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The northern Shaanxi coal mining area is an important coal production base in
China and an ecologically fragile area, and it is of great significance to explore the
ecological environment quality and spatial evolution trend of the mining area.
Based on Sentinel-2 and MODIS image data, an improved remote sensing
ecological index was constructed by principal component analysis method:
normalized difference vegetation index, normalized difference water index,
normalized differential buildup and bare soil index, and net primary
productivity. The ecological environment quality of the northern Shaanxi coal
mining area and its influencing factors, as well as the spatial autocorrelation
analysis of ecological environment quality, were discussed. The results showed
that: 1) The vegetation coverage in the study area showed an overall increasing
trend, but it was greatly affected by the average annual temperature. The NDVI
index at the mine area is higher than the NDVI index at the non-mine area. 2) The
water area gradually decreases with the year, which has a certain negative
correlation with the total raw coal production. 3) The NDBB index showed a
decreasing trend with the year, and compared with the non-mining area. 4) The
coupling of year-by-year precipitation and temperature leads to interannual
fluctuation of NPP value. 5) The change of ecological environment quality in
the study area is the result of the comprehensive effect of natural factors and
human factors. The implementation of ecological protection projects such as
geological environmental protection and land reclamation in mining areas also
has a certain impact on the trend of ecological environment quality. 6) There was
a significant spatial autocorrelation in the quality of the ecological environment in
the study area. There are significant “High-High” gathering areas of ecological
environment quality within the coal mining area.
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1 Introduction

The northern Shaanxi coal mining area is one of the important
coal production bases in China, and it is also an ecologically fragile
area (Li et al., 2015). Ecological and geological problems (Ma et al.,
2016; Song et al., 2021) such as coal mining subsidence, water
resource destruction, and land desertification induced by the
exploitation of coal resources have become hot spots and focal
issues of concern to the government, the public and scholars.
Therefore, studying the ecological environment quality and its
temporal and spatial evolution trend in mining areas is of great
significance for the protection of geological environment and
ecological environment restoration in mining areas.

At present, the use of satellite remote sensing technology to
monitor and evaluate the quality of regional ecological environment
has become one of the most effective means (Yang et al., 2018; Wu
et al., 2022; Li et al., 2023). For example, visual interpretation of
images, automatic classification of machine learning and other
methods (Wang, 2022) are used to extract the information of
ecological environment elements in mining areas and analyze the
impact of mining activities on the ecological environment of mining
areas. Secondly, based onmulti-temporal remote sensing images, the
changes of ecological environment quality in mining areas can be
quantitatively analyzed through image classification and image
change detection. Secondly, based on multi-temporal remote
sensing images, the changes of ecological environment quality in
mining areas can be quantitatively analyzed through image
classification and image change detection (Han et al., 2021; Bai
et al., 2022; Liu et al., 2022; Nie et al., 2022). As early as 2006, China’s
Ministry of Ecology and Environment promulgated the Technical
Specifications for the Assessment of Ecological Environment Status,
which is used to evaluate the ecological environment status and
change trend in counties, provinces and ecological regions (China
MoEaEotPsRo, 2015). The specification also stipulates the index
system for evaluating the status of the ecological environment and
the calculation method of each index, but many problems have been
found in the application process, such as the accessibility of
indicators and parameter setting (Guo et al., 2019).

Among the many regional ecological environment remote
sensing monitoring methods, the remote sensing ecological index
(RSEI) method is used more frequently (Xu, 2013; Xu et al., 2018;
Liao and Jiang, 2020; Cao et al., 2022; Wu et al., 2022). In particular,
the selection and construction methods of remote sensing ecological
index indicators are often of great concern. For example, indicators
such as the normalized difference vegetation index (NDVI) and the
enhanced vegetation index (EVI) (Li et al., 2017) are used to monitor
vegetation cover. Indicators used to invert surface humidity and
temperature, such as scaled drought condition index (SDCI) (Rhee
et al., 2010), land surface temperature (LST) (Ren et al., 2016), etc. In
terms of soil indicators, normalized differential buildup and bare soil
index (NDBSI) (Jin et al., 2023), land use/cover type (Yoshioka et al.,
2017), soil index (SI) (Lin et al., 2022), etc. are often used. In terms of
other indicators, there are aerosol optical depth (AOD) (Yang et al.,
2020), precipitation (Zhao et al., 2023), etc. For the determination of
index weights, the principal component analysis method (Hong
et al., 2020), analytic hierarchy process method (Gashaw et al.,
2022), entropy method (Gao et al., 2014), and information method
(Bopche and Rege, 2022) are recognized.The most commonly used

