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Introduction: Highlighting and assessing land cover changes in a heterogeneous
landscape, such as those with surface mining activities, allows for understanding
the dynamics and status of the analyzed area. This paper focuses on the long-
term land cover changes in the Jiului Valley, the largest mining basin in Romania,
using Landsat temporal image series from 1988 to 2017.

Methods: The images were classified using the supervised Support Vector
Machine (SVM) algorithm incorporating four kernel functions and two
common algorithms (Maximum Likelihood Classification - MLC) and
(Minimum Distance - MD). Seven major land cover classes have been
identified: forest, pasture, agricultural land, built-up areas, mined areas, dump
sites, and water bodies. The accuracy of every classification algorithm was
evaluated through independent validation, and the differences in accuracy
were subsequently analyzed. Using the best-performing SVM-RBF algorithm,
classified maps of the study area were developed and used for assessing land
cover changes by post-classification comparison (PCC).

Results and discussions: All three algorithms displayed an overall accuracy,
ranging from 76.56% to 90.68%. The SVM algorithms outperformed MLC by
4.87%–8.80% and MD by 6.82%–10.67%. During the studied period, changes
occurred within analyzed classes, both directly and indirectly: forest, built-up
areas, mined areas, and water bodies experienced increases, whereas pasture,
agricultural land, and dump areas saw declines. The most notable changes
between 1988 and 2017 were observed in built-up and dump areas: the built-
up areas increased by 110.7%, while the dump sites decreased by 53.0%. The
mined class showed an average growth of 6.5%. By highlighting and mapping
long-term land cover changes in this area, along with their underlying causes, it
became possible to analyze the impact of land management and usage on
sustainable development and conservation effort over time.

KEYWORDS

support vector machine, maximum likelihood, minimum distance, machine learning
algorithm, Landsat, land cover changes

1 Introduction

Remote sensing satellite data is a valuable source for updating land cover classifications
(Chaves et al., 2020) and improving detection monitoring (Fraser et al., 2009). Providing
numerous advantages, image time series facilitate landscape mapping, assessment and
monitoring for various purposes (Praticò et al., 2021). Medium-resolution images such as
Landsat 5 Thematic Mapper (TM) and Landsat 8 Operational Land Imager (OLI) are cost-
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effective tools for describing landscape dynamics at broad scales and
detecting interactions between humans and nature (Cihlar, 2000;
Chaves et al., 2020). Based on satellite images, current and accurate
land cover maps can be obtained in a timely manner (Praticò
et al., 2021).

The mapping of land cover is a delicate process in which various
factors influence the quality of the final product (Khatami et al., 2016).
To address these factors and, consequently, the variable conditions in
specific study areas, various supervised object-based classification
methods are employed. These classification processes required
selecting multiple options, such as image type, image pre-processing,
segmentation method, training sample sets, accuracy assessment,
classification algorithm, target classes and landscape complexity (Lu
andWeng, 2007; Ma et al., 2017). The results were compared to results
obtained through existing methods, thus validating their applicability
(Ma et al., 2017). However, generalizing the results is problematic due to
the differences between the studied areas. A method providing good
classification accuracy in a specific study area cannot be generalized for
other study areas. Past disturbances or substantial changes in
environmental gradients (e.g., temperature, moisture, elevation)
increase the challenge associated with this issue when large areas
with complex landscapes are mapped (Rogan and Miller, 2006).
Such heterogeneous landscapes produce land cover categories that
are difficult to spectrally discriminate due to similarities between
classes (Rodriguez-Galiano et al., 2012).

Among the factors influencing the result of a supervised object-
based classification, and implicitly the outcomes highlighting long-
term land cover changes, the classification algorithm plays an
essential role. In the last three decades, numerous algorithms for
classifying satellite images have been developed and many studies
have analyzed their accuracy (Townshend, 1992; Hall et al., 1995;
Huang et al., 2002; Otukei and Blaschke, 2010; Szuster et al., 2011;
Shao and Lunetta, 2012; Vorovencii and Muntean, 2012; Karan and
Samadder, 2016; Karan and Samadder, 2018a). Among them, the
Maximum Likelihood Classifier (MLC), Minimum Distance to the
Mean (MD), Mahalanobis Distance (MLD) and Spectral Angle
Mapper (SAM) are viewed as the most common classifiers
(Sabins, 1997; ERDAS, 1999; Lillesand and Kiefer, 1999; Mather,
2005; Richards, 2013). Relatively novel classification algorithms,
considered more advanced classification algorithms, include
Random Forest (RF), Support Vector Machines (SVMs), Decision
Trees (DT), Relevance Vector Machines (RVM), Artificial Neural
Network (ANN) or Neural Net (NN), Object-Based Image Analysis
(OBIA) and Histogram Estimation Classifier (HEC) (Foody, 1986;
Hay et al., 2003; Pal and Mather, 2003; Lawrence et al., 2004; Mitra
et al., 2004; Lucieer, 2008; Pal, 2012; Roscher et al., 2012; Löw et al.,
2013; Tigges et al., 2013; Adelabu et al., 2014).

Common and advanced classification algorithms feature both
strengths and limitations. Common algorithms (parametric
algorithms) such as MLC assume the existence of a normal
multivariate distribution for each class (Huang et al., 2002;
Otukei and Blaschke, 2010) and a satisfactory number of training
samples (Lu and Weng, 2007). If a normal distribution of the data is
not ensured, which happens quite often in the case of land cover
classes, the parametric classifiers may fail due to the inability to
differentiate classes (Ustuner et al., 2015). This example illustrates
the main limitation of parametric classifiers (Otukei and Blaschke,
2010; Pal, 2012). Advanced classification algorithms (machine

learning algorithms) can overcome the limitations of parametric
classifiers in instances when the imagery data is not normally
distributed (Pal and Mather, 2003; Lu et al., 2004; Lu and Weng,
2007; Kavzoglu and Colkesen, 2009; Pal, 2012). Machine learning
algorithms have been frequently used in the past few years because
they are more accurate and more noise resistant than common
algorithms (Dietterich, 1998; Rodriguez-Galiano et al., 2012). SVMs
have the ability to produce higher classification accuracy even with a
small number of training samples (Mantero et al., 2005). For large
study areas, selection criteria for a suitable algorithm include its
ability to handle noise observations, operate in a complex
environment and use a proportionally small number of training
samples for the size of the study area (DeFries and Chan, 2000;
Rogan et al., 2008). In specialized literature, numerous studies have
aimed to compare and evaluate different classification algorithms for
diverse landscapes. Thus (Otukei and Blaschke, 2010), have
evaluated the performance of DT, SVM and MLC algorithms,
Szuster et al. (2011) have assessed and contrasted the
performance of MLC, NN and SVM, while Shao and Lunetta
(2012) have compared algorithms such as NN, SVM, and
Classification and Regression Tree (CART).

Regarding the classification of land cover from surface mining,
studies produced varying results (Townsend et al., 2009; Maxwell et al.,
2014; Karan and Samadder, 2016). Methods based on unsupervised
classification (Guebert and Gardner, 1989) and supervised
classification (Karan and Samadder, 2016) were applied to satellite
images with moderate spatial resolution. High spatial resolution
satellite images and machine learning algorithms are increasingly
used for land cover classification in surface mining (Chen et al.,
2020). Machine learning algorithms can accept various feature sets
that have proven valuable in surface mining classification (Chen et al.,
2020). Some of these algorithms have yielded excellent results and have
been widely used for this purpose; for example, SVM (Demirel et al.,
2011; Maxwell et al., 2014; Karan and Samadder, 2016), k-nearest
neighbor (k-NN) and RF (Maxwell et al., 2014). Demirel et al. (2011)
found that SVM is accurate and effective for monitoring the
environmental impacts of mining in remote mountainous locations
and when cloud cover is present on satellite images. Karan and
Samadder (2016) compared the SVM and MLC algorithms applied
to detect change in open cast mines using Landsat images and
concluded that SVM performs better than MLC. In addition, Karan
and Samadder (2018b) obtained an overall accuracy of 95% when
applying SVM to the classification of land use from the Jharia coalfield
in India using WorldView-2 images. In the same study (Karan and
Samadder, 2018a), MLC obtained the highest overall accuracy (84%)
among the common classifier algorithms, while MD reached only
80.47% accuracy. In another study based on Landsat 8 OLI, SVM
classification algorithms led to a superior classification of land use for
mining areas (Karan and Samadder, 2018b).

