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The present study investigates the impact of urbanization on land surface
temperature and air quality in Dehradun district of the Uttarakhand state in
India. We utilized data from LANDSAT, TROPOMI, OMI, MODIS, MOPITT, and
CHIRPS, for spatio-temporal and trend analyses along with the assessment of
correlationmatrix. Our findings revealed a significant increase in the built-up area
of Dehradun district in 2023 as compared to 2003. This expansion was
particularly prominent in the southern and south-eastern regions of the
district. The findings highlight the impact of rapid urban expansion on land
use and land cover, leading to a rise in land surface temperature (LST) and the
formation of surface urban heat islands (SUHI). Notably, the study reveals distinct
spatial and temporal patterns, with lower regions of Dehradun district
experiencing higher temperatures and pollutant concentrations due to
intensified urbanization. Dehradun city also emerged as a hotspot for nitrogen
dioxide within the district. Long-term trends indicate a rise in formaldehyde and
nitrogen dioxide, attributed to both urbanization and increasing temperatures,
while carbon monoxide levels decrease due to reduced biomass burning and the
adoption of cleaner household fuels. Correlation matrix analysis underscores the
complex relationships between land use, temperature, and pollutants, with built-
up areas exhibiting strong positive correlations with all pollutants. This
comprehensive study highlights the importance of sustainable urban planning
and management to mitigate the adverse effects of rapid urbanization on air
quality and overall environmental health in the Dehradun district.
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1 Introduction

Numerous people are drawn to reside in cities because of the potential of the
metropolitan setting. By 2050, two-thirds of the world’s population is expected to live
in cities, according to reports from the UN (2019). Urbanization and industry are the main
causes of the variability of the global climate. Natural land surfaces, which are normally
made up of vegetation and permeable surfaces, have been transformed into high-density
constructions and impermeable zones as a result of the world’s cities seeing a sharp rise in
population Zeren Cetin et al. (2023). The use of different materials for building, roadways,
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and parking spaces, including asphalt, concrete, bricks, and tiles, is
primarily responsible for the formation of these impermeable
surfaces (Landsberg, 1981; Pandey et al., 2009). Heat, humidity,
and pollution emissions, along with the thermal properties of the
surfaces, all cause changes in the urban environment (Roth et al.,
1989; Nguyen et al., 2019).

Yang et al. (2017) conducted a study focusing on the changes in
land use/land cover (LUCC) and the thermal conditions in
Changchun, China, over the past 3 decades. During this period,
Changchun’s urban area expanded more than fourfold, leading to an
increased proportion of urban heat island (UHI) regions. The
thermal environment within the city displayed significant
variability, even within smaller areas, demonstrating a strong
positive correlation between land surface temperature (LST) and
impervious surface area (ISA). Balew and Semaw, (2022) have
concluded that Land-use and land-cover changes due to rapid
urban expansion have led to variations in land surface
temperature (LST) and the formation of Surface Urban Heat
Islands (SUHI) in Addis Ababa city and its surrounding areas.
The expansion of impervious surfaces (IS) and the degradation of
vegetation cover have contributed to the increase in SUHI. The
study highlights the importance of satellite images in analysing
landscape dynamics, monitoring urban expansion, and
understanding the impact of LULC changes on the environment
and climate change. Piyush and Ghosh (2020) revealed
unprecedented urban growth in Dehradun, India, primarily due
to encroachment on agricultural land. They also reported
transformation of vegetated areas into non-vegetated ones
enhanced the land surface temperature (LST), while the shift
from non-vegetated regions to vegetated areas decreased LST.

The process of urbanization also results in a rise in the local
temperature which is associated with deteriorating air quality of that
region (Lin and Zhu, 2018). Fuladlu and Altan (2021) examined how
the LULC transformation contributed to the development of urban
air pollution as well as the rise in land surface temperature (LST) and
main air pollutants in Tehran. Morabito et al. (2016) found a
substantial linear association between LST changes and built-up
areas in various Italian towns. A comparable study conducted over
Kuala Lumpur similarly reveals that whereas green spaces exhibit a
decrease in LST, built-up areas tend to increase LST (Isa et al., 2017).
According to a study conducted across several Punjabi cities, the
average temperature in urban areas is greater than that in suburban
and rural areas (Mukherjee et al., 2017). According to Pathak et al.
(2021), Agra’s city center has a higher LST than the periphery.

