%–
75%

75%–
100%

50%–
75%

75%–
100%

50%–
75%

75%–
100%

50%–
75%

75%–
100%

SegNet mPA (%) 59.76 60.25 64.18 64.87 73.66 75.21 80.44 83.25

mRecall (%) 59.46 69.87 63.88 64.61 73.51 75.08 79.28 83.08

mIoU (%) 50.56 50.94 55.27 56.08 64.57 66.08 71.35 74.55

PSPNet mPA (%) 58.30 58.99 63.21 63.86 72.15 74.39 79.44 82.45

mRecall (%) 58.10 58.48 63.05 63.49 71.94 74.05 79.20 82.19

mIoU (%) 49.21 49.67 54.00 54.78 63.48 65.11 70.29 73.64

UNet mPA (%) 60.13 60.95 65.24 65.79 74.48 76.20 81.44 84.26

mRecall (%) 59.84 60.75 65.08 65.48 74.12 75.98 81.21 84.01

mIoU (%) 51.28 51.51 56.07 56.67 65.82 67.01 72.43 75.82

DeeplabV3+
(Xception)

mPA (%) 63.28 64.01 67.58 67.97 78.22 79.34 84.39 87.05

mRecall (%) 63.04 63.75 67.15 67.48 77.76 78.94 84.07 86.88

mIoU (%) 54.08 54.74 58.46 59.82 69.07 70.19 75.23 78.22

DeeplabV3+
(MobileNetV2)

mPA (%) 63.26 64.08 67.72 69.34 78.13 79.25 85.09 87.11

mRecall (%) 63.18 63.89 67.48 69.07 77.94 78.84 84.77 87.03

mIoU (%) 54.39 55.14 59.18 60.25 69.38 70.84 76.10 78.49

DeepGDLE mPA (%) 65.25 66.39 70.28 70.89 79.12 82.28 87.15 89.34

mRecall (%) 64.99 66.14 69.81 70.48 79.04 80.89 86.94 89.04

mIoU (%) 56.47 57.28 61.64 62.42 70.31 72.49 78.46 80.14
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counts {1, 2} was 90.10% for mPA, 89.24% for mRecall and 80.18 for
mIoU. The best performing DeepGDLE model with category counts
{3, 4} was 79.53% for mPA, 79.29% for mRecall and 70.52% for mIoU.
The best performing DeepGDLE model with category counts {5, 6}
was 74.04% for mPA, 73.48% for mRecall and 64.91% for mIoU. The
best performing DeepGDLE model with category {7, 8} was 61.09%
for mPA, 60.73% for mRecall and 52.95% for mIoU.

From the data in the table, when the category counts in the
dataset is small and there are only one or two category counts, the
accuracy of the model segmentation is very good and the mIoU can
reach more than 80%. However, as the category counts in the image
increases, the segmentation performance of the overall model
decreases. The model’s segmentation accuracy performance is
worst when the category counts in the image reaches a
maximum of eight. Different category counts represent different
complexity of information in the image, and an increase in the
category counts represents an increase in the amount of information
in the image. Therefore, the complexity of the data image content is
also one of the factors affecting the model segmentation accuracy.

4.4 Results of ablation experiments

4.4.1 Split performance ablation experiment results
The experiments in this section were conducted according to the

ablation experimental program of 3.5.5. The evaluation metrics are
mPA, mRecall, and mIoU. The specific results of the experiment are
shown in Figures 6, 7, Tables 15, 16.

According to the results of the model doing segmentation
performance ablation experiments on two different datasets, it
can be seen that comparing DeeplabV3+ with DeepL, there is an
improvement in the mPA, mRecall, and mIoU. It is shown that the
segmentation accuracy of the model is improved when the Focal
Loss is introduced in the model.

Comparing the DeepLE1, DeepLE2, and DeepLE models, the
metrics in mPA, mRecall, and mIoU are better than DeepL. However,
relatively speaking, model DeepLE1 improves the segmentation
performance better than the case of model DeepLE2, so this
improvement after ECANet’s attention mechanism was added to
the feature extraction module is the main reason why the attention
mechanism improves the segmentation performance.

Comparing DeepL and DeepGL, as well as DeepLE and
DeepGLE, the mPA, mRecall, and mIoU are improved. It is
shown that replacing the feature extraction network with
GhostNet improves the segmentation accuracy of the model to
some extent. At the same time this improvement improves the
performance metrics to a better extent than the inclusion of the
ECANet attention mechanism. Therefore, replacing the feature
extraction network with GhostNet is the main reason for
improving the segmentation performance in the overall model.

4.4.2 Segmentation efficiency ablation
experiment results

The experiments in this section were performed according to the
ablation experimental program of 3.5.5. The evaluation metrics are
training time, single image prediction time, and parameter quantity.

TABLE 13 Comparison of segmentation performance for DataSP.