Several algorithms have been developed for detecting land cover
changes, including post-classification comparison (PCC), change
vector analysis (CVA), principal component analysis (PCA), and
image regression (Castellana et al., 2007; Bayarsaikhan et al., 2009).
Some studies have implemented PCC using supervised algorithms
such as SVM and MD, as well as the unsupervised classification
ISODATA (Iterative Self-Organizing DATa Analysis) applied to
Landsat images to detect changes during the study period (Mundia
and Aniya, 2005; Zewdie and Csaplovics, 2015; Esmail et al., 2016).
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For instance, in the study conducted by Pôças et al. (2011) covering
the period 1979-2002, changes were evaluated based on Landsat
images classified using the MLC algorithm utilizing reflectance
bands (1–5 and 7 for TM/ETM+ [Enhanced Thematic Mapper
Plus] bands, 1–4 for MSS [Multispectral Scanner]) and the
Normalized Difference Vegetation Index (NDVI). They found
that meadows and annual crops were the classes that experienced
the most significant changes, with meadow areas increasing by 60%
while annual crop areas decreased by 43.5%. In the study by Kumar
et al. (2021), a Landsat image time series (TM, ETM+, and OLI) and
the MLC algorithm were used to monitor land use and land cover
(LULC) changes in the Jhansi District of Uttar Pradesh for the
period 2000–2020. The results indicated that 27.55% of fallow and
barren land had been converted into crop land. Similarly, Wahla
et al. (2023) utilized Landsat TM, ETM+, and OLI satellite images to
map and monitor spatiotemporal LULC changes and their
relationship with normalized satellite indices and driving factors.
They found that the built-up area had increased by 6.25% from
1980 to 2020.

In the present study, we aimed to highlight and assess long-term
land cover changes in both mined areas and the complex
surrounding landscape within the Jiului Valley mining basin, the
largest in Romania, using Landsat TM and Landsat 8 OLI images.
Two main objectives were pursued: 1) mapping land cover classes in
a complex landscape featuring surface mining operations,
employing SVMs with four kernels - linear, polynomial, RBF,
and sigmoidal - as well as MLC and MD algorithms; and 2)
emphasizing and assessing the land cover changes based on the
results obtained from the most effective classification algorithm,
primarily within mined areas, spanning the period from 1988 to
2017 within the study area. Our study represents the first analysis
and assessment of the long-term land cover changes in the surface
mining areas of the Jiului Valley mining basin using satellite images,
thereby highlighting the dynamics and the basin’s status during
different periods.

2 Materials and methods

2.1 Study area

The study was conducted in Jiului Valley, Romania’s largest
surface mining basin, and the surrounding landscape (Figure 1). The
basin consists of the Rovinari and Motru Jilţ mining basins, both
occupied by open surface coal mining operations (Gresiţa, 2011;
Gresiţa, 2013). The study area spans 44°35′31″–45°01′43″ North
latitude and 22°53′46″–23°29′15″ East longitude and ranges between
330 m and 400 m in altitude, with a total area of 107,715.3 ha. The
average annual air temperature is 10.3°C and the average annual
amount of precipitation is 700 mm.

The area’s landscape structure and land cover dynamics exhibit
complex patterns. The study area comprises forests of different age
classes, agricultural lands, pastures and hayfields, surface mining
operations, built-up areas, dumps and water bodies. The forests
contain deciduous species (sessile oak, Turkey oak and beech),
mixed stands (beech, spruce and fir), coppices of alder and
riparian stands along the water bodies (Tudoran, 2013). Both
native species and species that have exceeded their range from
the steppe to the silvo-steppe exist on meadows and hayfields
(Tudoran and Zotta, 2020). Urban areas with a low density of
buildings and rural areas in fragmented settlements are situated
relatively close to the surface mining operations. Polluted land cover
classes can also be found in the Jiului Valley due to several coal
factories that existed nearby, especially before 1989.

2.2 Materials

This study used Landsat 5 TM and Landsat 8 OLI satellite
images acquired during the period 1988–2017 and downloaded
free of charge from the United States Geological Survey (USGS)
archive (https://earthexplorer.usgs.gov/). All Landsat images were

FIGURE 1
Location map of the study area.
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processed to L1TP-T1 level (georeferenced and orthorectified) and
used the Universal Transverse Mercator (UTM) projection system,
datum WGS 84, zone 34N. The images are cloud-free, acquired in a
season when vegetation is present, in different years but during the
same moon phase, in clear atmospheric conditions and with low noise.
Using near-anniversary images reduced variations resulting from the
sun angle, phenology and atmospheric condition. Information on the
Landsat imagery used in this study is presented in Table 1.

For each satellite image, cartographic materials prepared near
the image acquisition date were used to assess the accuracy of the
classified image. For the image acquired in 1988, the accuracy
assessment was conducted based on aerial photos taken in
1986 and the cadastral maps drafted in 1986 (Vorovencii, 2021);
for the 1998 image, aerial images taken in 1997 were used. The
accuracy assessment of classified images from 2008 to 2017 was
based on colored orthophotos (scale 1:5,000) drafted in 2008 and
2017 by the National Agency for Cadastre and Land Registration
(http://geoportal.ancpi.ro/) (Vorovencii, 2021); Google Maps
images and field data collection were also used for the image
acquired in 2017.

The precision of the cartographic products used for the accuracy
assessment depended on the precision of the instruments with which
they were generated. The cadastral maps were derived from
topographic maps obtained by photogrammetric stereorestitution
with a precision of 0.20 mm from the drafting scale. Aerial images
were taken at an approximate scale of 1:12,000. The orthophotos
used have a spatial resolution of 0.5 m and a precision of 1.5 m. To
ensure that the locations compared were identical, the cartographic
products used for the accuracy assessment were co-registered in the
same datum as the satellite images (WGS 84, zone 34N).

2.3 Image pre-processing

If two distinct features from a satellite image have the same
color, discriminating between them is challenging. Differentiating
and classifying the features is easier if they differ in tone or

brightness (Karan and Samadder, 2016). In this study, several
surface features had a similar spectral behavior on the mean
signature (e.g., mined and built-up).

The downloaded images belong to the TIERS 1 category,
meeting the qualitative criteria regarding geometry and
radiometry. These images are considered to contain the highest
quality Level-1 Precision Terrain (L1TP), suitable for analyzing land
cover changes. All utilized scenes (TM and OLI) provided by USGS
were georeferenced in the same projection system (UTM) within
prescribed image-to-image tolerances of 12-m root mean square
error (RMSE) and were used without further geometric processing.
The spatial resolution of both datasets is 30 m and did not require
resampling.

Due to variations in the spectral band configuration among
Landsat sensors, we process only the spectral bands with
corresponding wavelengths between TM and OLI sensors
(Table 1). The Landsat Collection 1 data contain radiation
measurements for reflective visible and infrared bands, which
are depicted as scaled reflectance (OLI) or radiance (TM),
recorded as integer digital numbers (DNs). We convert this
data into top-of-atmosphere (TOA) reflectance, ensuring
consistent scaling across all Landsat sensors. The spectral
reflectance values, ranging from zero to one, were adjusted and
recorded as a 16-bit unsigned integer due to the increased
sensitivity of the Landsat 8 OLI sensor. Standardizing Landsat
5 TM and Landsat 8 OLI images before classification ensured
bringing the data to the same scale and suitable format for
classification algorithms to accurately interpret the features and
variations within the images.