methods for calculating the spatial autocorrelation between
indicators are Moran’s I (Wang et al., 2023), Geary’s contiguity
ratio (Krzyśko et al., 2023), Getis (Wang and Lam, 2020), etc. These
existing indicator selection and calculation methods do provide a
good research path. Moreover, much of the data that is also used is
provided by non-commercial satellites. In the above-mentioned
regional ecological environment remote sensing monitoring
research, it is found that the methods used and the selected
indicators for different regions and different research objects are
not standardized and uniform. For example, in areas with high
vegetation coverage, ecological environment assessment is carried
out based on the selection of indicators of vegetation types. In
agricultural planting areas, the evaluation is based on the selection of
indicators of land use type. In the area of urban buildings, the
evaluation is based on the selection of indicators around the area of
buildings or bare land.

That is, it is necessary to select targeted methods and indicators
according to the scale and characteristics of the research area.
Therefore, according to the climatic characteristics,
geomorphological characteristics, hydrological characteristics and
human activity characteristics of the mining area in northern
Shaanxi, this paper carried out remote sensing monitoring
research on ecological environment quality. Based on Sentinel-2
and MODIS image data, the principal component analysis method
was used to construct an improved remote sensing ecological index
with four indicators: vegetation, water, bare ground and buildings,
and net primary productivity of vegetation. The temporal and spatial
evolution trend of ecological environment quality in mining areas
and its influencing factors, as well as spatial autocorrelation,
were discussed.

2 Materials and methods

2.1 Study site

The study area (Figure 1) is located in Yulin City, Shaanxi
Province, China, with latitude and longitude ranging from 38.4°N to
38.8N°, 109.2°E-110.1°E. The northern natural environment and the
northeast mining area of Yulin City were selected as the research
objects, and the comparative study of the ecological environment of
mining area and non-mining area was carried out. The study area is
43 km long from north to south, 72 km wide from east to west, and
has an area of 3096 km2. The altitude is about 1073–1402 m, and the
surface outcropping strata are mainly aeolian sand and loess. The
study area belongs to the warm temperate-medium temperate semi-
arid continental monsoon climate with an annual mean air
temperature of 8°C. The average annual precipitation is about
400 mm, but it is unevenly distributed, mainly from July to
September. The main human engineering activity is coal mining.

Six coal mines in the study area were selected as the research
objects, as shown in Table 1.

2.2 Data and pre-processing

The image data used are mainly Sentinel 2 image data and
MODIS image data, covering the period from 2017 to 2022. Sentinel
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2 imagery data is based on public data from the European Space
Agency (https://scihub.copernicus.eu/dhus/#/home) and has
13 bands with spatial resolutions of 10 m, 20 m, and 60 m. The
image period is from July to September each year, the cloud cover is

less than 6%, and the study area is cloud-free. The study area
involved 6 years of 12 scene image data. MODIS image data is
derived from NASA (https://search.earthdata.nasa.gov/search)
MOD17A3HGF V6 product NPP_500 m data and is annual data.

FIGURE 1
The location of the study area.
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The study area involved 6 images over 6 years. All data are
geometrically fine-calibrated, radiometrically calibrated, and
atmosphically calibrated. All data is resampled to 10 m
resolution. The sources of data and the preprocessing methods
are shown in Table 2.

2.3 Methods

2.3.1 Determination of indicators of remote
sensing ecological index

Referring to previous studies, there is no unified standard for
determining the indicators of remote sensing ecological index, but it
must be targeted to the research area (Jin et al., 2023). The study area
in this paper is the mining area of northern Shaanxi, and its
ecological environment has the following characteristics.

1) Climate characteristics: arid, low-rainfall.
2) Geomorphological features: the terrain is relatively flat,

covered by bare ground such as aeolian sand.
3) Characteristics of human engineering activities: strong coal

mining activities, high construction intensity of
surface buildings.

4) Hydrological characteristics: uneven distribution of surface
water systems.

5) Vegetation characteristics: low vegetation coverage, affected by
mine ecological restoration.