Method Evaluation indicators 0%–5% 5%–10% 10%–15% 15%–100%

SegNet mPA (%) 69.45 68.46 68.44 67.59

mRecall (%) 69.25 68.37 68.15 67.48

mIoU (%) 60.34 59.74 59.37 58.48

PSPNet mPA (%) 68.09 67.84 67.79 66.54

mRecall (%) 67.87 67.68 67.48 66.28

mIoU (%) 59.18 58.61 58.08 57.14

UNet mPA (%) 70.17 69.84 69.56 68.44

mRecall (%) 70.09 69.78 69.28 68.19

mIoU (%) 61.08 60.68 60.24 59.82

DeeplabV3+ (Xception) mPA (%) 73.46 72.75 72.13 71.84

mRecall (%) 73.35 72.61 71.98 71.61

mIoU (%) 64.15 63.88 63.48 62.94

DeeplabV3+ (MobileNetV2) mPA (%) 73.84 73.46 72.75 72.48

mRecall (%) 73.71 73.28 72.64 72.17

mIoU (%) 64.74 64.14 63.89 63.23

DeepGDLE mPA (%) 75.85 75.28 74.64 73.94

mRecall (%) 75.64 75.08 75.08 73.94

mIoU (%) 66.94 66.38 66.38 64.89
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The specific results of the experiment are shown in Tables 17, 18.
According to the results of the model doing segmentation

efficiency ablation experiments on two different datasets, it can

be seen that comparing DeepL and DeepGL, there is an
improvement for DeepGDLE in the three values of training
time, single image prediction time, and parameter quantity. It

TABLE 14 Comparison of segmentation performance for DataCC.

Method Evaluation indicators {1, 2} {3, 4} {5, 6} {7, 8}

SegNet mPA (%) 82.61 74.43 67.44 54.65

mRecall (%) 81.46 74.26 67.08 54.23

mIoU (%) 73.66 65.89 58.41 46.88

PSPNet mPA (%) 81.64 72.88 66.49 55.12

mRecall (%) 81.23 72.51 65.77 54.83

mIoU (%) 72.77 64.12 57.32 46.09

UNet mPA (%) 83.39 74.14 68.24 57.02

mRecall (%) 82.74 73.82 67.88 56.71

mIoU (%) 74.75 65.30 59.44 48.12

DeeplabV3+ (Xception) mPA (%) 85.41 76.94 71.08 59.77

mRecall (%) 84.10 76.62 70.99 59.74

mIoU (%) 77.27 67.48 62.57 50.81

DeeplabV3+ (MobileNetV2) mPA (%) 85.86 77.25 71.49 60.01

mRecall (%) 84.27 76.84 71.34 59.27

mIoU (%) 77.94 68.18 63.29 51.40

DeepGDLE mPA (%) 90.10 79.53 74.04 61.09

mRecall (%) 89.24 79.29 73.48 60.73

mIoU (%) 80.18 70.52 64.91 52.95

FIGURE 6
Segmentation performance ablation experiment results by using WHDLD dataset.
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is illustrated that the use of a lightweight network, GhostNet,
reduces the parameters of the entire model and therefore reduces
the training time of the model as well as improves the speed of
model prediction.

Compared to DeepL and DeepDL, DeepGDLE improves on
three metrics: training time, single image prediction time, and
parameter quantity. It is illustrated that replacing the ordinary
convolution in the ASPP module with depthwise separable
convolution also reduces the parameters of the model, which
further reduces the training time and improves the
prediction speed.

Comparing DeepL, DeepGL, DeepDL, and DeepGDL, although
both improvements for DeepGDLE are able to reduce the
parameters of the model, shorten the model training time, and
increase the speed of the model prediction. But the improvement of
using a lightweight network, GhostNet, is the main reason for the
increased segmentation efficiency.

5 Conclusion

A lightweight land cover classification method with an
attention mechanism on the basis of semantic segmentation of
remote sensing images, DeepGDLE, was proposed in this paper.
The DeepGDLE method is on the basis of the traditional
DeeplabV3+ network, and the GhostNet network is used as the
backbone extraction feature network, which significantly reduces
the number of parameters in the feature extraction network and
lightens the model. A depthwise separable convolution is used to
replace the normal convolution in the ASPP module, effectively
reducing the overall number of parameters in the model. The
dilation rate of parallel convolution in the ASPP module is
optimized to avoid the “grid effect”. The ECANet attention
mechanism is added after the feature extraction module and the
ASPP module, which utilizes an efficient channel attention
mechanism to obtain more data information features, improve

FIGURE 7
Segmentation performance ablation experiment results by using FRSID dataset.

TABLE 15 WHDLD dataset segmentation performance results.

Method mPA (%) mRecall (%) mIoU (%)

DeeplabV3+ 68.14 67.89 58.76

DeepL 70.01 69.84 59.25

DeepGL 71.59 71.34 60.97

DeepLE1 70.64 70.41 60.09

DeepLE2 70.35 70.09 59.77

DeepLE 71.18 70.84 60.54

DeepGLE 72.79 72.51 62.16

DeepGDLE 72.85 72.46 62.29

TABLE 16 FRSID dataset segmentation performance results.