The images were atmospherically corrected using the dark object
subtraction (DOS) method to better differentiate such features
(Heumann, 2011), thus obtaining surface reflectance. This
technique can reduce the additive effects caused by atmospheric
haze, leading to an improved distinction between surface features.
Image pre-processing and classification was conducted using ENVI,
Erdas Image, and QGIS software. Figure 2 shows the overall
methodology implemented in this study.

TABLE 1 Characteristics of the satellite images used in the study.

Characteristics Landsat 5 TM Landsat 8 OLI

Acquisition date 22 August 1988, 2 August 1998, 13 August 2008 16 August 2017

Metadata Yes Yes

Spatial resolution (in m) MSS30 MSS30

Spectral resolution (in μm) Blue: (0.45–0.51) Blue: (0.45–0.51)

Green: (0.52–0.60) Green: (0.53–0.59)

Red: (0.63–0.69) Red: (0.64–0.67)

NIR: (0.76–0.90) NIR: (0.85–0.88)

SWIR: (1.55–1.75) SWIR: (1.57–1.65)

SWIR: (2.09–2.35) SWIR: (2.11–2.29)

Path/row 184/029 184/029

Available number of bands 7 (6 used in study: band 1–5, and 7) 11 (6 used in study: bands 2–7)
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2.4 Images classification

2.4.1 Support Vector Machine
SVMs represent a set of learning algorithms used for

classification and regression. The theoretical framework was
proposed by Vapnik and Chervonenkis (1971) and further
developed by Vapnik (1999). SVMs are non-parametric
classifiers. The result obtained by applying a SVM algorithm
depends on the quality of the data training process. We consider
training data, consisting of a number of samples k, represented as
{Xi, yi}, i = 1, . . ., k, where X ∈ RN is an N-dimensional space and
y ∈ −1,+1{ } is a class label (Nyamekye et al., 2021). These classes are
considered linearly separable (Nyamekye et al., 2021) if there is a
vector W perpendicular to the linear hyperplane and a scalar b
showing the offset of the discriminating hyperplane from the origin
(Osuna et al., 1997; Nyamekye et al., 2021). For example, for two
classes (class 1 represented by −1 and class 2 represented by +1), two
hyperplanes can be used to discriminate the data point into
representative classes (Otukei and Blaschke, 2010). These can be
expressed by (Otukei and Blaschke, 2010):

WXi + b ≥ +1 for all y = +1, for example, a member of class 1

WXi + b ≤ −1 for all y = −1, for example, a member of class 2
The two hyperplanes are chosen so as to exclude vectors and

maximize the distance between two classes (Otukei and Blaschke,
2010), with the aim of attributing the new data points to a given class
(Otukei and Blaschke, 2010).

SVM was initially developed to identify the linear boundaries
between classes. This limitation was addressed by projecting the
feature space at a large dimension under the assumption that a linear
boundary can exist within a feature space with a large dimensional
space (Kavzoglu and Colkesen, 2009). This projection to a higher
dimensionality is commonly referred to as the kernel trick. Kernel
functions used in SVMs can be broadly categorized into four groups:
linear, polynomial, radial basis function and sigmoid kernels
(Kavzoglu and Colkesen, 2009) (Table 2).

Each kernel must have a different set of user-controlled
parameters. These parameters consist of the cost C, the width
parameter γ, the bias term r and the polynomial degree d (in the
case where a polynomial kernel function is used) (Petropoulos et al.,
2012). Their optimization significantly increases the accuracy of the
SVM solution. The cost parameter C defines the amount of
misclassification allowed for data that are inseparable from the
training sample. Large values of C can lead to an over-fitting
model, affecting the shape of the class-dividing hyperplane and
the classification accuracy results (Melgani and Bruzzone, 2004).
The kernel width parameter γ influences the smoothness of the
class-dividing hyperplane’s shape (Melgani and Bruzzone, 2004).
The most common polynomial degree d is 2 (quadratic) because
larger degrees tend to overfit the model.

In the case of a data set, finding the optimal parameters
generates the best classification (Kavzoglu and Colkesen, 2009).
The grid search method is a method of choice for optimizing the
parameters (Hsu et al., 2016). In the grid search method, different
pairs of parameters are tested; the pair with the highest cross-
validation accuracy is searched for and selected (Kavzoglu and
Colkesen, 2009). The grid search method is conducted in two
steps. In the first step, a coarser grid (C, γ) with an exponentially
growing sequence is used (e.g., C = 2−5, 2−3 . . ., 215 and γ = 2−15, 2−13. .
., 23) and the cross-validation rate is calculated. In the second step,
the optimal region on the grid (C, γ) is identified, a finer grid is
searched for near the optimal region and a better cross-validation
rate is obtained. Then, the whole training set is trained again to
generate the final classifier (Kavzoglu and Colkesen, 2009; Hsu
et al., 2016).

One-against-all, one-against-one and directed acyclic graph
SVM (DAGSVM) strategies were developed for solving multiclass
problems by applying SVM (Weston and Watkins, 1998). The one-
against-all strategy divides an N-class scenario into N binary
scenarios, training each model to classify one class against all
others. Upon application to a test pixel, it computes a confidence
value indicating the likelihood of the pixel belonging to a specific
class, subsequently assigning the pixel the label of the class with the
highest confidence value. However, this method confronts
challenges due to potential imbalances in class sizes, which are
often mitigated by duplicating samples from the smaller class. Yet,
these imbalances can significantly impact the accuracy and
generalization capabilities of binary SVMs (Liu et al., 2021). The
one-against-one strategy generates N(N - 1)/2 classifiers, each
handling a pair of classes. During testing, each classifier

FIGURE 2
Flow of research in the classification of Landsat 5 TM and Landsat
8 OLI satellite images taken in areas with surface mining and hightlight
the land cover changes.
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contributes one vote for the winning class, and the test pixel is
assigned the label of the class with the most votes (Huang et al.,
2002). This strategy is widely regarded as a more efficient method for
multi-class classification compared to other approaches. The
DAGSVM strategy aligns closely with the one-against-one
method during training, utilizing N(N-1)/2 binary SVMs.
However, during testing, it adopts a rooted binary directed
acyclic graph structure featuring internal nodes and leaves,
representing binary SVMs for each class pair. The process
initiates at the root node by evaluating the binary decision
function, progressing either left or right based on the output,
ultimately predicting the class at a leaf node (Hsu and Lin, 2002).

The RBF kernel is widely used in SVM classification when
there’s no prior knowledge about the input data. This kernel is
stationary and invariant to translations, showing isotropic
properties where adjusting one parameter automatically scales all
others. In Table 2 (relation no. 3), the RBF kernel’s parameter γ is
defined as γ � − 1

2σ2, with σ controlling the kernel’s size, and
(‖xi − xj‖2) representing the squared Euclidean distance between
vectors xi and xj. Notably, there’s an inverse relationship between σ2
and γ. A larger γ value results in a smaller σ value, reducing the
kernel size. Tuning the adjustable parameter σ depends on the type
of application. Higher values tend to linearize the kernel, leading to
overestimation and the loss of non-linear dimensional projection.
Conversely, very small values affect regularization, making the
decision boundary sensitive to noise in the training data.
Parameter σ plays a role similar to p in the polynomial kernel,
influencing classifier flexibility. In essence, a higher γ value narrows
the influence zone for each training example in the new feature
space. With proper γ tuning, a new example will fall within the
influence zone of positive/negative samples accordingly (Albatal and
Little, 2014).