Numerous research (Lai and Cheng, 2009; Alseroury, 2015; Fuladlu
and Altan, 2021; Ngarambe et al., 2021) have shown a strong association
between LST and air pollutants, such as hydrocarbons, carbonmonoxide,
nitrogen oxides, and sulfur dioxide. A rise in the concentrations of air
pollutants, such as sulphur dioxide, nitrous oxide, and hydrocarbons, has
been attributed to various factors such as the fast development of cities,
industrialization of the region, coal mining, coal-fired power plants,
extensive agricultural activities, proliferation of transportation methods,
and rapid population growth (Ghosh andMajee, 2000; Kean et al., 2000;
Khare and Nagendra, 2007). According to Aghazadeh et al. (2023), the
population density, airport, and surface urban heat island (SUHI) had the
strongest negative link with NDVI. According to Hereher’s (2022)
research, CO2 and NO2 have a positive correlation with urban heat
island intensity (UHII). According to Bonn et al. (2016) and Arabi et al.

(2015), adding more green spaces, green roofs, and woodland areas to
urban areasmay help reduce particulate pollution; nevertheless, lowering
NO2 mixing ratios would require lowering traffic emissions. According
to Panda et al. (2018) studies, more trees should be planted in order to
reduce air pollution, as indicated by the trees’ air pollution tolerance
index (APTI). Gautam et al. (2020) have examined the amount of air
pollutants exposure of individuals during the bonfire activities in Gujarat
(India). Their study found that PM2.5, PM10, and CO concentrations
were higher than permissible limit, which might cause a serious negative
impact on human’s health. Their study emphasizes attention to themajor
consequences of having bonfires in rural India and suggested for
lowering exposure levels that includes utilizing high-quality fuel,
avoiding burning plastics and chemicals, combustion materials should
be clean and dry, and installing chimneys in enclosed spaces. Coarser
particles were produced more closer to the source than finer ones, and
PM10 exposure ismore harmful to humanhealth than PM2.5. Gupta et al.
(2022) found heavy metals exceeding permissible limit in road dust of
Lucknow city. Heavy metals such as Nickel (Ni), Chromium (Cr),
Cadmium (Cd), and Arsenic (As) were mostly caused by industrial
operations, whereas the most important anthropogenic source of
Manganese (Mn), Zinc (Zn), Copper (Cu), and Lead (Pb) was
vehicular emissions. The central and southwest regions of Lucknow
were most polluted of all.

Kumar et al. (2023) study emphasized a number of the health
impacts of air pollution, such as heart and respiratory problems,
depression, mood disorders, mental and psychiatric disorders,
autoimmune diseases. Their study also focussed on relationships
between air pollutants and their risk factors for health and the
environment; chemical composition of aerosol and fine particulate
matter; effects of air pollution and exposure on human health; and
modelling analytical methods to mitigate and eliminate the effects of
air pollution. Wright et al. (2023) concluded that extended exposure
to ambient air pollution is linked with high risk of cardio and
respiratory disease in China cities. The risk of serious respiratory
and cardiovascular disorders is positively correlated with ambient
air pollution, especially SO2 and Ozone (O3).

Environmental degradation has occurred in Dehradun as a result of
the city’s uncontrolled expansion, which has had a negative influence on
the ecosystemoverall and especially in vegetated areas (Gupta andGoyal,
2014). According to Nautiyal et al. (2021), there was a rise in Dehradun’s
average LST of 14.8% between 2000 and 2010 and 11.8% between
2010 and 2019. The primary causes of this rise in LST values were
identified as urban densification, urban geometry, and man-made heat
sources like air conditioners, transportation, and commercial activity.
The Land Use Land Cover (LULC) variations in Dehradun city between
1991 and 2019were studied by Piyoosh andGhosh (2020). According to
their findings, there was a noticeable increase in the population of the
urban region, and vegetative areas were turned into inhabited areas,
which also caused an increase in LST. Deep et al. (2019) examined the
Dehradun city’s air quality between 2011 and 2014, determining the
concentrations of pollutants such SO2 and NO2 as well as particulate
matter (PM10) and SPM. They stated that during the winter, the levels of
PM10 and SPM were higher than the federal regulations.

Our study departs from earlier research on Dehradun, which was
frequently restricted to short time periods and concentrated mostly on
the city of Dehradun (Piyoosh and Ghosh, 2020; Kansal et al., 2023). By
including the entire Dehradun area, we close a major study gap and
make important comparisons between urban and rural air quality
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possible. Furthermore, we use the higher-resolution TROPOMI data,
whereas earlier research (Deep et al., 2019) depended on older sensors.
Notably, our study spans from 2005 to 2022, providing a
comprehensive view of air pollutant trends. Furthermore, we bridge
another gap by considering multiple pollutants (NO2, HCHO, CO,
tropospheric O3) and environmental factors such as Land Surface
Temperature (LST) offering a more holistic understanding of the
interdependence of these factors over Dehradun district and overall
environment health in the region.

