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Introduction: The Leaf area index (LAI) of source region of yellow river basin is an
important indicator for environmental sustainability. Most studies focus on the
trend of LAI in Yellow River Source Region (YRSR) in accordancewith both climate
change and human actives. However, quantifying the effect of human activities
on LAI is difficult but urgently needed. Specifically, Particle Matter 2.5 (PM2.5) can
be an indirect indicator of human activities.

Methods: In this study, we explored the potential dependence of LAI on
temperature, precipitation, and PM2.5 in different land cover types in YRSR
with linear regression and correlation analysis.

Results:Over the period of 2001–2020, the climate in the region has beenwarming
and becoming more humid, leading to overall improvements in vegetation. The
mean LAI values varied between seasons,with summerhaving thehighest andwinter
having the lowest LAI. The analysis of the LAI trends revealed that the mean LAI has
been steadily increasing, particularly in the eastern region. The correlation analysis
showed a significant positive correlation between annual average LAI and both
annual precipitation and temperature, indicating that temperature has a greater
impact on vegetation growth. The analysis of land cover types showed that most
types exhibited a unimodal trend in LAI throughout the year, except for construction
land which had two distinct peaks. Human-induced land cover change had a small
impact on the overall increase in LAI. Furthermore, the interannual variation of PM2.5
showed a downward trend, with a strong correlation with the trend of LAI.
Additionally, multiple linear regression analysis and residual trend analysis showed
that climate factors had the strongest impact on LAI.

Conclusion: The study highlights the spatiotemporal variations of LAI in the YRSR
and its correlation with climatic and human factors. The findings suggest that
climate change plays a crucial role in the vegetation growth and LAI in the region.
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1 Introduction

The spatio-temporal analysis of Leaf Area Index (LAI) is of
utmost importance in understanding and managing the ecological
dynamics of a watershed. LAI is commonly defined as the total single-
sided green leaf area per unit horizontal ground area (Baret et al.,
2007). Quantifying the drivers of temporal and spatial changes in
vegetation is crucial due to its significant role in regulating climate
change (Piao et al., 2020; Mota et al., 2021; Shabanov et al., 2021; Yan
et al., 2021; Dai et al., 2022; Kobayashi et al., 2023; Pu et al., 2023), land
surface modeling (Running et al., 1999; Albergel et al., 2018; Peng
et al., 2021; Zhu et al., 2023), and vegetation dynamic monitoring
(Iwahashi et al., 2021; Zhao et al., 2021; Abubakar et al., 2022; Amin
et al., 2022; Zhang et al., 2022; Bajocco et al., 2022; Caballero et al.,
2022). The variation in vegetation structure and function not only
affects biodiversity and energy supply but also provides valuable
insights into ecological feedback to climatic changes.

It is crucial to monitor the fluctuations in LAI and understand how
it responds to both climatic changes and human activities. This
knowledge is essential for devising successful strategies to rehabilitate
vegetation. On one hand, climatic factors, particularly temperature and
precipitation patterns, play a significant role in driving vegetation
changes. Both increased temperature and precipitation have an
impact on the growing season of vegetation (Ma et al., 2023). Li
et al. (2022) have identified that the rise in temperature during
spring and autumn is the main cause for the prominent vegetation
greening across China during the 1981–2018 period. Additionally, the
warming of soil under climate change was driving the LAI increases,
while drying was largely responsible for LAI decreases. Ukasha et al.
(2022) compared the temporal behaviors of normalized difference
vegetation index (NDVI) and LAI and their associations with
hydroclimatic variables in the combined Sacramento River and San
Joaquin River basins in California. The results show that NDVI peaks
earlier than LAI and is more closely correlated with water availability,
while LAI is more strongly correlated with mean temperature and
atmospheric water demand. A study used satellite data to analyze leaf
area index trends in the Yan Mountains over the past four decades,
revealing a consistent increase in vegetation density due to human
activities such as crop management and afforestation (Guo et al., 2023).
The study also found that vegetation growth was influenced by factors
such as land surface temperature, soil moisture, precipitation, and air
temperature, with varying time lags in their effects throughout the
growing season. These findings can inform government policies on
ecological protection in mountainous areas and suggested that
temperature and precipitation were critical factors in the interannual
variability of LAI. Therefore, temperature and precipitation are two
essential climate variables that drive vegetation change by providing the
necessary water and heat conditions for vegetation growth. Hence, we
conduct research on vegetation dynamics and its correlation with
climate change using LAI, thereby enhancing our understanding of
future regional climate change.

In another hand, quantifiying the effect of human activities on LAI
is difficult but urgently needed. It is important to note that the
relationship between human activities and climate change is intricate
and reciprocal, and theymutually influence each other (Peng et al., 2021;
Ma et al., 2023). Consequently, when calculating the correlation
coefficient between LAI and influencing factors, there may be some
degree of uncertainty due to the potential impact of human activities.

Human activities contribute significantly to the production of
particulate matter with a diameter of 2.5 μm (PM2.5) or smaller
(Bao et al., 2016; Zhou et al., 2019; Li et al., 2024). PM2.5 can come
from various sources, including natural sources such as dust and
wildfires, as well as human activities. The burning of fossil fuels,
such as coal, oil, and gas, in power plants, industries, and vehicles
releases pollutants that form PM2.5. Industrial processes, such as
manufacturing and construction, also produce fine particles.
Additionally, activities like open burning of agricultural waste,
cooking with solid fuels, and tobacco smoking can release
PM2.5 into the air. The influence of CO2 concentration, nitrogen
deposition, and aerosol pollution on vegetation has been increasingly
studied. Previous research has focused on the effects of aerosols on crop
yields and gross primary productivity, while the impact on vegetation
photosynthesis and growth has received less attention (Liu et al., 2023;
Ma et al., 2023). PM2.5 affect vegetation by altering the absorption,
reflection, and scattering of solar radiation, which in turn affects
photosynthesis (Ma et al., 2023). The LAI plays a crucial role in
determining the canopy’s ability to absorb solar radiation and
therefore affects vegetation growth (Xue et al., 2020). Understanding
the relationship between PM2.5 and LAI is important for understanding
the sensitivity of vegetation to aerosol radiative forcing and developing
strategies to mitigate the effects of climate change on vegetation (Zhang
et al., 2020). Most of studies utilized land use change analysis to reflect
the influence of human activities on LAI (Mao et al., 2013; Zeng et al.,
2017; Zhu et al., 2017; Buitenwerf et al., 2018; Wong et al., 2018; Peng
et al., 2021; Zhang et al., 2021; Zhou et al., 2022). Few studies quantifying
impacts of human activities on changes of LAI with PM2.5. Therefore,
the relationship between PM2.5 and LAI can be used for assessing the
influence of human activities on LAI and need to be further studied.