In view of the above characteristics, an improved remote sensing
ecological index with four indicators: normalized difference
vegetation index, normalized difference water index, normalized
differential buildup and bare soil index, and net primary
productivity was constructed, which was used for the evaluation
of ecological environment quality in mining areas in
northern Shaanxi.

2.3.2 Calculation of indicators of remote sensing
ecological index
(1) Vegetation indicators

The most common and widely used vegetation indicator is
normalized difference vegetation index (NDVI). Because
vegetation has strong reflection in the NIR band and strong
absorption capacity in the RED band, it shows peaks and valleys
of reflectivity in the spectrum, which are unique characteristics
of vegetation from other features and strong separability.
Therefore, NDVI is calculated from these two bands to
extract vegetation features. The calculation formula is
as follows:

NDVI � NIR − RED

NIR + RED
(1)

In the formula, NIR and RED are the B8 band (near-infrared)
and B4 band (red light) in the Sentinel 2 data, respectively, with a
spatial resolution of 10 m.

TABLE 1 List of the basic conditions of the six coal mines.

Name Area
(km2)

Mining
methods

Production scale
(Mt/year)

Average thickness
of coal seams (m)

Coal seam
burial

depth (m)

Management of coal
seam mining roof

Dabaodang 104.9 Underground
mining

13 8.45 180 All Collapse Method

Xiaobaodang
#1

109.9 Underground
mining

15 6.36 220 All Collapse Method

Caojiatan 120.5 Underground
mining

15 11.8 318 All Collapse Method

Yushuwan 87.1 Underground
mining

20 11.6 230 All Collapse Method

Hanglaiwan 84.3 Underground
mining

8 7.46 240 All Collapse Method

Jinjitan 108.9 Underground
mining

8 6.65 240 All Collapse Method

Xuemiaotan 32.9 Underground
mining

3 6.28 200 All Collapse Method

TABLE 2 Main data source and pre-processing.

Satellite data Select
band

Spatial
resolution (m)

Temporal
resolution (day)

Pre-processing

Sentinel-2A/B 2, 3, 4, 8, 11, 12 10 5 The nearest neighbor method was used to resample to 10 m
resolution

Terra MODIS NPP_500 m 500 365
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(2) Water area indicators

The normalized difference water index (NDWI) is selected for
water area indicators. The water reflectance curve decreases with the
increase of wavelength, and NDWI can effectively extract water
information by normalizing the GREEN and NIR bands. The
calculation formula is as follows:

NDWI � GREEN −NIR

GREEN +NIR
(2)

In the formula, GREEN is the B3 band (green light) in the
Sentinel 2 data, with a spatial resolution of 10 m.

(3) Bare ground and building indicators

Combining the vegetation GREEN band and the reflectivity peak in
the NIR band, a new normalized differential buildup and bare soil index
(NDBBI) can be constructed. The calculation formula is as follows:

NDBBI � 1.5SWIR − NIR + GREEN( )/2
1.5SWIR + NIR + GREEN( )/2 (3)

In the formula, SWIR is the B12 band (shortwave infrared) in
the Sentinel 2 data, with an initial spatial resolution of 20 m and a
resampling of 10 m.

(4) Indicators of net primary productivity of vegetation

Net Primary Production (NPP) is equal to the total amount of
organic matter produced by photosynthesis of green vegetation in a
certain period of time minus the green vegetation’s own maintenance
respiratory consumption and self-growth consumption (Ruimy et al.,
2012). It can not only characterize the productive capacity of vegetation
communities under natural environmental conditions, but also estimate
carbon sources and sinks in terrestrial ecosystems, and describe the
carbon cycle and energy flow process (Field et al., 1998). Therefore, the
accurate estimation of NPP has important theoretical and practical
significance for ecological environment governance, carbon cycle
research and rational development and utilization of natural
resources (Fang et al., 2001).

TheNNP estimate is derived from theMOD17A3HGF.v006 version
data and involves a tiled image grid of h26v05, a spatial resolution of
500m, and a temporal resolution of 1 year. After georeferencing and
resampling, it reaches 10 m resolution. The NPP data unit is kgC/m2/
year, the effective range is −30000–32700, and the scaling factor is 0.0001.