Therefore, the purpose of our study is to evaluate the
spatiotemporal variations in air pollutants and other environmental
parameters as well as the changes in Land Use and Land Cover (LULC)
in the Dehradun area between 2003 and 2023. It also looks at seasonal
changes in these factors from 2019 to 2023. Additionally, we analysed
deep into the trend of air pollution in Dehradun district from 2005 to
2023. The primary cause of the Dehradun district’s declining air quality
is changes in land use and land cover. The region’s general
environmental health is also negatively impacted by the ongoing
growth of the built-up population and a rise in anthropogenic
activities. This study draws attention to this important problem and
offers insightful information to decision-makers. It is possible to limit
uncontrolled urban sprawl and lessen its negative effects on the
environment in the Dehradun district by adopting educated action.
This is especially important for Himalayan states like Uttarakhand,
which are extremely sensitive to changes in the environment and have a
delicate ecosystem.

2 Data description and methodology

2.1 Study area

Dehradun district lies between the latitude 29°95′N to 30°99′N
and longitude 77°57′E to 78°31′E. Dehradun district is situated in a
region that is bordered on the east by the Ganges River and the west
by the Yamuna River. To the north, there is Himalayan Range while
to the south of the district, the Shivalik Range is situated. It is one of
the most populous districts of Uttarakhand state, covering an area of
3,088 km2 and population of 1.6 million in 2011 with population
density 549 persons per km2 (Census of India, 2011) which has now
increased to be 2.25 million in 2023 (Dehradun population, 2023).
Elevation of Dehradun district ranges from 269 m to 3,062 m
Figure 1.

This district is divided into 7 tehsils, 6 blocks along with
767 villages. The minimum temperature during extreme winter
goes to 3.6°C while maximum goes upto19.3°C (January month)
and during extreme summer (June month) minimum
temperature rises up to 29.4°C while maximum rises up to
34.4°C. The majority of the annual rainfall, i.e., 2073.3 mm
(annual average), occurs during the period from June to
September Anand SharmaSaklani (2012).

2.2 LANDSAT 5 and LANDSAT 8 data

We have classified our study area using the LANDSAT 5 images
for the years 2003 and 2013. LANDSAT 5 is a NASA-built satellite
that was launched in 1984. It has the MSS and TM sensors that

generate images with six different bands, each with a resolution of
30 m (1–5, and 7). It also has one thermal band (6).

LANDSAT-8 dataset was used to classify our study area for the
year 2023. On 11 February 2013, the United States National
Aeronautics and Space Administration (NASA) launched the
Landsat-8 satellite as part of a joint NASA-USGS project. The
payload of the Landsat 8 satellite is composed of the Operational
Land Image (OLI) Sensor and Thermal Infrared Sensor. The OLI
and TIRS sensors provide a global coverage of the landmass with
spatial resolution of 30 m for visible, NIR and SWIR, 100 m for
thermal, and 15 m for panchromatic.

Supervised classification method was used to classify our study
area into different categories-Dense forest, Open forest, Agriculture
land, Fallow land, Built up, Open space/shrub land and water body/
dry river bed.

2.3 TROPOMI data

Data for Nitrogen dioxide (NO2), Formaldehyde (HCHO),
Carbon monoxide (CO) and tropospheric ozone was collected
using the Copernicus Sentinel 5-Precursor Tropospheric
Monitoring Instrument (S5-P/TROPOMI). The European Space
Agency (ESA) launched this Sun synchronous satellite on 30th
October 2017, orbits the Earth at an altitude of 824 km. It passes
over the equator in the afternoon, i.e. 13:30 (Pakkattil et al., 2021;
Stavrakou et al., 2021). It has a higher spatial resolution data of 7 km
by 3.5 km (now 5.5 km by 3.5 km) at nadir. TROPOMI, the sole
payload aboard the Sentinel 5P satellite, is equipped with four
spectrometers that assess radiance across a total of eight spectral
bands, encompassing the ultraviolet (UV) to near-infrared (NIR)
range. This wide range helps TROPOMI to measure atmospheric
concentration of various trace gases like nitrogen dioxide,
formaldehyde, carbon monoxide, methane and ozone (Veefkind
et al., 2012; De Smedt et al., 2021). Level 3 data spanning 4 years,
from January 2019 to December 2023, was obtained for Nitrogen
dioxide (NO2), Formaldehyde (HCHO), and Carbon monoxide
(CO). The data was processed to create the monthly averaged
spatial plots across all 4 years, i.e. 2019-23 with a 5 km
resolution. This data was further processed to create spatial maps
depicting the distribution of these atmospheric species and to
generate a temporal series covering the study period.