The primary objective of this study was to use LAI data to
monitor and analyze the greening trend of vegetation in the Yellow
River source region over the past 20 years. Additionally, we aimed to
quantify how variations in precipitation, temperature, land cover
type and PM2.5 affect LAI. Specifically, our focus was on the
following three aspects: 1) we examined the spatial and temporal
changes in LAI during four seasons; 2) we analyzed the response of
LAI to precipitation and temperature; 3) we analyzed the response of
LAI to land use cover change and PM2.5. The remainder of this
paper is structured as follows. Section 2 describes the geographic
area, remote-sensing-derived LAI data, precipitation data,
temperature data, land cover data and PM2.5 data considered in
the study and presents the methodology to process and analysis the
data. In Section 3, the results of the spatio-temporal variations of the
LAI and influence of meteorological and human factors on LAI are
presented and discussed. Section 4 discussed the results and the
derived conclusions are presented in Section 5. The flowchart of this
study was shown in Figure 1.

2 Methodology

2.1 Study area

The Yellow River Source Region (YRSR) is located on the eastern
edge of the Qinghai-Tibet Plateau and includes 16 county-level
administrative units (Figure 2). The total area is approximately
132,658 km2. The region’s topography is dominated by plateaus,
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mountains, and hills, with elevations ranging from 2,232 to 6,252 m,
with an average elevation of 4,029.92 m. The north and east are
adjacent to the Gonghe Basin and Ruoergai Basin, with relatively
lower terrain, while the central and western regions are mostly
mountainous with higher terrain. Rivers and lakes are developed in
the research area, with the two large mountain freshwater lakes in the
west, and the Longyangxia Reservoir in the north being the most
famous. The land cover types in the YRSR aremainly plateau grassland,
forest land, and marshland, accounting for more than 80% of the total
area (Figure 3). The climate type in the region belongs to the sub-arctic
semi-arid and semi-humid type of the Qinghai-Tibet Plateau, with
higher temperatures in the east than in the west, and higher
precipitation in the southeast than in the northwest. The YRSR has
a large diurnal temperature range, with an average annual temperature
of around −1.6°C; the annual precipitation is mostly concentrated in
summer, with an average accumulated precipitation of 407–582 mm,
and the annual accumulated evaporation is 484–584 mm. Overall, the
YRSR has a high altitude, low temperature, and developed rivers, lakes,
and marsh wetlands, with functions such as water source conservation
and supply, soil and water conservation, and regional climate
regulation. It is a crucial water source and runoff area in the upper
reaches of the Yellow River.

2.2 Data source

2.2.1 Leaf area index data
The GIMSS LAI4g product is produced by fusing multiple

remote sensing data through a deep learning algorithm

(backpropagation neural network, BPNN) (Cao et al., 2023). It
can be downloaded through the website https://doi.org/10.5281/
zenodo.7649108. The temporal resolution of the product is half-
monthly, and the time coverage is from 1982 to 2020, with global
spatial coverage and 8 km spatial resolution. The product format
is TIFF. Global LAI products, such as VIIRS (Yan et al., 2018),
GEOV2 (Baret et al., 2013), GLASS (Xiao et al., 2014; Xiao et al.,
2016), and MODIS LAI (Knyazikhin et al., 1998) have been
applied for various studies around the word. Most of
studies highlight the importance of merging multiple sources
data for generating high-resolution LAI products which is an
important data foundation for analyzing LAI spatiotemporal
characteristics. Cao et al. (2023) used backpropagation
neural network (BPNN) and data integration methods to
generate a new version of the Global Inventory Modeling
and Mapping Studies (GIMMS) LAI product, namely, GIMMS
LAI4g, with a time span from 1982 to 2020. The importance
of GIMMS LAI4g lies in the use of the latest PKU GIMMS
NDVI product and 3.6 million high-quality global Landsat
LAI samples to eliminate the effects of satellite orbit drift
and sensor degradation and to develop a BPNN model with
spatiotemporal consistency. The results showed that compared to
its predecessor (GIMMS LAI3g) and two mainstream LAI
products (Global Land Surface Satellite [GLASS] LAI and
Long-term Global Mapping [GLOBMAP] LAI), GIMMS LAI4g
has higher accuracy, with an R2 value of 0.95, an average absolute
error of 0.18 m2/m2. It performs well in most vegetation
communities in most areas and shows more reasonable global
vegetation trends.

FIGURE 1
The flowchart of the study.
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2.2.2 Land cover data
For analyzing monthly variations of LAI by land cover types,

we utilized the China multi-period land use land cover data set
(CNLUCC), which was obtained through visual interpretation of
Landsat remote-sensing data. The CNLUCC data set was
acquired from the Data Center for Resources and
Environmental Sciences, Chinese Academy of Science (http://
www.resdc.cn). For analyzing interannual variations of LAI by
land cover types, we specifically used long time series land use
data from the China land cover dataset (CLCD) on the Google
Earth Engine (GEE) platform (Yang and Huang, 2021). This data
was downloaded from (https://doi.org/10.5281/zenodo.4417810)
and has a spatial resolution of 30 m and a temporal resolution of
1 year. The land cover types in the study area consist of cropland,
snow/ice, water, grassland, shrub, forest, barren and wetland. To
align with the spatial resolution of LAI, the land cover data was
resampled using the nearest neighbor method.