The discriminator function assesses whether input data is
linearly separable. For the RBF kernel, the output is zero if
‖xi − xj‖2 ≫ σ. This implies that when xi is fixed, a region
around xj exhibits a significantly large kernel value.
Consequently, the resultant discriminator function is the
algebraic sum of Gaussian areas centered around support vectors.
Larger σ values assign a non-zero kernel value to data points,
collectively influencing the discriminator function and creating a
smooth decision boundary. Reducing σ results in a more curved
decision surface with a more localized kernel function. Smaller σ
values make the discriminator function non-zero only in regions
proximal to each support vector. Thus, the discriminator function

remains constant outside concentrated data regions (Batta et al.,
2018). The mathematical foundation of the SVM algorithm is
extensively discussed in specialized literature (Weston and
Watkins, 1998; Hsu and Lin, 2002; Liu et al., 2021).

In this study, SVM was applied using linear (SVM-LIN),
polynomial (SVM-POL), radial base function (SVM-RBF) and
sigmoid (SVM-SIG) kernels. The parameters of RBF and
polynomial kernels were determined by a grid search method
using cross validation approach (Hsu et al., 2016). The
fundamental concept underlying the grid search method is to
explore diverse parameter combinations, selecting the one that
achieves the highest cross-validation accuracy. Similar approaches
have been utilized in previous studies involving SVM
implementation (Pal and Mather, 2006; Kuemmerle et al., 2009;
Petropoulos et al., 2012). Additionally, recommendations from the
ENVI User’s Guide (Visual Information Solutions, 2009) regarding
parameterization were also taken into consideration. For the cost C
parameter, values from 0 to 500 were considered and tested for all
kernels, with an increment of 50. Except for the linear kernel, the γ
parameter was set to 0.167, following suggestions from the ENVI
User’s Guide (Visual Information Solutions, 2009) and other studies
(Petropoulos et al., 2012). For both types of images, Landsat TM and
OLI, six spectral bands were used, resulting in γ = 0.167. Considering
the parameter settings, combinations of cost C and the γ parameter
were evaluated. For the pair that achieved the maximum overall
accuracy, those respective parameters were considered optimal. The
polynomial model with a degree of 2, a bias value of 1, a γ parameter
of 0.167, and a cost C of 250 produced the classification result with
the highest overall accuracy. The bias parameter established within
the kernel function for both polynomial and sigmoid kernels was
configured to a value of 1. The optimal values of these parameters are
presented in Table 2.

2.4.2 Maximum likelihood
The MLC classification algorithm is based on the folowing

equation (ERDAS, 1999):

D � ln ac( ) − 0.5 ln Covc| |( )[ ] − 0.5 X −Mc( )T Covc
−1( ) X −Mc( )[ ]

where D is the weighted distance (likelihood), c represents a
particular class of interest, X is the vector of spectral signature
for the candidate pixel from the testing data,Mc is the mean vector of
the sample of class c from the training data, ac is the percent
probability that any candidate pixel is a member of class c, Covc

TABLE 2 SVM parameters used in the study.

No. Kernel function Formula Kernel parameters Optimal parameters used in this study

1 Linear K(xi, xj) � xT
i xj C C = 200

2 Polynomial K(xi, xj) � (γxTi xj + r)d C, γ, r and d C = 250; γ = 0.167; r = 1; d = 2

3 RBF K(xi, yi) � exp(−γ‖xi − xj‖2 + C) C and γ C = 100; γ = 0.167

4 Sigmoid K(xi, yi) � tanh(γxTi xj + r) C, γ and r C = 100; γ = 0.167; r = 1

K(xi, xj)—the kernel function.

γ–the gamma function for all kernels used d–the degree defined in the polynomial kernel.

r–the bias term defined in the kernel function of both polynomial and sigmoid kernels.

C–the cost parameter (trade-off between training error and margin).

T–a transformation.
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is the covariance matrix of the pixels in the sample of class c from the
training data, ǀCovcǀ is the determinant of Covc (matrix algebra),
Covc

−1 is the inverse Covc (matrix algebra) (Kavzoglu and Colkesen,
2009), ln is the natural logarithm function and T is the transposition
function (Schrader and Pouncey, 1997; ERDAS, 1999; Mather,
2005). A pixel is assigned to class c, for which the likelihood is
the highest or the least weighted distance (Kavzoglu and
Colkesen, 2009).

The MLC algorithm is advantageous because it considers the
variance-covariance within the class distributions (ERDAS, 1999).
Assuming a normal distribution for each class, the probability of
errors in the classified image is small (Kavzoglu and Reis, 2008;
Kavzoglu and Colkesen, 2009).

2.4.3 Minimum distance
The MD decision rule determines the spectral distance between

the measurement vector for the candidate pixel and the mean vector
for each signature (ERDAS, 1999). It is simple and fast to compute,
requiring only the average of the vectors for each band resulting
from the sample training data. Candidate pixels are assigned to the
class that is spectrally closest to the sample mean. The computation
relationship is (ERDAS, 1999):

SDxyc �
�������������∑n
i�1

μci −Xxyi( )2√
where n is the number of bands, i representsa particular band, c is a
particular class, Xxyi represents the data file value of pixel x,y in band
i, µci is the data file values mean in band I for the sample for class c
and SDxyc is the spectral distance from pixel x,y to the mean of class c
(ERDAS, 1999). After calculating the spectral distance for all
possible classes, the candidate pixel is assigned to the class for
which SD is the lowest (ERDAS, 1999).

2.4.4 Classification scheme and training data
The land cover classification scheme consists of seven cover

classes representing the land cover in the studied area (Table 3). Six
bands were used for all applied algorithms to minimize the bias
caused by using different band combinations (Table 1).

Training samples for spectral signatures were collected by
digitizing homogeneous areas in satellite images. The samples
were collected using a RGB 752 (the shortwave infrared and
green bands) combination found to discriminate the land cover

classes in this case. In this combination, some areas found to be
polluted in the 1988 image, were more easily highlighted as part of
the class they represent. The training samples were randomly
selected in the known areas using ENVI software’s region of
interest (ROI) tools. Part of the training samples for 2017 were
collected in the field using a Trimble R8S receptor (Vorovencii,
2021). The distribution of samples was approximatively uniform
and adequately covered the entire study area. The pixels included in
training samples depended on the size of the land cover class;
therefore, training samples included fewer pixels for less
represented classes (e.g., dump, water) (Table 4). Collecting
training samples for the built-up class was challenging because
the area is fragmented, the built-up surfaces alternating with
pasture and agricultural land. The same training samples were
used for all algorithms.

2.4.5 Images classification and validation
Image classification was performed using ENVI software. The

SVM classification was performed using the following kernels:
linear, polynomial, RBF, and sigmoid. For each of the four SVM
algorithms, the input data were satellite images, the file with
previously collected spectral signatures (ROI files) and the
specific optimized parameters (Table 2). Satellite images and ROI
files were used as input for the MLC and MD. The same number of
bands (6 bands) was used for all algorithms. Classified maps were
smoothed using a 3 × 3 majority filter to minimize the ‘salt and
pepper’ appearance of the images.

For the accuracy assessment, a confusion matrix was used. The
overall accuracy, producer accuracy, user accuracy, quantity
disagreement and allocation disagreement, instead of the Kappa
coefficient (Foody, 2020), were calculated for each classified
map. The overall accuracy was calculated using the following
relationship (Congalton and Green, 2019):

Overall Accuracy � ∑k
i�1nii
n

where nii represents the number of samples classified into classes i
(i = 1, 2, . . . , k) (Congalton and Green, 2019).

Quantity disagreement measures the absolute differences in
proportions between the reference map and a comparison map
of the categories (Pontius and Millones, 2011). This metric occurs
when the number of pixels for each category differs in the two maps

TABLE 3 Land cover classes used in satellite images classification (Vorovencii, 2021).