Method mPA (%) mRecall (%) mIoU (%)

DeeplabV3+ 70.06 69.89 61.61

DeepL 70.58 70.42 62.07

DeepGL 72.23 72.11 63.72

DeepLE1 71.44 71.39 62.94

DeepLE2 71.39 71.24 62.59

DeepLE 72.05 71.74 63.56

DeepGLE 74.26 74.01 65.82

DeepGDLE 74.43 74.08 65.89
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the overall segmentation ability of the model. It can avoid
dimensionality reduction and reduce the phenomenon of
omission and misjudgment at the same time. And for the
reason that the proportions of different categories in the dataset
are different, the focal loss function, Focal Loss, is used to balance
the samples by assigning different proportional weights to different
categories.

The proposed model, DeepGDLE, can effectively segment
remote sensing images. The mIoU of DeepGDLE on two remote
sensing image datasets reaches 62.29% and 65.89%, and the mPA
reaches 72.85% and 74.43%, respectively. More efficient and
accurate segmentation of high-resolution remote sensing images
is realized. A dataset FRSID of remote sensing images is established,
which has more consideration about the influencing factors of
semantic segmentation of remote sensing imagery. The
experiments of method DeepGDLE on the WHDLD dataset,
FRSID dataset fully confirm that the method outperforms the
benchmark method. The robustness of the method DeepGDLE is
successfully verified through comparison experiments with five
different semantic segmentation methods, namely, SegNet,
PSPNet, UNet, DeeplabV3+(Xception), and
DeeplabV3+(MobileNetV2), on the DataMCP dataset, which
contains different Main Categories and Percentages, the DataSP
dataset, which contains different Shadow Percentages, and the
DataCC dataset, which contains different Categories. It is also
demonstrated that DeepGDLE outperforms other methods for
different factors.

The factors affecting the segmentation performance of the
model are analyzed through robustness experiments performed
on datasets classified under three different scenarios. Among
them, different main categories and percentages have some
influence on the segmentation performance of the model, and
the segmentation in the dataset with cropland and water body
cover as the main categories is better, and the overall

segmentation effect is better than that of the case with
building cover or vegetation cover as the main categories. The
more distinct the edges between categories, the more detailed the
segmentation. Also, the larger the category share, the better the
segmentation. Moreover, the different shadow percentages are
one of the factors affecting the model segmentation performance.
In the presence of shadows, different shadow percentages result
in a certain reduction in segmentation. The larger the shadow
percentages, the worse the overall segmentation. Finally, the
different category counts in the image is also a factor that
affects the segmentation performance, the more the category
counts, the more complex the information in the image, the
worse the segmentation effect of the overall model.

The future work of this study focuses on the following
aspects. Firstly, for the categories with low segmentation
accuracy, study the reasons and make improvements
accordingly, so as to improve the segmentation accuracy of
the overall model. Secondly, there are uncertain factors in the
segmentation such as lack of clarity in the segmentation between
categories and categories, and the presence of a large area of
shadows interferes with the accuracy of the segmentation
model, so explore how to reduce the interference of these
factors. Thirdly, produce more remote sensing images and
more kinds of land cover information data for experiments,
and try to use algorithm-assisted methods of semi-automatic or
fully-automatic data annotation, so as to expand the dataset and
obtain more usable data.
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TABLE 17 Segmentation efficiency results for WHDLD dataset.

Method Training Time/Epoch(s) Single image prediction Time (ms) Parameter Quantity (mb)

DeepL 320 57 208.72

DeepGL 170 37 22.42

DeepDL 302 52 203.46

DeepGDL 135 34 17.42

DeepGDLE 134 33 17.97

TABLE 18 Segmentation efficiency results for FRSID dataset.

Method Training Time/Epoch(s) Single image prediction Time (ms) Parameter Quantity (mb)

DeepL 314 57 208.72

DeepGL 168 36 22.42

DeepDL 304 50 203.46

DeepGDL 128 31 17.42

DeepGDLE 128 32 17.97
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SUPPLEMENTARY FIGURE S1
G-bneck module.

SUPPLEMENTARY FIGURE S2
Schematic of the standard convolution operation.

SUPPLEMENTARY FIGURE S3
Schematic of deep convolution operation.

SUPPLEMENTARY FIGURE S4
Schematic of point-by-point convolution operation.

SUPPLEMENTARY FIGURE S5
Schematic representation of the dilation rate r = [1, 2, 5].

SUPPLEMENTARY FIGURE S6
Schematic representation of the dilation rate r = [1, 2, 9].

SUPPLEMENTARY FIGURE S7
Images from DataMCP dataset and their labels. (A) Main category cropland
50%–75%. (B) Main category cropland 75%–100%. (C) Main category
building 50%–75%. (D) Main category building 75%–100%. (E) Main
category water body 50%–75%. (F)Main category water body 75%–100%. (G)
Main category vegetation 50%–75%. (H) Main category vegetation
75%–100%.

SUPPLEMENTARY FIGURE S8
DataSP dataset images and their labels. (A) Shadow percentage 0%–5%. (B)
Shadow percentage 5%–10%. (C) Shadow percentage 10%–15%. (D)
Shadow percentage 15%–100%.

SUPPLEMENTARY FIGURE S9
Data CC dataset images and their labels. (A) Categories counts (1, 2). (B)
Categories counts (3, 4). (C)Categories counts (5, 6). (D)Categories counts (7, 8).
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