2.2.3 Precipitation data
The TMPA (TRMM Multi-satellite Precipitation Analysis)

precipitation product used in this study is a global dataset that
provides precipitation estimates at a high spatial and temporal
resolution. It is derived from a combination of satellite-based
precipitation estimates and ground-based rainfall gauge
observations. The product covers the period from January

1998 to present and is updated in near-real time. The TMPA
precipitation product is based on the TRMM (Tropical Rainfall
Measuring Mission) and other satellite-based precipitation
estimates, which provide high-quality precipitation information
over the entire globe. In addition, the product also incorporates
ground-based rainfall gauge observations to improve the accuracy of
the estimates. The TMPA precipitation product provides a range of
precipitation estimates, including 3-hourly, daily, monthly, and
yearly accumulations. The spatial resolution of the product is
0.25° (approximately 25 km) and covers the entire globe. The
TMPA precipitation product is widely used in meteorology,
hydrology, and climate research, as well as in applications such
as flood and drought monitoring, water resource management, and
agriculture. It is freely available to the public and can be downloaded
from various data centers, including NASA’s Goddard Earth
Sciences Data and Information Services Center (GES DISC).

2.2.4 Temperature data
The MODIS (Moderate Resolution Imaging Spectroradiometer)

land surface temperature (LST) dataset (MOD11) used in this study
is a global dataset that provides daily estimates of land surface
temperature. The MODIS LST dataset provides two types of
products: daytime and nighttime LST. The MODIS LST dataset
is freely available to the public and can be downloaded from various
data centers. It is also available through various data analysis tools,

FIGURE 2
The location of the Yellow River source region.
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such as Google Earth Engine, which allow users to visualize and
analyze the data in a user-friendly interface.

2.2.5 Particle Matter 2.5
ChinaHighPM2.5 dataset is a comprehensive collection of

ground-level PM2.5 data for China (Wei et al., 2021). It utilizes
artificial intelligence to analyze various sources of big data, such as
ground-based measurements, satellite remote sensing, atmospheric
reanalysis, and model simulations. By considering the spatial and
temporal variations of air pollution, this dataset provides long-term,
high-resolution, and high-quality information. Specifically, this
dataset covers the entire spatial extent of China with a resolution
of 1 km. It includes daily, monthly, and yearly measurements from
2000 to 2022. The dataset has been rigorously validated, achieving a
high cross-validation coefficient of determination and low root-
mean-square error (RMSE) and mean absolute error (MAE) on a
daily basis.

2.3 Data processing method

Firstly, the LAI data for YRSR extracted from the GIMSS LAI4g
product. Then the 16-day data was scaled to monthly and annual
data. Finally, the spatial resolution of the LAI data was resampled
into 1 km with the nearest neighbor interpolation method.

The precipitation data was extracted from the TMPA product.
Then the 3-hourly data was scaled to monthly and annual data.
Finally, the spatial resolution of the precipitation data was resampled
into 1 km.

The temperature data was extracted from the MOD11 product.
Then the daily data was scaled to monthly and annual data. Finally,
the spatial resolution of the temperature data was resampled
into 1 km.

The land cover data was extracted and resampled from the
CNLUCC and CLCD. The monthly 1 km PM2.5 data was extracted
from the ChinaHighPM2.5 product. The codes used for the data
processing and data analysis were written in Python and available at
http://github.com/hexiayouxi1.

2.4 Data analysis method

2.4.1 Linear regression analysis
We utilized linear regression to examine the variations in LAI

(Leaf Area Index) over the period of 2001–2020 in the YRSR,
focusing on interannual and seasonal growth. The regression
model’s parameters were determined using the least square
method. To assess the significance of the linear trend in LAI, a
significance test was conducted using confidence intervals, with p <
0.01 indicating passing the test at a 99% confidence level, and p <

FIGURE 3
Land cover types of the Yellow River source region.
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0.05 indicating passing the test at a 95% confidence level. The
calculation formula is as follows:

Slope � n∑n
i�1 i × LAIi( ) − ∑n

i�1i × ∑n
i�1LAIi

n∑n
i i

2 − ∑n
i i( )2

Where Slope is the trend of change, n is the length of the time
series, and LAIi is the LAI in the year i. When Slope >0, it means that
LAI has an upward trend in n years, and conversely, when Slope <0,
it means that LAI has a downward trend. The significance p-value of
the trend in LAI was determined by the F-test and calculated
according to

p � Slope2

1 − Slope2
×
t − k − 1

k

Where p is the significance value, t is the number of samples, and
k is the number of independent variables. Combining the Slope and
significance p-value, the trends of LAI can be classified into five
categories according to the theory proposed by Ma et al. (2023).

The multiple linear regression of LAI, precipitation, temperature
and PM2.5 was also conducted to analysis the contributions of
climate (precipitation and temperature) and human (PM2.5) factors
on the trend of LAI.

To distinguish the respective impacts of climate change and
human activities on vegetation changes, residual analysis is also
employed. In this study, the residuals, which refer to the disparity
between the observed and predicted LAI values, are utilized to
identify temporal trends. The calculation of LAI residuals is
performed on all pixels. By employing multiple linear regression,
the most optimal relationship between the average LAI and climatic
factors is determined. This relationship is subsequently employed to
estimate the predicted LAI. The LAI residual is then computed by
subtracting the observed LAI value from the predicted LAI value.
The residual trend analysis method entails establishing correlations
between the LAI and climatic factors for all pixels. The formula for
this analysis is as follows:

LAIpredicted � a · P + b · T + c

LAIres � LAIobserved − LAIpredicted

The regression coefficients of the correlations between the LAI
and the precipitation and temperature are represented by a and b,
respectively. The constant regression term is denoted as c. The
residual, LAIres, represents the contribution of human activities to
the changes in the LAI. LAIobserved refers to the actual observed value
of the LAI, while LAIpredicted is the value predicted based on the
multiple linear regression between the average LAI and the climatic
factors. Relative role of climate and human factors can be calculated
based on the slope of LAIpredicted, LAIobserved and LAIres (Shi et al.,
2021). When the LAI is increased, the slope of LAIpredicted (Slopepre)
and LAIres (Sloperes) are both larger than 0, the relative roles of
climate factors is Slopepre/Slopeobs × 100% and relative roles of
human activies is Sloperes/Slopeobs × 100%. Then, both climate
change and human activities induced the LAI increase.