Code Land cover classes Description

1 Forest Evergreen forests, deciduous forests, mixed forests, shrubs (hazelnuts, willow trees, etc.)

2 Pasture Areas consisting of arid land with short vegetation, areas with pasture and sparse grass

3 Agricultural Areas with tall vegetation which is mown, different agricultural crops

4 Built up Residential, commercial, industrial, parking, transportation and facilities

5 Mined (active or reclaimed) Areas with surface mines, areas with no vegetation cover inside surface mining, areas with sparse vegetation inside surface mining
(grass, shrubs, sparse forest)

6 Dump Sterile dumps

7 Water Rivers and lakes (natural or occurred after surface mining activity)
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and was calculated with the following relationships (Pontius and
Millones, 2011):

qg � ∑J
i�1
pig

⎛⎝ ⎞⎠ − ∑J
j�1
pgi

⎛⎝ ⎞⎠∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣

Q �
∑J
g�1

qg

2

where, qg represents the quantity disagreement for an arbitrary
category g, pig and pgi denote the estimated proportion of the
arbitrary category in the simulation and reference maps,
respectively, and Q represents the overall quantity.

Allocation disagreement refers to the difference between
observed and simulated maps that can be atributed to variations
in the spatial allocation of categories (Pontius and Millones, 2011).
This accuracy metric was calculated using the following relationship
(Pontius and Millones, 2011):

ag � 2min ∑J
i�1
pig

⎛⎝ ⎞⎠ − pgg, ∑J
j�1
pgi

⎛⎝ ⎞⎠ − pgg
⎡⎢⎢⎣ ⎤⎥⎥⎦

A �
∑J
g�1

ag

2

where, ag represents the allocation disagreement for an arbitrary category
g, pgg represents the observed proportion of category g allocated to
category g in the simulated map, and A represents overall allocation.
Quantity disagreement and allocation disagreement together contribute
to the overall disagreement D (Pontius and Millones, 2011).

Sample size planning is an imprecise science because it depends
on the accuracy and information available about the analyzed area.
Although this information is speculative before conducting accuracy
assessment, calculating the sample size per strata can provide
informative insights (Olofsson et al., 2014). To calculate the
sample size, the formula applied for overall accuracy for simple
random sampling and user’s accuracy for stratified random
sampling was used (Stehman and Foody, 2019):

n � z2p 1 − p( )
d2

where p represents the expected overall accuracy in the case of simple
random sampling or the expected user’s accuracy in the case of
stratified random sampling when determining the sampling size each
stratum, z is a percentile from the standard normal distribution (z =
1.96 for a 95% confidence interval), and d is the desired half-width of

the confidence interval (Olofsson et al., 2014; Stehman and Foody,
2019). In the current study, stratified random sampling was adopted,
with the stratum represented by thematic classes. For an expected
user’s accuracy of 50%, a 95% confidence level, and 5% margin of
error, a sample of 384 pixels was randomly selected from built up and
mined classes. For the remaining classes, the sample size was set at
246, considering an anticipated user’s accuracy of p = 0.80. Each
sample point was compared with the available reference data.

The accuracy assessment data used for validating the land cover
classes were independent of the data used to train the classification
(Stehman, 2009). In the case of images acquired in 1988 and 1998,
the overall accuracy was limited by the low number of data available.

2.4.6 Change detection
To compare the individually classified images and obtain “from–to”

information, the PCC technique was applied. Independently created
land cover maps from various years were compared with PCC using a
mathematical pixel-by-pixel arrangement (Toosi et al., 2019). The areas
of land cover changes for the entire period were established via cross-
tabulation, by subtracting the 1988 classification map from the
2017 map. The result of applying this technique was displayed as a
matrix, showing the changes. In this study, the PCC technique has been
used for the SVM-RBF algorithm and for four time periods: 1988–1998,
1998–2008, 2008–2017 and 1988–2017.

Change detection is particularly problematic for the accuracy
assessment because it is difficult to sample areas that will undergo
future changes before they occur (Congalton, 1988). Moreover,
position and attribute errors can propagate in the case of multiple
data, especially when more than two data are used, posing an
additional problem (Yuan et al., 2005). In the present study,
reference maps for the accuracy assessment of change did not exist
for every period. In this regard, the same reference data were used for
reference, based on which the assessment of overall accuracies was
carried out for individual clasification (Olofsson et al., 2014). To assess
the accuracy of the no change-changes classification, a simple size of
384 pixels was determined for each class, using stratified random
sampling, considering an expected user’s accuracy of 50%, a 95%
confidence level, and 5% margin of error.

3 Results

3.1 Classification results

For each of the four years in the satellite image time series, six
images corresponding to the classification algorithms were obtained,

TABLE 4 Pixel counts of the training samples collected from the seven land cover classes.

Year Land cover class

Forest Pasture Agricultural Built up Mined Dump Water

Pixels 1988 27,006 9,030 14,029 1,018 5,397 1,387 4,093

Pixels 1998 25,299 4,202 15,564 2,201 15,536 1,005 4,627

Pixels 2008 32,606 6,034 9,959 1,717 20,851 1,100 5,415

Pixels 2017 17,046 5,509 7,658 680 7,170 648 2,596
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generating a total of 24 classified maps (Figure 3). In each classified
image, all land cover classes defined by the classification were
identified. There were no unclassified pixels. Figure 4 presents
the land cover analysis, with the total surface covered by each
land cover class estimated by applying the algorithms.

The study area’s landscape is complex and the estimated surfaces
differed depending on the classification algorithm. All algorithms
estimated the largest surfaces in the agricultural and forest classes.
The agricultural class occupied an estimated area varying between
37.9% (MD, 2017) and 47.2% (SVM-POL, 1988) of the total study

FIGURE 3
Images obtained after applying the classification algorithms: (A). MD; (B). MLC; (C). SVM-RBF; (D). SVM-LIN; (E). SVM-POL; (F). SVM-SIG.
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area, while the forest class occupied between 33.9% (MLC, 1988) and
49.2% (MD, 2017). The pasture class covered an area of 5.2% (SVM-
LIN, 2008; SVM-POL, 2008; SMV-SIG, 2008, 2017) and up to 13.3%
(MLC, 1988). Although the mined and built-up classes occupied
smaller areas than the agricultural, forest and pasture classes, the
algorithms yielded a large range of estimates. The mined class
occupied an area ranging from 1.9% (MD, 2017) to 7.6% (SVM-
SIG, 2008), while the built-up class covered between 0.3% (SVM-SIG
1988; SVM-SIG 2008) and 4.5% (MLC, 2017) of the study area. The

areas estimated by all algorithms as covered by water or dump were
smaller than 2% and 0.9%, respectively. The surface areas estimated
by the four SVM algorithms were similar, with only minor
differences. In contrast, the areas estimated by the SVM
algorithms and common algorithms (MLC, MD) differed
considerably.

The results of the accuracy assessment using the confusion
matrix are presented in Figure 5 and Figure 6. The SVM-RBF
algorithm had the highest overall accuracy for all years studied,

FIGURE 4
The land cover situation obtained after applying the classification algorithms (A) and the percentage differences regarding the dynamics of land
cover classes for the analyzed periods (B).
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with the accuracy ranging between 86.56% (1988) and 90.68%
(2017). The overall accuracies of SVMs fluctuated between
83.38% (SVM-SIG, 1988) and 90.68% (SVM-RBF, 2017).
Common algorithms provided the lowest accuracy, with MD and
MLC performing only slightly above 75% (minimum 76.56% for
MD in 1988). The results obtained are similar to those highlighted in
other studies. For example, Bouaziz et al. (2017) obtained overall
accuracies of 91.20% for SVM-RBF, 90.01% for SVM-POL and only
86.00% and 78.75% for MLC and MD, respectively.

In all classified images, the MD and MCL algorithms led to the
lowest values for the user’s accuracy of the built-up class, with values
in the range of 50.52%–67.71% (Figure 6). This means that the pixels
classified on the map and ground represented the same class in this
interval. The user’s accuracy of the built-up class indicated high
errors of commission because other classes were highly misclassified
as built-up. This resulted in a low level of discrimination on the map
and an overestimation of this type of land cover (Figure 7).