2.3.3 Improved remote sensing ecological index
The research method proposed in this paper is an improvement on

the basis of the RSEI index proposed in the past (Xu, 2013). On the basis
of the four indexes of NDVI, WET, NDBSI, and LST, combined with
the ecological environment characteristics of the coal mining area in

FIGURE 2
Calculation flowchart.
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northern Shaanxi, the water index and NPP index were updated to
calculate RSEI. First, all indicators are normalized and calculated
as follows:

Vi � Ii − Imin

Imax − Imin
(4)

where Vi is the normalized value of an indicator; Vmax and Vmin

correspond to the maximum and minimum values of the indicator,
respectively.

Secondly, in order to avoid subjectivity and make the results
comparable, the principal component analysis method is used to
determine the weights of each indicator. The calculation process of
the principal component method is as follows.

Calculate the covariance matrix for a standardized sample:

R �
∑n
k�1

xki − xi( ) xkj − xj( )����������������������∑n
k�1

xki − xi( )2∑n
k�1

xkj − xj( )2√ (5)

where R is the covariance matrix for a standardized sample; xik is the
sample of individual indicators.

Calculate the eigenvalues and eigenvectors of R:

The eigenvalues: λ1 ≥ λ2 ≥/≥ λp ≥ 0 tr R( ) � ∑p
k�1

λk � p⎛⎝ ⎞⎠ (6)

FIGURE 3
The thematic map of NDVI from 2017 to 2022 in the study area.
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The eigenvectors: a1 �
a11
a21
..
.

ap1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, a2 �
a12
a22
..
.

ap2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,/, ap �
a1p
a2p

..

.

app

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (7)

Calculate the eigenvalues contribution rate and the cumulative
contribution rate:

The eigenvalues contribution rate � λi∑p
k�1

λk

(8)

The percentage of eigenvalues �
∑i
k�1

λk

∑p
k�1

λk

(9)

Finally, the remote sensing ecological index is calculated
according to the contribution rate or weight of each feature value
(Eq. 10). The calculation process is shown in Figure 2.

RSEI � ∑n
i�1
RiPCiXi (10)

where RSEI is the remote sensing ecological index; Ri is the
contribution rate weight; PCi is a principal component feature
vector; Xi is an indicator of the remote sensing ecological index;
n is the number of indicators of remote sensing ecological index.

3 Results

3.1 Results of each indicator calculation

3.1.1 Normalized difference vegetation
index indicator

Figure 3 shows a thematic map of the NDVI from 2017 to 2022 in
the study area. The color in the figure ranges from dark green to dark
red, and the more obvious the dark green, the higher the vegetation
cover, and vice versa. From the color changes in the 6-year thematic

FIGURE 4
The mean value of NDVI at the mining and non-mining areas.
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map, it can be concluded that vegetation coverage was relatively high in
2018 (Figure 3B) and relatively low in 2022 (Figure 3F).

The mean value of NDVI indicators at the mining and non-mining
areas was calculated (Figure 4). It shows that theNDVI indicator average
fluctuates with years, with the highest in 2018 and 2020 and the lowest in
2022. Combined with the average annual precipitation and annual mean
air temperature data in the study area, there was no correlation between
the average NDVI and the average annual precipitation, but it had a
certain correlation with the annual mean air temperature. This may be
related to the fact that the study area is located in the desert edge area of
northern Shaanxi, with large evaporation, uneven inter-monthly
distribution of precipitation, and mainly short-term concentrated
precipitation. Therefore, the precipitation has less effect on
vegetation. The annual mean air temperature value can well reflect

local extreme climate events. According to the 2022 climate bulletin
released by the Yulin Meteorological Bureau, the temperature in the
study area is high, and the precipitation is obviously more, but the
distribution in time and space is uneven, and extreme weather and
climate events are frequent. From March to June, regional and periodic
meteorological drought was obvious, which had a certain impact on
vegetation growth. In addition, the average value of NDVI found to be
higher than that of non-mining areas, whichmay benefit from ecological
restoration works in mining areas.

3.1.2 The normalized difference water
index indicator

Figure 5 shows a thematic map of the NDWI from 2017 to 2022 in
the study area. The color in the figure ranges fromdark blue to deep red,

FIGURE 5
The thematic map of NDWI from 2017 to 2022 in the study area.
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and the more obvious the area of dark blue, the higher the water
coverage, and vice versa. The changes in the water bodies in the figure
are mainly concentrated near Hekou reservoirs and rivers, and obvious
changes can also be seen within the mining area. However, this figure
cannot reflect the changes in water bodies from the average value, and
image segmentation is required for further discussion.