2.4.2 Coefficient of variation analysis
Based on the phenological characteristics of vegetation in the

study area, we defined March to May as spring, June to August as
summer, September to November as autumn, and December to

February of the following year as winter. In order to reflect the
temporal variation characteristics of LAI, we used the maximum
value composite (MVC)method to synthesize LAI on amonthly and
annual basis. By extracting the monthly and annual averages, we
analyzed the annual variation characteristics of LAI. At the same
time, we used the coefficient of variation (CV) to represent the
interannual variation of LAI. The CV, also referred to as the relative
standard deviation (RSD), is a standardized metric used to measure
the dispersion of a probability distribution or frequency distribution.
The formulation of CV is as follows:

CV �

�������∑n

i�1 xi−�x( )
n

√
�x

Where the xi represents the value of LAI for the ith year. �x
represents the mean of LAI for all year. n represents the number
of years.

2.4.3 Correlation coefficient analysis
The Pearson correlation coefficient (R) is a commonly used

measure to describe the relationship between two variable
distributions. It determines the magnitude and direction of the
relationship at each data point by assuming that the variables are
normally linearly distributed. It is calculated by dividing the
covariance of the variables by the product of their standard
deviations. The absolute value of the coefficient ranges from 0 to
1, with values closer to 1 indicating a stronger correlation
between the data.

Based on this, we analyzed the correlation coefficient between
LAI and average temperature, precipitation and PM2.5 from 2001 to
2020, in order to explore the degree and spatial distribution pattern
of the correlation between LAI and average temperature,
precipitation and PM2.5 over a long time series. We utilized
t-tests to assess the significance of these correlations (Cai
et al., 2021).

To account for the time delay between changes in LAI and
climate (precipitation) and human (PM2.5) factors, we employed
the correlation coefficient method to establish the lag period. By
calculating the correlation coefficients between LAI and climate and
human factors for the current month and the previous 3, 6, 9 and
12 months, we identified the highest correlation coefficients. The
month corresponding to the highest correlation coefficient was then
considered the actual time lag for the respective LAI responses.

3 Results

3.1 Spatio-temporal variations of LAI from
2001 to 2020

The time series of annual mean and seasonal variation of LAI
from 2001 to 2020 in this study area is shown in Figures 4A, B. In the
entire basin, due to the low temperature and low precipitation in
December, January, February, March, and April, most of the
vegetation is in a state of no or few leaves, resulting in a low LAI
value, which reaches the lowest point of the year in January. After
April, with the gradual increase in temperature and precipitation,
vegetation begins to grow, and the LAI shows a gradually increasing
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trend. After May, the LAI value rises significantly. As it enters the
summer season, the sufficient sunlight and abundant precipitation
are conducive to vegetation growth, and the LAI reaches the
maximum value of the year in July, which is 1.81. After July, the
temperature begins to drop, and the vegetation enters the leaf-falling
period, resulting in a gradual decrease in LAI. From September, the
rate of decrease in LAI is faster, but due to the presence of a large
number of sparse vegetation in the downstream area, the LAI
gradually stabilizes in November.

In order to further examine the seasonal variation in LAI, we
conducted a linear regression analysis on the average LAI for each
season (Figure 5). The results revealed that LAI showed an
increasing trend throughout all four seasons, however, there were
noticeable differences between seasons. The annual growth rate of
LAI was calculated to be 0.0051 per year, with a high correlation
coefficient of 0.69 and fluctuation range of 0.64–0.78, indicating a
strong relationship. Furthermore, the LAI data passed the
significance test (p < 0.01), indicating its statistical significance.

FIGURE 4
(A) Annually mean LAI and (B) seasonal variation from Jan-Dec during 2001–2020 in the Yellow River source region.
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Typically, the vegetation’s growing season begins in spring and ends
in autumn. During this period, vegetation experiences rapid growth
in summer, temperatures gradually rise and there is an ample
amount of light, leading to acceleration in vegetation growth,
resulting in the highest interannual growth rate (0.0043 years−1)
of LAI among all seasons. Consequently, the mean LAI in summer
usually reaches its peak at 0.7483, with a fluctuation range of
0.6059–0.7483. In winter, temperatures are relatively low,
daylight hours are short, and vegetation almost completely stops
growing. The mean LAI usually reaches its lowest at 0.0718, with a
fluctuation range of 0.0718–0.0906. When spring approaches,
temperatures gradually increase, resulting in longer periods of
daylight and vegetation entering a growth state. As a result, the
mean LAI in spring (0.1587) may slightly increase but remains
relatively low. The fluctuation range for LAI during this season was
0.1587 to 0.1288, with an interannual growth rate of 0.0018 years−1.
In autumn, temperatures and daylight hours are similar to spring.
Consequently, the average LAI (0.2371) and interannual growth rate
(0.0018 years−1) with a fluctuating between 0.1874 and 0.2743.

Figure 6 showed the spatio-temporal LAI trends in YRSR from
2001 to 2020. The mean LAI in most parts of YRSR, particularly in
the eastern region, has been steadily increasing on an annual basis.
The eastern region has experienced the highest growth rate, reaching
0.1 per year, suggesting it has the potential to act as a carbon sink.
The area where LAI has improved is significantly larger than the area
where it has degraded. Approximately 60.72% of the total area has
an extreme (p < 0.01) or significant increase (p < 0.05) in LAI, while
only 0.28% of the total area has experienced a significant (p < 0.05)
degradation (Figure 6). The areas with degraded LAI are primarily

located around lakes. This decline is likely attributed to the
replacement of original grassland or wetland with water.