In the case of the SVM algorithm, the user’s accuracy of the
built-up class was between 77.67% and 90.88% for all four analyzed
kernels, indicating lower errors of commission and a better
separation. The producer’s accuracy for the built-up class using
the MD algorithm exhibits similar results, with 57.06% in 1988 and
77.72% in 2008. In the case of the MD algorithm, both the user’s and
producer’s accuracies were low for the built-up class. For example,
even though 57.06% of the built-up class was identified as built-up in
the 1988 image, only 50.52% were actually built-up. For the mined
class, the MD and MCL algorithms produced low values (62.79%–
71.25%) and, implicitly, higher omission errors. The SVM algorithm
yielded producer’s accuracy values between 75.40% (mined - 1998)
and 97.93% (water −2017) for all classes.

Regarding the overall disagreement, the highest values were
estimated for MLC in the classification of the 2008 image (22.12%),
follwed byMD (19.95%) and SVM-SIG (18.36%) in the classification
of the 1988 image (Figure 8). The minimum overall disagreements
were found for SVM algorithms applied to the 2008 and
2017 images. Among them, SVM-POL had a lowest values,
specifically 10.10% for 2008 and 10.33% for 2017. In the case of

SVM-RBF, for all analysed years, the overall disagreement ranged
from 10.94% to 14.85%.

In the case of the common algorithms, the highest values for
quantity and allocation disagreement were observed for all images.
The highest quantity disagreement was found for the MLC
algorithm (14.38% - 2008), accounting for 65.00% of the overall
disagreement. High values of allocation disagreement were observed
for the MD algorithm (12.51% - 1988), representing 62.71% of the
overall disagreement, followed by the MLC algorithm (11.48% -
1988), accounting for 76.48% of the overall disagremement.

In the case of SVM algorithms, the values of quantity and
allocation disagreements were somewhat balanced. The highest
values were observed for the 1988 image, while the lowest values
were found for the 2017 image. The lowest value for quantity
disagreement was found for the SVM-RBF algorithm (4.72% -
2017), representing 43.14% of the overall disagreement. For
allocation disagreement, the lowest value was observed for SVM-
POL (4.17% - 2008), accounting for 41.29% of the overall
disagreement. The highest value for quantity disagreement was
estimated for the SVM-LIN algorithm (8.77%-1988), representing
50.23% of the overall disagreement, while for allocation
disagreement, the SVM-SIG algorithm had the highest value
(9.07% - 1988), accounting for 49.40% of the overall disagreement.

3.2 Land cover changes

Land cover changes in all analyzed periods affected all land cover
classes (Figure 4). All land cover changes were obtained based on
classified images showing the situation at the moment of image
acquisition. The land cover changes occurred in both directions,
with the land cover surface area increasing for some classes and
decreasing for other classes.

The SVMs algorithms, apart from SVM-SIG, produced similar
values for land cover changes. For the period 1988–2017, the
difference in terms of land cover changes was 0.6% for the
agricultural class, 1.4% for the forest class and 2.7% for the

FIGURE 5
Overall accuracies of classified images.
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pasture class. Mined and built-up areas constituted the principal
issue, with differences between SVM algorithms of 5.6% and 9.8%,
respectively. The land cover changes estimated using the SVM-SIG
algorithm differed substantially for some classes. Over the entire
study period, SVM-SIG estimated a 25.7% decrease in mined areas,
while the other SVMs algorithms estimated a 3.1%–8.7% increase.
This constitutes a significant discrepancy in both value and
direction. Indeed, on the 1988 image, SVM-SIG attributed a
5,142.8 ha area to the mined class, while SVM-RBF attributed
only 3534.4 ha. For the other years, the mined area estimates

were similar for all four SVMs. SVM-SIG generated a larger
mined area by including the marginal areas of the mined surfaces
with the other land cover classes and by classifying some small areas
dispersed throughout the studied area. In addition, SVM-SIG
estimated a 4.8% decrease in the agricultural class, compared to a
decline of 11.6%–12.2% estimated by the other algorithms.

Common algorithms performed differently for several land
cover classes, both among themselves and compared to SVMs. In
the period 1988–2017, MD revealed a 62.1% decrease in the mined
surface and MLC estimated a reduction of 37.7%. The built-up area

FIGURE 6
Producer’s (A) and user’s (B) accuracies of land cover classes.
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estimated by MD presented a decrease of 13.0%, while MLC showed
a 59.8% increase. Substantial differences were also reported in the
forest class, with MD and MLC estimating increases of 33.0% and
15.5%, respectively. In the agricultural class, MD revealed a 4.2%
decrease and MLC a 3.9% increase. This shows that common
algorithms disagree not only on the amount but also on the
direction of change.

Compared to SVMs, both common algorithms classified very
large areas in the built-up class. The estimated built-up area
increases between SVM-RBF and MLC were 514.6% (1988),
324.6% (1998), 317.3% (2008) and 390.3% (2017). Both common

algorithms classified large built-up areas in the 1988 image near the
mined area and in locations polluted by the factories existing at that
time. The SVM algorithms did not significantly misclassify the land
cover in these areas. In contrast, the MD and MLC algorithms
generally classified smaller areas in the mined class, except for the
1988 image. For this image, MD and MLC classified mined surfaces
of 5,296.9 ha and 5,563.8 ha, respectively; these areas exceed those
estimated by SVM-SIG. Therefore, MD and MLC indicated a
decrease in mined areas between 1988 and 2017.

The existence of mined areas located near built-up areas and
especially near polluted surfaces created a complex landscape,

FIGURE 7
Portion of images classified by the algorithms: (A) MD; (B) MLC; (C) SVM-RBF; (D) SVM-LIN; (E) SVM-POL; (F) SVM-SIG.
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leading to confusion between classes when passing from one class to
another. Misidentification also occurred between other classes, such
as forest being confused with pasture or agricultural land.

3.3 Post-classification comparison of
mined areas

SVM-RBF classified images reported higher accuracy for all
years; therefore, we opted to use the results from the SVM-RBF
algorithm for PCC change detection. The PCC technique was
applied to generate maps showing “from–to” information
related to the conversions of land cover classes from
analyzed periods.

The method used for accuracy assessment was described in
Section 2.4.6, where 768 random samples were classified as either
no-change or change class for four analyzed periods. The no-change
class included all surfaces without changes, while the change class
included those with changes. The overall accuracies of change
detection ranged from 68.49% to 73.31% (Table 5). Over the
entire period of 1988–2017, the false positive rate (false alarm),
which represents the number of no-change pixels incorrectly
detected as change, was 19.53%. This indicates an overestimation
of the change occurrences. The false negative rate, which represents
the number of change pixels incorrectly detected as no-change,
was 35.16%.

Table 6 presents the mined class “from–to” matrix obtained
from SVM-RBF independently classified maps. This matrix
indicates that estimated changes occurred in both directions:
from mined class to other land cover classes (forest, pasture, etc.)
and from the other land cover classes to mined class (Table 6)
(Vorovencii, 2021).

The largest increase in the mined class area occurred during the
period 1988–1998, corresponding to a growth of 3718.6 ha or
205.2%. During this period, 2468.0 ha (66.4%) of agricultural
land, 499.6 ha (13.4%) of pasture and 412.3 ha (11.1%) of forest
were converted to the mined class area, leading to this observed
increase in mined land.

During the period 1998–2008, the mined class area increased by
only 290.7 ha (4.0%). This modest increase results from the
conversion of a large area from forest to mined land, as well as a
reverse conversion frommined land to pasture. The other land cover
classes (agricultural, built-up and dump) did not contribute
substantially to the conversion, as areas at the end of the period
remained nearly the same as at the beginning. At 4088.3 ha, the
mined area was at its largest during the 1998–2008 period, as surface
mining exploitation was spreading in these locations.