The thematic layer is a continuous data layer, and effective water
data cannot be obtained directly, so image segmentation is required. By
continuously adjusting the band segmentation threshold and
comparing the visual interpretation results of water bodies on
Google Maps, 0.125 was finally determined as the segmentation
threshold for water extraction.

The area of water at the mining and non-mining area was extracted
(Figure 6) and found that the area of the non-mining area decreased
gradually with the year. This change law is consistent with the average

change law of NDVI, and the increase of annual mean air temperature
value has a certain impact on the regional water area. In addition, we
collected the total raw coal production in the study area from 2017 to
2022, and found that there was a very good negative correlation
between water body area and total raw coal production. Coal
mining activities may have a certain impact on water bodies.

The water area within the non-mining area is relatively stable,
only rising a little, which may be related to the increase in the
production and living water requirements of the coal mining area.

3.1.3 Normalized differential buildup and bare soil
index indicator

Figure 7 shows a thematic map of the NDBBI from 2017 to
2022 in the study area. The color in the figure ranges from dark
green to yellowish brown, and the more obvious the brown, the

FIGURE 6
The mean value of NDWI at the mining and non-mining areas.
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higher the coverage of bare land and building land, and vice versa.
Judging from the color changes in the 6-year thematic map, the
coverage of bare land and building land is decreasing year by year.

The average of NDBBI indicators at the mining and non-mining
areas was calculated (Figure 8). It shows that the average of NDBBI
indicator is decreasing year by year. The reduction in the averageNDBBI
within the mining area is relatively large compared to the non-mining
area. Combined with the average change of NDVI in the study area, the
increase of vegetation cover will affect the bare land and building cover,
resulting in its decrease. In addition, Yulin’s GDP is increasing year by
year, and the largest contribution rate is the growth rate brought by the
secondary industry dominated by mining. Since 2017, China has strictly
implemented the preparation of mine geological environmental
protection and land reclamation plans to ensure that the mine

ecological environment is effectively restored. The implementation of
this policy also affects the bare land and building coverage of the mining
area, resulting in a decrease in the NDBBI value within the mining area.

3.1.4 Net primary production indicator
Figure 9 shows a thematic map of theNPP from 2017 to 2022 in the

study area. The color in the figure ranges from dark green to white, and
themore obvious the green area, the higher the net primary productivity
value of vegetation, and vice versa. From the color changes in the 6-year
thematic map, it can be concluded that theNPP value was relatively high
in 2019 (Figure 9C) and relatively low in 2021 (Figure 9E).

The average of NPP indicators at the mining and non-mining areas
was calculated (Figure 10). It shows that the NPP indicator average
fluctuates with years, with the highest in 2019. The change in NPP value

FIGURE 7
The thematic map of NDBBI from 2017 to 2022 in the study area.
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is mainly the result of a combination of natural and human factors. On
the one hand, the warming and humidification of the climate is
conducive to the growth of vegetation and increases the NPP value,
and the coupling effect of annual precipitation and temperature leads to
the interannual fluctuation of NPP value. On the other hand, the
development of social economy and the implementation of ecological
restoration projects in mining areas have a certain impact on the spatial
pattern and trend change of regional NPP value.

3.2 Results of principal component analysis

The four indicators of NDVI, NDWI, NDBBI, and NPP were
normalized, and principal component analysis was carried out. The
results of the analysis are shown in Figure 11.

The analysis results show that the contribution rate of thefirst principal
component is 70%–76%, and the cumulative contribution rate of the first
and second principal components exceeds 90%. In practical applications,
only the first two principal components can be taken. Taking the principal
component analysis results in 2022 as an example, the first two principal
components y1 and y2 can be expressed by the following formula.

y1 � 0.631x1 − 0.429x2 − 0.375x3 + 0.526x4

y2 � −0.395x1 + 0.227x2 + 0.268x3 + 0.849x4
(11)

where (x1, x2, x3, x4) is a sample of (NDVI, NDBBI, NDWI, NPP).
In the expression of the first principal component y1, the
coefficient before the NDVI value x1 and the NPP value x4 is
positive, while the coefficient before the NDBBI value x2 and the
NDWI value x3 is negative. The results of the principal component
analysis for other years were similar to those for 2022. When the y1

FIGURE 8
The mean value of NDWI at the mining and non-mining areas.
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value of an area is large, it means that the x1 value and x4 value are
large, while the x2 value and x3 value are relatively small, which can
judge that the area has high vegetation coverage, good growth and
“carbon sequestration capacity”. It indirectly reflects the quality of
the ecological environment.