The high-value regions of LAI coefficient of variation (CV) were
mostly near the northern part of the YRSR, with CV > 1.0 and large
inter-annual fluctuations, but a small distribution range (Figure 7).
This indicates that there are few areas in the north of the YRSR with
large inter-annual fluctuations in LAI. The degree of inter-annual
fluctuations in LAI in the southern part of the YRSR is relatively
small, with CV values ranging from 0 to 1.

3.2 Influence of climate factors on LAI

From Figure 8, it can be seen that LAI gradually increases from
April, reaches its maximum value in July, and gradually decreases
from September to November, and stabilizes from December to the
following March. Combining with the phenological characteristics
of vegetation, LAI in the YRSR shows obvious seasonal changes. At
the same time, the annual changes in LAI can directly reflect the
phenology of vegetation. Starting from April, various vegetation
begins to grow gradually. By July, vegetation is in a period of
vigorous growth, and LAI reaches its maximum value. In
September, vegetation enters the leaf-falling period, and
vegetation coverage gradually decreases, and LAI gradually
decreases. However, due to different downstream vegetation
cover types, sparse vegetation gradually stops growing. In
addition, according to Figure 8, the annual changes in the
monthly average temperature and precipitation in the YRSR are
consistent with the annual changes in LAI. Meteorological elements

FIGURE 5
(A1–A5) are the slopes of LAI (Leaf Area Index) calculated using linear regressionmethod during the entire year, spring, summer, autumn, and winter
from 2001 to 2020, respectively. (B1–B5) are line charts representing the average trends of LAI during the entire year, spring, summer, autumn, andwinter
from 2001 to 2020, respectively. (C1–C5) are histograms showing the distribution of trends of LAI during the entire year, spring, summer, autumn, and
winter from 2001 to 2020 at the pixel scale.
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and temperature have a bell curve trend throughout the year. The
average temperature in winter is lower, and the precipitation is less,
while the average temperature in summer is higher, and the
precipitation is more. The maximum monthly average
temperature occurs in July, which is 284.87K (11.72°C), and the
minimum occurs in January, which is 259.33K (−13.82°C). The
maximum monthly precipitation occurs in August, which is
357 mm, and the minimum occurs in December, which is 15 mm.

The pixel-by-cell correlation analysis of the LAI with the
precipitation and temperature in the YRSR from 2001 to 2020 is
shown in Figures 9, 10. The correlation coefficients between annual
average LAI and annual precipitation in the YRSR were all
significant positive (p < 0.05) ranging from 0.23 to 0.86. The
correlation coefficients between annual average LAI and annual
temperature were all significant positive (p < 0.05), with values
ranging from 0.3 to 0.92. From Figures 9, 10, it can be seen that there
is high correlation coefficient between the two in most areas, and
there are obvious spatial differences. The regions where the annual
average LAI and annual precipitation are positively correlated are
mainly distributed in the middle reaches of the YRSR, where the
vegetation is mainly forests and meadows, the vegetation coverage is
high, and the annual average temperature is lower. During the same
period, the temperature increases and the precipitation increases,
which is conducive to vegetation growth. The regions where the

annual average LAI and annual precipitation are slightly correlated
are mainly distributed in some parts of the downstream and middle
reaches of the YRSR, where the annual precipitation is less.
Moreover, according to the principle of correlation analysis, the
larger the absolute value of the correlation coefficient, the stronger
the correlation between variables, indicating that temperature has a
greater impact on vegetation growth.

Figure 10 shows the patterns of the correlation coefficient
between annual average LAI and annual average temperature in
the YRSR. From the spatial distribution, it can be seen that the
regions where the annual average LAI and annual average
temperature are positively correlated are extensive, except for the
central region, and the positive correlation between the annual
average LAI and annual average temperature is more obvious in
most regions. Overall, temperature and precipitation in the YRSR
have a significant impact on vegetation growth, and the degree of
response to vegetation LAI is slightly different between the two.

In certain regions, there can be a time lag between LAI and
precipitation. To analyze the correlations between LAI and
precipitation, five different time-lag periods were considered.
When the lag period was 3 months, the correlation coefficient
(R) was −0.18. With a lag period of 6 months, the correlation
coefficient increased to −0.68. However, when the lag period was
extended to 9 months, the correlation coefficient decreased to 0.02.

FIGURE 6
Spatial distribution of LAI trend during 2001–2020 in the Yellow River source areas.
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Interestingly, with a lag period of 12 months, the correlation
coefficient significantly increased to 0.819, which is slightly
higher than the correlation coefficient for 0-month lag (R =
0.818). This indicates that the highest correlation between LAI
and precipitation occurs with a lag period of 12 months.

3.3 Influence of human activities on changes
in LAI

3.3.1 Variations of LAI by land cover type
The average LAI of different land cover types from January to

December in the years 2001–2020 is analyzed using CNLUCC data
and shown in Figure 11. With the exception of impervious land,
crop, forests, shrub, grasslands, barren, and wetland exhibit a
unimodal trend of change throughout the year, while the LAI of
impervious land shows two distinct peaks. In the YRSR, the LAI of
vegetation rapidly increases in April and May, reaches its maximum
in July, gradually decreases from August, drops below 1.0 in
October, and then the rate of decline slows down. There is no
significant change in LAI during the winter.

In order to analyzing the changes of land cover on changes of
LAI. Long time series of land cover types is needed. However,
CNLUCC cannot provide annual land cover types data.