The period 2008–2017 is characterized by a decrease in the total
mined area with 3778.2 ha (50.1%). During this period, only 92.9 ha
of forest were converted to mined land, with the remaining
conversions being from mined land to other classes (forest,
pasture, etc.). This period saw decreased mining exploitation and
several mined areas were reclaimed. The largest reclaimed surface
came from converting 2764.2 ha of mined area to agricultural land
and 501.6 ha to pasture. Several mined areas totaling 2429.8 ha
remained during this period.

Between 1988 and 2017, mined areas increased by 6.5%, the
increase being on average rather than linear. During this period, only
13.3% of the mined class remained unchanged. Conversions to and
from mined areas occurred. For example, 1917.9 ha were converted
from agricultural to mined land, while 1867.5 ha were converted
from mined to agricultural land, as certain locations with mined
areas were reclaimed and other agricultural areas were converted
into surface mining operations.

FIGURE 8
Quantity and allocation disagreement components for classification algorithms by years.
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4 Discussion

4.1 Accuracy assessment

A confusion matrix was used to assess algorithm accuracy on
Landsat images acquired in 1988, 1998, 2008 and 2017. Result
comparison revealed that the SVM-RBF algorithm provided the

highest values for overall accuracy, while the MD algorithm
provided the lowest values. Among the four SVM algorithms,
SVM-RBF improved the overall accuracy classification by 5.99%
for Landsat 5 TM and by 3.27% for Landsat 8 OLI images. These
results are similar to those achieved by another study (Karan and
Samadder, 2016) that found improvements of 6% and 3% for
Landsat 5 and Landsat 8 images, respectively, in detecting

TABLE 5 Change detection error matrices for 1988-1998, 1998-2008, 2008-2017, and 1988-2017 (SVM-RBF algorithm).

1988-1998

Classification Reference class Total User’s accuracy (%)

No-change Change

No-change 287 97 384 74.74

Change 145 239 384 62.24

Total 432 336 768

Producer’s accuracy (%) 66.44 71.13

Overall accuracy: 68.49%

1998–2008

Classification Reference class Total User’s accuracy (%)

No-change Change

No-change 298 86 384 77.60

Change 132 252 384 65.63

Total 430 338 768

Producer’s accuracy (%) 69.30 74.56

Overall accuracy: 71.61%

2008–2017

Classification Reference class Total User’s accuracy (%)

No-change Change

No-change 316 68 384 82.29

Change 137 247 384 64.32

Total 453 315 768

Producer’s accuracy (%) 69.76 78.41

Overall accuracy: 73.31%

1988–2017

Classification Reference class Total User’s accuracy (%)

No-change Change

No-change 309 75 384 80.47

Change 135 249 384 64.84

Total 444 324 768

Producer’s accuracy (%) 69.59 76.85

Overall accuracy: 72.66%
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changes in open-cast coal mining areas. We found that the SVM
algorithms provided better overall accuracy than the common
algorithms. More precisely, the SVM-RBF algorithm improved
the overall accuracy by 10.67% compared to MD and by 8.80%
compared to MLC.

The SVM algorithms exceeded MD and MLC in classifying
features with similar spectral behavior encountered in the complex
landscape. Using the SVMs, an improvement of up to 18.37% was
observed in the mined area classification and up to 40.36% in the
built-up area classification. SVM algorithms exceed MLC and MD,
ensuring higher classification accuracy for each class. This is
consistent with the proven high accuracy of SVMs with a small
number of training samples (Karan and Samadder, 2016). In
addition, Landsat 8 OLI has a higher spectral and radiometric
resolution than Landsat 5 TM, resulting in an improved apparent
reflectance of surface features and higher Landsat 8 OLI image
accuracies for all algorithms.

The achieved accuracies in the classification resulted in various
estimations of the area for each land cover class and consequently led
to diverse outcomes when assessing land cover changes. Additionally,
satellite images acquired at 10-year intervals might not have captured
all land cover changes. Determining the time interval between satellite
images from a time series depends on the characteristics of the class
and the changes being assessed. Some land cover classes in the studied
area may have undergone changes at shorter intervals (such as

pasture, agricultural), while others occurred over longer intervals
(like forest, water, etc.). Primarily focusing on the mined class, as
it exhibited minimal dynamics and did not display abrupt changes
between two time intervals, the interval between images was set at
10 years. Furthermore, to mitigate external factors such as sun angle
and environmental characteristics, it is crucial to utilize images with
anniversary or very near anniversary acquisition dates. The images
utilized were acquired in different years but within close dates (from
August 2nd to August 22nd) (Table 1). This approach aimed to
maintain consistent image acquisition conditions and avoided
selecting images from outside the specified interval. Moreover, no
suitable qualitative images (e.g., without cloud cover) captured at
shorter intervals were available in the USGS archive for the study area,
meeting the specified conditions within the chosen intervals, thereby
limiting the accuracy of our results. These considerations collectively
guided the selection of images at 10-year intervals.

However, the 10-year interval between images in the time series
contributed to several unexpected conversions. This might be
applicable to areas where conversions between all land cover
classes occurred within the same period. Some studies
recommend shortening the interval between time series images
(Petropoulos et al., 2012), while others advocate for a 5-year
interval (Townsend et al., 2009). Nevertheless, there are
specialized literature studies that have utilized satellite image time
series with 10-year intervals (Kumar et al., 2021).

TABLE 6 “From–to” matrix (in ha) obtained through cross-tabulation of the SVM-RBF classified maps for the mined class during the periods 1988–1998,
1998–2008, 2008–2017, and 1988–2017.

Period 1988–1998

Forest Pasture Agricultural Built up Mined Dump Water Total

From mined to land cover classes 86.4 25.1 1,366.8 80.2 1838.4 47.3 90.2 3534.4

From land cover classes to mined 498.7 524.7 3834.8 164.4 1838.4 244.1 147.9 7,253.0

Overall Accuracy: 68.49%

Period 1998–2008

Forest Pasture Agricultural Built up Mined Dump Water Total

From mined to land cover classes 99.2 207.7 2,245.1 308.1 4,088.3 79.6 79.6 7,253.0

From land cover classes to mined 645.0 49.4 2,214.4 315.7 4,088.3 83.6 147.3 7,543.7

Overall Accuracy: 71.61%

Period 2008–2017

Forest Pasture Agricultural Built up Mined Dump Water Total

From mined to land cover classes 221.3 543.3 3521.6 471.2 2,429.8 103.8 252.7 7,543.7

From land cover classes to mined 314.2 41.7 757.4 93.9 2,429.8 34.8 93.7 3765.5

Overall Accuracy: 73.31%

Period 1988–2017

Forest Pasture Agricultural Built up Mined Dump Water Total

From mined to land cover classes 389.0 383.9 1867.5 135.4 502.0 63.5 193.1 3534.4

From land cover classes to mined 818.0 296.3 1917.9 64.0 502.0 106.6 60.7 3765.5

Overall Accuracy: 72.66%
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4.2 Algorithms performance

Using the same training samples for each land cover class
allowed us to evaluate the relative performance of four advanced
SVM algorithms and two common algorithms (MLC and MD) in
classifying a complex landscape with surface mining from
Romania’s Jiului Valley. This is very important because the
accuracy of the selected algorithm as the best one determines the
outcomes of the long-term changes analysis.