In the expression of the second principal component y2, the
coefficient before the NDBBI value x2, the NDWI value x3, the NPP
value x4 is positive, and the coefficient before the NDVI value x1 is
negative. However, in the 2017 principal component analysis results, the
positive and negative signs of the sample coefficients are exactly the
opposite. This is detrimental to the calculation of the remote sensing
ecological index, so the results of the second principal component
calculation are not taken into account. Only the first principal
component is used in subsequent analytical calculations.

3.3 Results of remote sensing
ecological index

The remote sensing ecological index is calculated according to
Eq. 10, and the calculation result is shown in Figure 12.

Figure 12 shows a thematic map of the RSEI from 2017 to
2022 in the study area. The color in the picture ranges from dark
green to dark red, the more obvious the dark green, the better the
quality of the ecological environment, and vice versa. The color
changes in the 6-year thematic map show that the areas with
better ecological environment quality have the following
characteristics:

1) It is greatly affected by the analysis scope of river waters.

FIGURE 9
The thematic map of NPP from 2017 to 2022 in the study area.
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2) It is greatly affected by human activities, such as the artificial
irrigation area in Figures 12E, F, and themine ecological restoration
area of Xiaobaodang mining area and Dabaodang mining area in
Figures 12C, D.

4 Discussion

4.1 Evaluation of ecological environment
quality in the study area

According to the above remote sensing ecological index
calculation results, the ecological environment quality is divided
into five categories: worst (index value of 0–0.2), poor (index value of
0.2–0.4), medium (index value of 0.4–0.6), good (index value of
0.6–0.8), excellent (index value of 0.8–1.0).The percentage of
ecological environment quality at all levels within the mining
area and non-mining area is calculated, and the results are
shown in Figure 13.

It is found that the proportion of ecological environment quality
changes relatively large in medium areas and poor areas, and the
detailed analysis is as follows:

1) Excellent: The proportion of this area tends to increase overall,
and the increase in mining area is more obvious than that of
non-mining areas, from 2.86% to 5.51%.

2) Good: The proportion of good areas within the non-mining
area changes within 3%, and the proportion of good areas
within the mining area ranges from 14.8% to 23.33%–17.56%,
which is greatly affected by human engineering activities.

3) Medium: This area accounts for the largest proportion of
ecological environment quality, and it is also the indicator that
best reflects the change of ecological environment quality. In
general, this value is increasing, reaching a peak of about 67% in
2019 and decreasing since then. This trend is consistent with
changes in the NPP indicator and the NDVI indicator. Secondly,
the increase in the proportion ofmedium areas in themining area
is slightly higher than that in the non-mining area.

FIGURE 10
The mean value of NPP at the mining and non-mining areas.
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FIGURE 11
Principal component analysis results of each indicator in the study area from 2017 to 2022.
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4) Poor: The volatility of this area is large, especially in the scope
of the mining area, the change is more obvious, from 22.93%
to 10.65%.

5) Worst: The range of change in this area is relatively small and
tends to decrease overall.

In summary, the change of ecological environment quality ismainly
affected by the comprehensive effect of natural factors and human
factors. The warming and humidification of the climate is conducive to
the growth of vegetation and the increase of water area, and the
corresponding ecological environment quality is better. Secondly, the
development of social economy and the implementation of ecological
restoration projects in mining areas have a certain impact on the spatial
pattern and trend change of regional ecological environment quality.

In the previous literature, human engineering activities have caused
serious damage to the ecological environment, such as coal mining (Liu
et al., 2023), urban sprawl (Lin et al., 2022), and climate rise caused by
excessive carbon dioxide emissions (Zhang et al., 2023). However, with
the strict implementation of laws, regulations and policies such as
ecological environmental protection, the quality of the ecological
environment has a tendency to improve (Wang et al., 2021).

4.2 Spatial autocorrelation of ecological
environment quality in the study area

From the above discussion, it is found that the distribution of
ecological environment quality categories has obvious characteristics

FIGURE 12
The thematic map of RSEI from 2017 to 2022 in the study area.
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of aggregation and banding. Whether this degree of aggregation has
spatial autocorrelation and the relationship with the natural
environment and human activities deserves further discussion.
Therefore, the Moran index method was used to analyze the
remote sensing ecological index of the study area.