According to the classification data of land types from 2001 to
2020, the YRSR includes 21 types of land cover, including paddy
fields, forests, shrublands, sparse forests, high coverage grasslands,
medium coverage grasslands, low coverage grasslands, beaches,
urban land, rural residential areas, sandy areas, deserts, swamps,
bare soil, rocky areas, other construction land, and others. Some of
land cover types can be combined due to similar LAI trend
(Figure 11). Therefore, 21 types of land cover can be represented
by eight class land cover types (cropland, snow/ice, water, grassland,
shrub, forest, barren and wetland) from CLCD. Therefore, the
changes in the annual average LAI values of different land cover
types from 2001 to 2020 were analyzed based on CLCD data and
shown in Figure 12A. The LAI values of all land cover types show an
upward trend, with the highest value found in wetland, followed by
shrub and forest. The LAI value of Snow/Ice is the lowest. Overall,
there is not much difference in the LAI trend of different land cover
types in the YRSR, and the range of fluctuation of the leaf area index
is between 0.2 and 1.4. The difference in LAI among land cover types
from 2001 to 2020 was as follows: cropland (0.0094 years−1) > snow/
ice (0.0085 years−1) >water (0.0054 years−1) > grassland
(0.0053 years−1) > shrub (0.0051 years−1) = forest
(0.0051 m yr−1) > barren (0.0049 years−1)>wetland
(0.0044 years−1). The LAI in snow/ice and water can be seen as a
combined uncertainty of the LAI product and land cover product.

FIGURE 7
Spatial distributions of LAI coefficient of variation during 2001–2020 in the Yellow River source areas.
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As the coverages and LAI of these two land cover types are relative
low (Figure 12B), they can be ignored in the trend analysis.

The overall increase in LAI in the YRSR can be partially
attributed to changes in the coverage of land cover types,
primarily influenced by human land-use management. There was
a conversion of approximately 149 km2 from cropland to grassland
and forest, resulting in reduction of crop plant from 0.53% in 2001 to
0.43% in 2020 (Figure 13). Concurrently, the total area of forest and
shrub increased from 1.22% to 0.85% in 2001 to 1.27% and 0.93% in
2021, representing an increment of around 186 km2. Conversely,
there was a conversion of 1,293 km2 from grassland to other
vegetation types during the period from 2001 to 2020. The area
covered by grassland decreased from 93.5% in 2001 to 92.4% in
2020. Additionally, there was an increase of 0.5% in barren 0.19% in
wetland. Through comparing CNLUCC and CLCD, we found that
most of the barren of CLCD can be considered as Urban land use in
CNLUCC. Therefore, the changes of barren and impervious can be
both contributed by human activities. The changes (both of areas
and percentage) of land cover types show that the human induced
land cover change is small.

3.3.2 Spatio-temporal variations of PM2.5
The interannual variation of PM2.5 in the YRSR from 2001 to

2020 shows a downward trend, with a range of 16.25 to 38.6 μg/m3

and a multi-year mean of 32.9 μg/m3. The PM2.5 value has generally
decreased from 2001 to 2020. Figure 14 shows the spatial
distribution of Slope of annual PM2.5 in the YRSR. The Slope
were all significant negative (p < 0.05), with values ranging
from −0.1 to 0 μg/m3. The annual decrease rate of PM2.5 was
calculated to be −0.8214 μg/m3 per year, with a high correlation

coefficient of 0.65, indicating a strong relationship. Furthermore, the
PM2.5 data passed the significance test (p < 0.05), indicating its
statistical significance. Therefore, the trend of LAI is highly
correlated to PM2.5. From the spatial distribution, it can be seen
that the decrease trend of PM2.5 decreased from north to south
in the YRSR.

4 Discussion

4.1 Dynamics of LAI in Yellow River source
region from 2001 to 2020

Analysis of LAI data revealed a greening trend in the YRSR
from 2001 to 2020, which aligns with previous studies on greening
trends in China. These studies utilized different LAI datasets and
focused on different time periods. Our findings are consistent with
studies on vegetation dynamics in Yellow River basin, including
parts of the YRSR. However, our study observed a smaller increase
(0.0051−yr) in LAI compared to previous studies (Zhang et al.,
2022; Qin et al., 2022; Ma et al., 2023), likely due to differences in
spatial extent and LAI product uncertainties. While LAI showed
an overall increasing trend throughout the year, there were
significant fluctuations in different seasons. summer
consistently had the highest LAI, while autumn had higher LAI
than spring and winter. The spatial distribution of LAI change
trends in the YRSR exhibited heterogeneity. Areas with a
significant greening trend were primarily located near the
Yellow River, the increase in LAI can be explained by changes
in air temperature and precipitation.

FIGURE 8
Interannual variation trend of LAI and meteorological elements in the Yellow River source region.
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Furthermore, our study identified an increase in forested areas
from 2001 to 2020, with approximately 80 km2 of land transitioning
from other vegetation types to forests. This greening trend has been
attributed to afforestation efforts and may be influenced by China’s
national ecological protection policy (Chen et al., 2020; Piao et al.,
2020). The Chinese government has implemented various ecological
restoration projects since 2000 to combat deforestation and soil loss
(Wang et al., 2020; Pei et al., 2021). The barren land area and LAI
both increased from 2001 to 2020. Though the increased barren land
may degrade the total LAI trend, the mean LAI (0.793) of 2020 is still
higher than that (0.653) of 2001 due the overall increasing trend of
LAI for all land cover types and increased areas of shrub and
wetland, etc. The mean LAI is calculated through dividing the
total LAI (sum of each land cover LAI multiplied its areas) by
total land areas. The overall increasing trend of LAI can be attributed
to both climate change and human activities.