2.4 OMI data

To effectively analyse trends in the present study, a substantial
15-year dataset for HCHO and NO2, i.e., from January 2005 to
December 2021 was acquired from the OMI sensor, as a longer time
period is crucial for detecting increasing or decreasing patterns over
time. OMI sensor is onboard NASA’s Aura satellite. It was launched
in 2004 through a collaborative effort between Dutch and Finnish
institutions (Levelt et al., 2006). This hyperspectral imager operates
in a push broom configuration. OMI covers a wide swath of
2,600 km, with spatial resolutions ranging from 13 × 24 km2 to
28 × 160 km2 from Nadir to the outermost swath angle (Millet et al.,
2008). It functions as a near UV/Visible spectrometer, capable of
measuring various trace gases in the atmosphere. Data for HCHO
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and NO2 of the OMI satellite sensor was procured from the
Giovanni which is an online data system developed by NASA
GES DISC. The monthly data were downloaded in ASCII format.
Microsoft Excel was used for the time series plot from January
2005 to December 2021 for the Dehradun district.

2.5 MOPITT data

In order to conduct a comprehensive trend analysis of for CO
(Carbon Monoxide) in the current study, an extensive dataset was
obtained from the MOPITT sensor which covered the period from
January 2005 to December 2019. MOPITT, an instrument on
NASA’s Terra satellite, monitors global carbon monoxide (CO)
levels. It has a swath of over a 640 km swath and captures data
with a 22 km by 22 km spatial resolution at nadir (Drummond et al.,

2010). Its algorithm employs optimal estimation to derive CO
vertical profiles from observed radiance and a priori data. The
profile is then integrated to obtain the total column values of CO
(Deeter et al., 2003). We used MOP03JM.009, a monthly gridded
MOPITT product, to analyse temporal variations in CO over the
Dehradun district.

2.6 MODIS data

MODIS, a Moderate Resolution Imaging Spectroradiometer,
is deployed on NASA’s Terra and Aqua satellites, which were
launched in 1999 and 2002, respectively. In our study we utilized
MODIS Aqua data. Aqua orbits at 705 km altitude, having a wide
swath of 2,330 km. MODIS captures data across 36 spectral
bands (spanning wavelength from 0.405 to 14.385 μm) at

FIGURE 1
Study area India, Uttarakhand state Dehradun district.

FIGURE 2
Scatter plot between TROPOMI and OMI data for HCHO and NO2.
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various spatial resolutions: from 250 m to 1,000 m (Justice et al.,
2002). In our analysis, we utilized MODIS Aqua data
(MYD11A1.061) to acquire land surface temperature (Day) at
1 km resolution over Dehradun and subsequently plotting the
seasonal average.

2.7 Methodology

For the land use land cover (LULC) classification, we have used the
Maximum Likelihood Classifier (MLC) method of supervised
classification. The study area was classified into seven classes,
namely, Dense Forest, Open Forest, Agriculture, Fallow Land, Built-
Up,Water Body, and Open Space. This classification technique is based
on the affinity of the spectral signature of a targeted pixel to the specific
class (Otukei and Blaschke, 2010). Presuming that each classification is
chosen based on the training area function has a normal distribution as
its correspondence, and these statistics are used to compute the
likelihood that the area to be classed will be assigned (Cabral et al.,
2018). Each pixel’s reflectance value is assigned to the class for which it
has the highest probability of resembling a signature under a
probability-based weighting scheme (Strahler, 1980; Yuan et al.,
2005). The accuracy assessment was performed using the stratified

randompoint generationmethod, which involved generating 50 sample
points for each class to obtain a confusion matrix and Kappa statistics
for the classified image.

For air pollutants data, TROPOMI data of atmospheric species
including HCHO, NO2, tropospheric O3 and CO for Dehradun
district was acquired from Google Earth Engine (GEE) at the
resolution of 5 km. The seasonal spatial maps were plotted using
python depicting the averaged data over a 5-year (2019–2023)
period. For long term time sequence plots and trend analysis
OMI data for HCHO and NO2 as well as MOPITT data for CO
were used from 2005 onwards. Additionally, seasonal spatial maps
of averaged 5-year (2019–23) MODIS LST data were generated
using python to observe spatial changes in LST across different
seasons over Dehradun district. Correlation study involves datasets
of LULC classes along with the temperature and atmospheric species
data. The Census of India data was also utilized to examine changes
in the fuel usage pattern in Dehradun district from 2001 to 2011.