4.2.1 Moran’s I scatter-plot
Firstly, the Moran’s I scatter-plot is used to analyze whether the

remote sensing ecological index of each year has correlation and
clustering. Figure 14 shows the Moran’s I scatter-plot of the remote
sensing ecological index of the study area from 2017 to 2022. The
index of Moran’s I in each year were 0.960, 0.864, 0.922, 0.897,
0.853 and 0.864, respectively. It shows that there is a significant
spatial autocorrelation in ecological environment quality.

In Figure 14, the distance of the sample point from the origin
represents the significance of aggregation. The farther away from
the origin, the higher the level of significance. The four
quadrants in a scatter-plot are used to identify relationships
between expected neighbors in an area. The first quadrant (HH)
indicates that it is a high value in itself, and it is also a high value
around it. The second quadrant (LH) indicates that it is itself a
low value, but it is surrounded by high values. The third
quadrant (LL) indicates that the value itself is high, and the
surrounding areas are all low values. The fourth quadrant (HL),
which indicates that it is itself a high value, but is surrounded by
a low value. The first and third quadrants represent positive
spatial autocorrelation, indicating the concentration of similar
values. The second and fourth quadrants indicate negative

FIGURE 13
The percentage of ecological environment quality at all levels within the mining area and non-mining area.
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spatial autocorrelation, indicating spatial anomalies. In
Figure 14, most of the scattered points are distributed in the
first and third quadrants, which has a strong positive spatial
correlation.

4.2.2 LISA cluster map
The Moran’s I scatter-plot only preliminarily identifies the

quadrant to which the sample points belong, and cannot judge
whether the local correlation type of each area and its aggregation

FIGURE 14
The Moran’s I scatter-plot of remote sensing ecological index in the study area from 2017 to 2022.
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area are statistically significant. Therefore, further analysis with
LISA cluster maps is required.

Based on the value of the Moran’s I index, the studies were
divided into five different categories: high-high, low-low, high-
low, low-high, and not significant (Figure 15). The figure shows
that the “high-high” cluster areas of ecological environment
quality are mainly concentrated in the areas near rivers,
artificial irrigation areas and coal mining areas, especially in
Jinjitan mine field, Hanglaiwan mine field, Dabaodang mine field
and Yushuwan mine field. This may be related to the
implementation of ecological protection projects such as
geological environmental protection and land reclamation in
mining areas.

4.3 Comparison with traditional remote
sensing ecological index methods

The traditional RSEI method focuses on the change of land surface
characteristics and adapts to areas with less climate change differences. The
improved RSEI method in this paper is constructed according to the
characteristics of northern Shaanxi, China, such as arid, little rainfall, flat
terrain and aeolian sand, and intensive mining activities. Compared with
the traditional RSEI method, the improved RSEI method is more
applicable to the mining area. Secondly, from the results of principal
component analysis, the calculation results of thefirst principal component
are relatively stable, which is different from the calculation results of the
previous index constructed by traditional methods (Liu et al., 2023).

FIGURE 15
The LISA cluster maps.
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5 Conclusion

This paper uses an improved remote sensing ecological index to
explore the quality of the ecological environment and its influencing
factors, as well as spatial autocorrelation in the mining area of
northern Shaanxi, and concludes as follows:

(1) An improved remote sensing ecological index with four
indicators (NDVI, NDWI, NDBBI, NPP) was
constructed, which was used for the evaluation of
ecological environment quality in mining areas in
northern Shaanxi.

(2) The ecological environment quality is mainly affected by
the comprehensive effect of natural factors and human
factors. The regional climate and topography control the
distribution of vegetation and water bodies. Secondly, the
development of social economy and the implementation
of ecological restoration projects in mining areas have a
certain impact on the spatial pattern and trend change of
regional ecological environment quality.

(3) There was a significant spatial autocorrelation in the quality of
the ecological environment in the study area. There are
significant “high-high” cluster areas of ecological environment
quality in the areas near rivers, artificial irrigation areas and coal
mining areas. In particular, the cluster phenomenon of Jinjitan
mine field, Hanglaiwan mine field, Dabaodang mine field and
Yushuwan mine field is obvious.
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