4.2 Combined impacts of climate change
and human activities on LAI

The variety of vegetation is influenced by both natural climate
factors and human activities (Zhu et al., 2016; Chen et al., 2019; Guo
et al., 2021). The effects of different meteorological factors on

vegetation growth vary significantly based on regional and land
cover type differences (Piao et al., 2006). Previous studies have
typically focus on climate and land cover factors. Our study
discovered that the positive correlation between LAI and
meteorological factors differs across regions. Temperature
primarily affects the physiological processes of plants, such as
photosynthesis and respiration. In general, higher temperatures
can enhance the rate of photosynthesis and promote plant
growth (Yin et al., 2022). This is particularly true for species
adapted to warmer climates (Lu et al., 2020). Therefore, a
positive correlation is often observed between LAI and
temperature, meaning that as temperature increases, LAI also
tends to increase. On the other hand, precipitation directly
affects the availability of water for plants (Lu et al., 2020).
Sufficient water is crucial for plant growth, and precipitation
plays a vital role in providing water to the soil. In regions with
higher precipitation, there is generally more water available for plant
growth, leading to increased LAI. Therefore, a positive correlation is
often observed between LAI and precipitation, meaning that as
precipitation increases, LAI also tends to increase. The correlation
coefficient between LAI and precipitation, temperature, and
PM2.5 in YRSR showed the following differences from 2001 to
2020: temperature (0.84) had the highest correlation, followed by
precipitation (0.81), and then PM2.5 (0.65). Additionally, the

FIGURE 9
Spatial distribution of LAI correlation with precipitation rate in the Yellow River source region.
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FIGURE 10
Spatial distribution of LAI correlation with temperature in the Yellow River source region.

FIGURE 11
Average LAI for January ~ December by land cover type, 2001–2020 in the Yellow River source areas.
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correlation coefficient between LAI and precipitation decreases
closer to the boundary of the region, whereas the correlation
coefficient between LAI and temperature decreases towards the
center of the region. We believe that this phenomenon occurs

because when LAI is positively correlated with temperature, an
increase in temperature promotes vegetation growth, while an
increase in precipitation leads to a decrease in temperature.
Consequently, the correlation distribution between LAI and

FIGURE 12
(A) Inter-annual changes in LAI of different land cover types from 2001 to 2020, black line indicates grassland and (B) shifts in the proportional
coverage of different land cover types from 2001 to 2020. The rest percentage is the proportional coverage of Grassland.

FIGURE 13
(A) Areas and (B) percentage of land transition matrix for 8 land cover types in Yellow River source areas from 2001 to 2020.
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temperature is inverse to the correlation distribution between LAI
and precipitation. On the other hand, when LAI is highly correlated
with temperature in the center of the YRSR, an increase in
temperature inhibits vegetation growth, but precipitation is
conducive to a decrease in temperature, resulting in a positive
correlation between LAI and precipitation (Ma et al., 2023).

The multiple linear regression analysis of LAI, precipitation,
temperature and PM2.5 showed that temperature had highest
coefficient (0.018) with p-value <0.05, followed by PM2.5
(−0.0027) with p-value <0.05 and precipitation (0.00058) with
p-value <0.05. The residual trend analysis of LAI, precipitation,
temperature showed that the relative role of climate factors in LAI
change is 61% and the relative role of human activities in LAI
changes is 39% with p-value <0.01. This kind of results indicate
temperature influence the LAI most, followed by PM2.5 and
precipitation. The temperature is the main restricting factor for
vegetation growth in the YRSR. Climate change can alter the timing
of plant phenological events such as budburst and leaf senescence,
which can impact LAI. For instance, earlier spring phenology due to
climate change led to an increase in LAI in a temperate forest (Piao
et al., 2020; Gu et al., 2022). The decreased PM2.5 indicate reduced
transportation and industrial production by human activities. In this
area, strict environmental protection measurements have been
implemented to reduce pollution since 2000 due its significant
role for the whole Yellow River system, which is the most
important fresh water resources for China. These measurements
include: strictly control and manage the establishment of new

enterprises that have high pollution, high energy consumption,
high emissions, and high-water consumption; strictly control the
scale of industries such as steel, coal chemical, petrochemical, and
non-ferrous metals, and eliminate outdated and excess production
capacity in accordance with laws and regulations; prohibit the
construction and expansion of chemical industrial parks and
chemical projects within a certain range along the main and
tributary rivers of the Yellow River. Prohibit unreasonable water
demands such as “digging lakes for landscaping”. Moreover, the
impact of human-induced land cover change was relatively minimal
(Figure 13). However, the impact of reduced human activities on
LAI is still lower than that of warming climate in the YRSR.
Consequently, it can be concluded that climate change had more
significant influence than human activities on LAI.

The restricting factors for vegetation growth in the YRSR can
be attributed to a combination of temperature, precipitation, and
drought. These factors interact and influence each other,
ultimately impacting the overall vegetation productivity.
Temperature plays a crucial role in vegetation growth as it
affects various physiological processes. Higher temperatures
generally promote plant growth by increasing photosynthesis
rates and extending the growing season, which is the main
restricting factor for vegetation growth in this area. However,
extremely high temperatures can have detrimental effects,
leading to heat stress and reduced plant productivity. In the
YRSR, temperature-driven limitations on vegetation growth may
occur during periods of excessive heat, particularly in summer

FIGURE 14
Spatial distribution of PM2.5 trend in the Yellow River source region.
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months. Precipitation is another important factor influencing
vegetation growth. Sufficient rainfall provides the necessary
water supply for plants, supporting their growth and
development. Precipitation-driven limitations occur when
there is insufficient rainfall to meet the water requirements of
vegetation. In the YRSR, where water resources are relatively
scarce, precipitation limitations can occur during drier periods,
especially in spring and autumn when rainfall is typically lower.
Droughts, which are prolonged periods of abnormally low
precipitation, can have a severe impact on vegetation growth.
Drought-driven limitations occur when the available water is
significantly reduced, leading to water stress for plants. During
droughts, plants may experience reduced photosynthesis, stunted
growth, and even mortality. Droughts can also lead to soil
moisture depletion, making it challenging for plants to access
water even when precipitation resumes. In the YRSR, droughts
can be a significant restricting factor for vegetation growth,
especially during periods of prolonged water scarcity. It is
important to note that the relationship between temperature,
precipitation, and drought in vegetation growth is complex and
interconnected. While increased temperature and precipitation
generally promote vegetation growth, extreme temperatures and
droughts can have adverse effects. Therefore, a comprehensive
understanding of the interactions between these factors is crucial
for accurately assessing the limiting factors for vegetation growth
in the YRSR and their impact on LAI.