2.8 Validation

The scatter plot comparing HCHO data from TROPOMI and
OMI sources reveals a suboptimal R-squared value which indicates a
weak correlation Figure 2. However, whenNO2 is considered there is
a significant enhancement in the correlation. This improvement
suggests that OMI data can effectively complement TROPOMI data
for a comprehensive and prolonged study of these trace gases. Given
that TROPOMI data is only available up to 2019, the utilization of
OMI data becomes crucial for conducting long-term analyses.
Notably, the moderate R-squared value for HCHO coupled with
a good R-squared value for NO2 strengthens the case for
incorporating OMI data for trend analyses. The ability of OMI to
capture the broader patterns observed in TROPOMI data further
supports its applicability in investigating long-term trends of these
trace gases.

The validation process also involved comparing MODIS Land
Surface Temperature (LST) data with corresponding air temperature
data collected at specific sites Figure 3. The mean LST was computed
by averaging Aqua day-time and night-time LST values for the pixel
corresponding to the air temperature collection site. The resulting
scatter plot, depicting the relationship between mean MODIS LST

FIGURE 3
Scatter plot between the MODIS LST data and the air temperature from Aqua and Terra satellites.

FIGURE 4
Trend of population growth in Dehradun over the years.
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and mean air temperature, indicates a robust agreement between the
two variables, supported by a high R-squared value of approximately
0.9. The high level of agreement suggests that MODIS LST can
effectively serve as a reliable alternative to air temperature in
investigating the temperature-related dynamics of air quality.

3 Results and discussion

3.1 Land use and land cover (LULC) analysis
and change detection in Dehradun district

In the course of approximately 20 years, significant alterations in
the LULC pattern have been observed in Dehradun district. It can be
observed that the urban area of Dehradun has expanded
significantly. In the year 2000, Dehradun regarded as the capital
of Uttarakhand, which resulted in a population boom and a number
of urban activities. Heavy suburban construction was done during
this time period to accommodate the immigrants and new roles. The
built-up increase took place in the south and south-east of the city
(Figure 4) during periods (2003–2013) and (2013–2023). The flat
geography of these locations made them easier to build in, and they
were also traversed by the state and national roads that connected
Dehradun to the rest of Uttarakhand and other significant towns.
Urban expansion in the south and west of Dehradun has been
greatly sparked by the existence of natural obstacles in the city’s
northern direction (Maithani, 2020).

Between the years 2013–2023, the built-up area in Dehradun
district increased from 1.4% to 8.9%. The percent of dense forest
area has shown a decline from 20.9% to 18.7% during time period of
2003–2023. Simultaneously, percent of open forest area has also
been declined from 62.7% to 60.6% (Figure 5).

As urbanization increases in Dehradun, population growth (in
1950–1,39,000 to 993,000 in 2023), industrial growth and employment
expansion have a considerable impact on land use and land cover
(Figures 4, 6). Figure 6 illustrates that the growth ofMSMEs has doubled
from 2008 to 2022, resulting in a proportional increase in employment

over the last 14 years (http://mddaonline.in/wp-content/uploads/2023/
04/Dehradun-Master-Plan-2.0A.pdf). As industries multiply, the need
for larger and improved infrastructure and transport systems arises. This
process leads to the development of urban areas, consuming land for
residential, commercial, and industrial purposes and resulting in the
conversion of agricultural or natural landscapes into industrial regions
an impact directly influencing land use.

3.2 Spatial variations of land surface
temperature and air pollutants over the
Dehradun district

The seasonal average of MODIS LST (Land Surface
Temperature) reveals that the maximum temperature is observed
in the pre-monsoon season, while the minimum temperature is
noted during the winter months. Spatially, the southern and south-
eastern regions of Dehradun district exhibit elevated temperatures as
compared to the northern part of the district as shown in Figure 7.
The upper Dehradun region also boasts higher elevation which may
account for the lower temperatures in the upper regions of the
Dehradun district (Figure 8). After closely examining the land
surface temperature plots, it is evident that Dehradun city stands
out prominently in the spatial plots. The city experiences elevated
temperatures compared to surrounding areas.