There is no time lag effect for correlation coefficient analysis
between PM2.5 and LAI, which indicate that they interact with
each other in this region. PM2.5 is a significant component of
anthropogenic aerosols and is considered a major air pollutant.
These fine particles can be emitted directly into the air or can
form through chemical reactions of precursor gases. PM2.5 is
harmful to human health as it can penetrate deep into the
respiratory system, leading to various respiratory and
cardiovascular diseases. Similarly, the mechanism of PM2.5 on
vegetation was also complex (Diener and Mudu, 2021).
According to this mechanism, an increase in PM2.5 generally
hinders vegetation growth, leading to a negative correlation
between LAI and PM2.5 in the whole of YRSR. Human
activities, such as industrial production, transportation, and
energy generation, can contribute to the release of pollutants
that lead to increased PM2.5 levels. However, it is not solely a
measure of the quantity of human activities, as natural sources
like dust storms, wildfires, and volcanic eruptions can also
contribute to PM2.5 levels. The PM2.5 can also be affected by
the LAI. Jin et al. (2014) investigates the impact of tree planting
on reducing PM2.5 concentrations in urban street canyons,
finding that while tree-free canyons showed declining
PM2.5 concentrations with increasing height, canyons with
trees had a less pronounced reduction rate and in some cases
even increased concentrations at the top, suggesting that tree
canopies trap PM2.5, and further analysis determined that
canopy density and LAI were significant predictors for
reducing PM2.5 concentrations. Therefore, it is imperative to
examine and assess the association between PM2.5 and LAI to
gain insights into vegetation’s sensitivity to aerosol radiative
forcing and offer guidance for the development of adaptation
strategies for vegetation in response to climate change.

4.3 Limitations and future research
directions

The aim of this study was to analyze the response of LAI to
climate change and human activities, and assess the correlation
between PM2.5 and Leaf Area Index (LAI). The findings of this
study can be used as a reference for maximizing the value of
investment in ecological restoration projects, avoiding costly and
simplistic plantings. However, there are certain limitations and
uncertainties that may affect the interpretation of the results.
Firstly, the data used in this study had inconsistent spatial
resolution and projected coordinate systems, requiring
resampling, which could introduce errors and affect the accuracy
of the results. Secondly, the study focused on the response of
vegetation to climate change, land use change, PM2.5 and the
correlation between LAI and influencing factor. The relationship
between human activities and climate change is complex and
bidirectional, leading to uncertainty when calculating the
correlation coefficient between LAI and influencing factors.
Lastly, the changes in LAI are influenced by multiple factors, and
this study only analyzed the correlation with temperature,
precipitation, land cover change, and PM2.5, without considering
factors such as carbon dioxide concentration, altitude, soil
conditions, and topography.

The size of the land matrix does not necessarily determine the
impact of human-induced land cover change. Even if the landmatrix
is small, human activities can still have significant impacts on land
cover and its associated ecological and social consequences, such as
the small water body areas in the main urban area of Guangzhou
played a significant role in enhancing the regional ecological
environment and ecosystem service function, which is crucial for
improving the overall sustainability (He et al., 2021). Human-
induced land cover change, such as deforestation, urbanization,
and agricultural expansion, can have far-reaching effects on
ecosystems, biodiversity, climate change, and local communities.
These impacts can occur regardless of the size of the landmatrix. It is
important to consider the specific context and scale of land cover
change when assessing its impact. Even small-scale land cover
changes can have cumulative effects over time, leading to habitat
fragmentation, loss of biodiversity, altered water cycles, and other
environmental changes. It is crucial to recognize and address the
potential consequences of land cover change, regardless of its scale.

Future research should address these uncertainties and
incorporate more natural factors and human activities when
studying long-term vegetation changes. This will help to uncover
the driving mechanisms of vegetation dynamics in YRSR, providing
important guidance for climate change adaptation, ecological
environment protection, and future environmental
decision-making.

5 Conclusion

This article aimed to analyze the spatiotemporal variations of the
leaf area index (LAI) in the Yellow River source region (YRSR) and
investigate its correlation with climatic and human factors. The
findings revealed that over the 20-year period, the LAI of vegetation
in the YRSR exhibited a normal distribution and showed an overall
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upward trend on an annual scale. Correlation analysis indicated a
significant positive relationship between the annual average LAI and
both annual precipitation and temperature in the YRSR. Specifically,
areas with higher vegetation coverage and lower average
temperatures exhibited stronger correlations, suggesting a greater
impact of temperature on vegetation growth. Furthermore, the
analysis of CNLUCC data revealed that most land cover types
displayed a unimodal trend in leaf area index (LAI) fluctuations
throughout the year. By examining CLCD data, it was determined
that the LAI values of all land cover types in the YRSR exhibited an
overall upward trend. Notably, wetland areas showed the highest
LAI values, while cropland experienced the highest rate of change in
LAI, and wetland areas exhibited the lowest rate of change. This
suggests that changes in land cover types, such as a conversion from
cropland to grassland and forest, an increase in forest and shrub
areas, and a decrease in grassland area, contributed to the overall
increase in LAI in the YRSR. However, the impact of human-
induced land cover change was relatively small. Additionally, the
interannual variation of PM2.5 in the YRSR from 2001 to
2020 demonstrated a downward trend, indicating a strong
correlation with the trend of LAI. Multiple linear regression
analysis considering climate factors and PM2.5 showed that
temperature had the strongest impact on LAI. Additionally,
residual trend analysis suggested that changes in LAI could be
attributed to both human activities and climate factors, with
climate change exerting a more significant influence on LAI than
human activities.
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