Upon careful observation, it becomes evident that higher
elevations on maps generally experience lower temperatures.
However, Dehradun city also demonstrates high temperatures
comparable to the lowest elevation within the Dehradun
district. The spatial maps of the air pollutants including
HCHO, NO2, CO and tropospheric ozone reveal that the
northern regions of Dehradun district exhibit lower pollution
levels compared to the lower regions throughout the year
whereas the south and south-eastern region of the Dehradun
district exhibit the higher levels of pollutants (Figures 9–11).
This highlights the impact of anthropogenic activities on the air
quality of the study region.

FIGURE 5
Percentage change in land use and land cover categories in Dehradun district (2000–2019).
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Spatial plots of nitrogen dioxide (Figure 9) reveal Dehradun city
as a prominent nitrogen dioxide hotspot in Dehradun district. This
observation indicates that urbanized areas are the primary source of
nitrogen dioxide (Duncan et al., 2016). Furthermore, nitrogen oxide
levels are highest during the winter and pre monsoon months.
Elevated pollution levels in the lower regions can be attributed to
extensive urbanization.

Spatial plots of formaldehyde indicate that maximumHCHO levels
occur during the summer months, especially in the southwest region of
Dehradun district, where dense forests are present (as shown in
Figure 12). This observation aligns with the well-established fact that
formaldehyde is mainly emitted from biogenic sources. However,
anthropogenic activities also contribute to formaldehyde levels,

explaining the higher concentrations in the southern and south-
eastern regions of Dehradun district characterized with high built up
area. Spatial plots of carbon monoxide also show the highest
concentrations of CO in the winter and summer months (Figure 11).

The seasonal variation in tropospheric ozone levels reveals a
distinctive pattern in the Dehradun region (Figure 13). During the
summer months, higher tropospheric ozone concentrations are
observed in the lower regions of Dehradun district. In contrast,
during post-monsoon months, elevated ozone levels are noted in the
North East region of Dehradun. Interestingly, except for the post-
monsoon period, the lower Dehradun region consistently exhibits
higher tropospheric ozone values throughout the rest of the seasons,
including pre-monsoon, monsoon, and winter months. Overall the
maximum concentration of tropospheric ozone is observed in the
post monsoon season.

FIGURE 6
Growth of the industries MSME sector and employment generation in Dehradun.

FIGURE 7
Five year (2019–2023) seasonal average of MODIS LST over
Dehradun district.

FIGURE 8
Digital elevation model for Dehradun district.
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3.3 Temporal changes in land surface
temperature and air pollutants in
Dehradun district

In Dehradun, distinct temperatures and pollutant levels are evident
in the lower and upper regions. The lower region experiences higher
temperatures and increased pollutants, while the upper region has lower
temperatures and reduced air pollutant concentrations. Studying the
temporal variations separately for each region is crucial for
comprehending the patterns. Figure 14 shows the long term trends
of Land Surface Temperature (LST) (Day) from January 2003 to
December 2022 of MODIS sensor onboard Aqua and Terra in
Dehradun District. The plots reveal a consistent trend where the
lower region of Dehradun consistently records higher temperatures
as compared to its upper reaches. Significantly, the slope values validate
this observation, highlighting a more pronounced temperature increase
in lower Dehradun. This analysis highlights the enduring temperature
disparity between the lower and upper regions of Dehradun throughout
the specified timeframe. Specifically, concerning Terra MODIS LST
data, the substantial difference in slopes further corroborates the
observation which emphasizes that the slope of lower Dehradun is
significantly higher than that of upper Dehradun. This additional detail
reinforces the noted temperature dynamics between the two regions.

Likewise, the upper and lower regions of Dehradun exhibit
varying levels of air pollutants. Figure 15 displays a 4-year
(2019–2022) monthly averaged temporal series of TROPOMI

FIGURE 9
Five year (2019–2023) seasonal average of TROPOMI NO2 over
Dehradun district.

FIGURE 10
Five year (2019–23) average spatial distribution of TROPOMI
formaldehyde (HCHO) levels in Dehradun district.

FIGURE 11
Five year (2019–23) average spatial distribution of TROPOMI
carbon monoxide (CO) levels in Dehradun district.
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data for formaldehyde, nitrogen dioxide, tropospheric ozone and
carbon monoxide, revealing seasonal fluctuations in air pollutant
concentrations throughout the Dehradun district. The lower region
of Dehradun consistently shows higher pollutant levels compared to
the upper region, as evident in the seasonal spatial plot. Further
analysis of the temporal series of pollutants in both lower and upper
regions of Dehradun (Figure 15) indicates that nitrogen dioxide is
consistently higher in lower Dehradun throughout the entire study
period compared to upper Dehradun. The same holds true for
carbon monoxide. Formaldehyde is also higher in lower
Dehradun, although the concentration difference between both

regions is less pronounced, as formaldehyde is released from
biogenic sources which are also present in the upper regions of
Dehradun (Figure 12). Tropospheric ozone exhibits higher levels in
the lower region, especially during the summer months, but having
the lowest difference between lower and upper Dehradun levels
suggesting a regional phenomenon independent of local sources
and sinks.

We also conducted an analysis of the long-term trends in
formaldehyde (HCHO) and nitrogen dioxide (NO2) utilizing
OMI data, as depicted in Figure 16. The time sequence plot
(Figure 16A) illustrates OMI NO2 data from 2005 to 2021 and
TROPOMI NO2 data from 2019 to 2022. Despite potential errors in
OMI data introduced after a few years of operation due to the row
anomaly (De Smedt et al., 2021), it remains valuable in capturing
broad patterns of maxima and minima, enabling its utilization for
trend analysis of pollutants across the study region. The trend
analysis of a long-term temporal series of OMI data for nitrogen
dioxide in Dehradun city indicates a rising trend in the district
(Figure 16). OMI data tends to overestimate NO2 values compared
to TROPOMI values over the Dehradun district (Figure 16).
Furthermore, Figure 17 demonstrates that OMI data successfully
captures the difference between lower and upper Dehradun,
highlighting higher NO2 levels in lower Dehradun in OMI
data as well.

Figure 16B displays the time sequence plot for OMI
formaldehyde (HCHO) data spanning from 2005 to 2021 and for
TROPOMI HCHO data from 2019 to 2022. Similar to NO2, OMI
data effectively captures the overall pattern of HCHO’s maxima and
minima across the study region. The monthly average formaldehyde
time sequence plot from OMI data indicates an upward trend in the
Dehradun district (Figure 16B). HCHO emissions can originate
from biogenic, pyrogenic, or anthropogenic sources (Zarzana et al.,
2018; Biswas et al., 2019; Su et al., 2019; Zhang et al., 2022). Since
pyrogenic activities are not predominant in the Dehradun district,
the major sources of HCHO emissions are likely to be either
biogenic or anthropogenic. The change detection analysis
(Section 3.1) revealed a significant increase in the “built-up” land

FIGURE 12
Land use and land cover changes in Dehradun district (A) 2003, (B) 2013, (C) 2023.

FIGURE 13
Average spatial distribution of TROPOMI tropospheric ozone
levels in Dehradun district.
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class in the last 2 decades in Dehradun district. This rise in built-up
areas has contributed to the escalating temperatures across the
region, potentially leading to higher biogenic emissions. This
suggests that the increasing trend in HCHO can be attributed to
the combined impact of urbanization and rising temperatures over
the study region, influencing both anthropogenic and biogenic
emissions of HCHO. However, the HCHO level difference
between the lower and upper regions of Dehradun is not
captured in OMI data, as observed in Figure 17, while
TROPOMI data does exhibit this difference. Thus, it is further
confirmed that the OMI data performs well for NO2, but its
performance for HCHO, as indicated by the scatter plots and R2

values of OMI vs. TROPOMI, is not as robust (Figure 2).
Long-term temporal analysis revealed an increase in both

formaldehyde (HCHO) and nitrogen dioxide (NO2) over the
Dehradun district. However, no such increasing trend is observed
in the case of carbon monoxide (Figure 18), rather a decreasing
trend is observed. This is possibly due to reduced biomass
burning (which is a major source of carbon monoxide
emissions in the region) and the growing adoption of LPG as
the preferred household fuel choice throughout the Dehradun
district. Figure 19 shows the increased LPG usage among
households from 2001 to 2011 (Census of India). This trend
has been further accelerated by schemes like Ujjwala yojana.
Ujjwala Yojana was launched in 2016 by government of India to
promote the use of LPG as a household fuel.

3.4 Correlation analysis of land use classes,
land surface temperature and air pollutants
in Dehradun district

The correlation table (Table 1) illustrates the relationships
between the percentage of land use classes, land surface
temperature and air pollutants. Various land use and land cover
(LULC) classes exhibit correlations with temperature and
pollutants, providing insights into their intricate connections.
Among LULC classes, built-up areas demonstrate positive
correlations with all pollutants. Particularly noteworthy is the
observation that built-up areas exhibit the highest correlation
with temperature compared to other LULC classes. Additionally,
built-up areas show the maximum correlation with NO2, aligning
with the understanding that anthropogenic sources predominantly
contribute to NO2 levels. HCHO displays its highest correlation
with dense forest, supporting the theory that biogenic emissions
significantly contribute to HCHO concentrations. Furthermore,
CO exhibits maximum correlations with both dense forest and
built-up areas, highlighting its dual sources from secondary
formation through biogenic sources and primary anthropogenic
emissions. Notably, formaldehyde shows a high correlation with
carbon monoxide (0.934), emphasizing their interdependence.
HCHO oxidation contributes to CO formation, and CO, in turn,
aids in the photochemical production of HCHO. Nitrogen dioxide
(NO2) displays a significant correlation with both HCHO and CO

FIGURE 14
Long term trends of Land Surface Temperature (LST) (Day) from January 2003 to December 2022 ofMODIS sensor onboard (A)Aqua and (B) Terra in
Dehradun District.
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FIGURE 15
TROPOMI derived temporal variations of (A) Nitrogen Dioxide, (B) Carbon Monoxide, (C) formaldehyde, and (D) tropospheric ozone in lower and
upper Dehradun District (2019–2022).

FIGURE 16
Long-term time series (2005–2022) of (A) Nitrogen dioxide (NO2) and (B) Formaldehyde (HCHO) levels in Dehradun district.
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(0.863 and 0.890 respectively), indicating associated
photochemistry and sources. Remarkably, pollutants exhibit a
strong correlation with land surface temperature, revealing
higher concentrations in regions with elevated temperatures,
such as the lower or plain areas of Dehradun district, attributed
to increased urbanization.

4 Conclusion

In conclusion, the comprehensive study conducted in the
Dehradun district from 2003 to 2023 emphasizes on the intricate

interplay between urbanization, land use changes, temperature
variations, and air quality. The observed spatiotemporal patterns
emphasize the significant impact of anthropogenic activities on the
local environment. The expansion of urban areas and industrial
zones, driven by population growth and economic activities, has led
to notable alterations in land use and land cover. The transformation
of natural landscapes into high-density constructions and
impervious surfaces has resulted in a rise in land surface
temperature (LST) and the formation of surface urban heat
islands (SUHI). The study utilizes high-resolution TROPOMI
data, providing a nuanced understanding of pollutant trends over
a long time period.

FIGURE 17
Long-term time series (2005–2022) of (A) Formaldehyde (HCHO) and (B) Nitrogen dioxide (NO2) levels in the lower and upper regions of
Dehradun district.

FIGURE 18
Long-term time series of total column carbon monoxide (CO) levels in Dehradun district.
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Spatial analysis reveals distinct patterns, with lower regions
experiencing higher temperatures and pollutant concentrations
due to increased urbanization. Temporal analyses reveal
enduring temperature disparities between lower and upper
Dehradun, with the lower region consistently recording higher
temperatures and high levels of pollutants. OMI data proves
valuable for NO2 trend analysis, but its performance for HCHO is
less robust. Long-term trends indicate rising formaldehyde and
nitrogen dioxide, attributed to urbanization and rising
temperatures, while carbon monoxide decreases due to
reduced biomass burning and increased LPG usage.

The correlation matrix analysis reinforces intricate connections
between land use, temperature, and pollutants. Built-up areas
demonstrate positive correlations with all pollutants, exhibiting

the highest correlation with temperature among land use classes.
Formaldehyde exhibits high correlation with carbon monoxide,
while nitrogen dioxide shows significant correlations with both
formaldehyde and carbon monoxide. These findings collectively
underscore the complex interplay between anthropogenic activities,
land use changes, and their impact on air quality in Dehradun. This
study emphasize on the importance of addressing the adverse effects
of rapid urbanization on temperature, air quality and overall
environmental health in the Dehradun district. It highlights the
necessity of implementing sustainable urban planning and
management strategies in the region. (Weng and Yang, 2006;
Anand SharmaSaklani, 2012; Padilla et al., 2014; Pakkattil et al.,
2021b; Dehradun Population, 2023; Zeren Cetin et al., 2023).
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TABLE 1 Correlation matrix of air pollutants and temperature with different
LULC classes.

Correlations

CO HCHO NO2 LST

CO

HCHO .934**

NO2 .890** .863**

LST .687** .627** .572**

DENSE_FOREST .583** .562** .484** .238**

OPEN_FOREST −.833** −.814** −.779** −.558**

AGRICULTURE .378** .381** .309** .390**

FALLOW LAND .457** .431** .458** .429**

BUILT_UP .469** .460** .556** .468**

OPEN_SPACE .349** .323** .366** .365**

**Correlation is significant at the 0.01 level (2-tailed).

*Correlation is significant at the 0.05 level (2-tailed).
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