The slight variations in classification accuracy produced by
SVMs may be attributed to the choice of the kernel function and
its parameters. Considering the overall accuracies, the SVM-RBF
algorithm yielded the best results, followed by SVM-POL, SVM-LIN
and SVM-SIG (Figure 5). As non-linear kernels, SVM-RBF and
SVM-POLmay have produced better results than SVM-LIN because
the class boundaries are non-linear or overlapping. Several studies
using machine learning algorithms investigated different SVM
parameters and demonstrated that contradictory results could be
achieved (Huang et al., 2002; Foody and Mathur, 2004; Melgani and
Bruzzone, 2004; Maxwell et al., 2014). For example, Melgani and
Bruzzone (2004) and Maxwell et al. (2014) explored whether SVMs
are robust to parameter settings. Maxwell et al. (2014) noted that
parameter optimization improved classification accuracy, with only
0.1% for mining and mine reclamation mapping. Foody andMathur
(2004) demonstrated that the γ parameter significantly affected
classification accuracy, with accuracies ranging from below 70%
to over 90%. Similarly, Huang et al. (2002) suggested that choosing a
RBF or polynomial kernel affected the shape of the decision
boundary. They showed that the classification errors vary with
the parameter γ when using a RBF kernel, especially when three
predictor variables were used instead of seven. For the polynomial
kernel, the authors determined that the classification accuracy
increases with the polynomial order. Thus, the slightly different
accuracies provided by SVMs in this study may result from the
parameter settings, despite parameter optimization. While the best
accuracy was established for the 2017 image, this accuracy may also
be related to the superior characteristics of the Landsat OLI sensor
compared to the Landsat 5 TM, an argument also mentioned in
previous studies (Toosi et al., 2019).

The locations of each class in the classified maps were best
identified by the SVM-POL algorithm applied to the 2008 image,
which showed the lowest value for allocation disagreement (4.17%–

41.29% of the overall disagreement). However, the quantity
disagreement (5.93%–58.71% of the overall disagreement)
indicate that the number of pixels perdicted for each class differs
significantly from the number of reference pixels.

For the common algorithms, the number of pixels in the classified
map was close to that in the reference map, resulting in low quantity
disagreement. This was observed, for exemple, in the case of MLC
applied to the 1988 image, where the quantity disagreement was
3.53%, and for the 2017 image, where the quantity disagreement was
5.06%. However, overall disagreement would still occur due to the
assignment of pixels into the wrong class by the classifier. On the other
hand, for the same algorithms and years, the allocation disagreement
was 11.48% and 7.57% respectively. This indicate that many areas
were classified in locations where they were not observed in the
reference data. In this situation, the most commonly affected classes
were built-up and mined classes.

For SVM-RBF, the disagreements due to quantity were larger
than those due to allocation for 1998 and 2008. This indicate that the
main disagreement between the two maps was primarily caused by
errors in the quantity of the pixels rather than allocation errors.
Although the overall disagreement for SVM-RBF was not the lowest,
the algorithm managed to effectively separate the classes by
optimizing the set parameters.

The major differences among SVM algorithms and between
SVMs and the common algorithms (MLC and MD) were
highlighted in the level of discrimination between mined classes
and the other classes, particularly the built-up class (Figure 7). The
SVM algorithms, principally SVM-RBF, have been better at
discriminating between mined and built-up areas without major
difficulties in learning the support vectors. However, the complex
characteristics of built-up areas contrast with the high homogeneity
of agricultural, forest or pasture areas, which posed intrinsic
classification difficulties for SVMs as well. Fringe areas,
characterized by alternating built-up land and agricultural land
or pasture, presented such a challenge. In the presence of fringe
areas, the classification accuracy for built-up areas remained inferior
to that of agricultural areas, an aspect also observed in other studies
(Xu et al., 2010; Myint et al., 2011; Ma et al., 2017).

Therefore, the primary challenge was distinguishing mined areas
from built-up areas. In many areas, mined land was classified as
built-up and vice versa. This error was especially common in
marginal, transitional areas between land cover classes. The built-
up class had a low user’s accuracy with the MD andMLC algorithms
(Figure 6); it was sometimes mistaken for other classes due to the
similarity of its spectral features and small height variances
(Vorovencii, 2021). The built-up class included urban areas with
a spectral reflectance similar to that of bare soil and rocks
(Vorovencii, 2021). In the case of rural areas, built-up areas
alternated with areas occupied by courtyards and gardens, giving
the area a fringed aspect and making built-up land difficult to
distinguish from agricultural land. The moderate spatial
resolution of the Landsat images (30 m) enhanced this effect,
further lowering the likelihood of adequately differentiating
these classes.

The two common algorithms produced classification errors
overestimating the built-up surface at the expense of mined areas
for all years, especially in 1988 (Figure 6). In 1988, large areas were
polluted due to local factories; these areas were classified as built-up
in the 1988 image (Figures 7A,B). The MD and MLC algorithms
generated the weakest results for these areas, mistaking the polluted
surfaces covered with vegetation for built-up or mined areas.

The MD algorithm depends solely on the mean vector for each
spectral class and does not use covariance information. This
algorithm performs better when the variance in the data is low.
However, the pixel values representing the polluted surfaces above
the built-up areas and near them in the 1988 image resulted in a
significantly split high variance. Therefore, the MD algorithm did
not perform well compared to the MLC algorithm for the built-up
class (Figure 4). Ganasri et al. (2014) obtained similar results for the
period 2007–2013, when an increase of 4.8% and a decrease of 44.3%
were obtained for the urban area by applying the MLC and MD
algorithms, respectively.

All algorithms produced some classification errors between
forest, pasture and agricultural classes. In some locations, mined
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areas were classified as pasture or agricultural land. This type of
errors frequently occurred in marginal zones, transitional areas
between different land classes, particularly in places where a
reclaimed mine is situated. The algorithms SVM-POL, SVM-LIN
and SVM-SIG slightly underestimated the built-up areas and slightly
overestimated the mined areas. Although both MD and MLC
algorithms overestimated built-up areas, MLC highlighted linear
details, such as paved roads, better than MD (especially in the
2008 image). The SVMs algorithms identified part of these linear
details as mined areas.

The accuracy sensitivity of the SVM classifications to training set
size indicates the need to include outlying cases for the training set,
yielding adequate support vectors. Although SVMs do not require a
large training sample set to estimate the statistical distribution, the
training sample must include useful support vectors that adequately
define the class boundaries (Foody and Mathur, 2004). The probability
of finding useful support vectors is higher in a large training sample
than in a small sample (Foody and Mathur, 2004). The training set size
was smaller for the mined and built-up classes considering the smaller
area they occupy and their distribution in the study area. A larger
training sample set would have increased the probability of including
mixed pixels. Results confirm that a balanced sample size is preferable.

The quality of the training data impacts the accuracy of the SVMs.
Foody et al. (2016) noted that SVM accuracy dropped by 8%when 20%
of the training data were mislabeled, emphasizing that training data
quality is essential even for robust algorithms. The accuracy of theMLC
andMD algorithms also depended on the quality of the training data. It
is possible that the training data given was not entirely qualitative. Land
was classified as mined or built-up areas where the probability of
includingmixed pixels in the training sample was high.Mixed pixels are
common in Landsat data due to the heterogeneity of the landscape and
the fact that the data’s spatial resolution is limited to 30 m. By using only
the features’ spectral signature, the existence of a large number of mixed
pixels in a training sample could lead to its deterioration. Under these
conditions, mixed spectral pixels can negatively impact the classification
results generated via MLC or MD.

In an imbalanced training dataset, classes with limited
representation across the study area often exhibit lower accuracies.
The disparity in coverage between built-up, mined areas, and the
forest class within our study area might lead to varied performance
of MD and MLC algorithms. For instance, in the 1988 image, the built-
up area accounts for 1.64% of the experimental area, mined areas for
8.71%, while the forest area covers 43.59%. This means that the training
samples for the built-up area represent only one twenty-sixth of the
forest area samples, while the training samples for mined areas represent
one-fifth. In the 2017 image, the built-up area represents 1.65%,while the
forest covers 41.27%of the experimental area, indicating one twenty-fifth
of the forest area samples. Data augmentation and training tuning could
serve as methods to improve the performance of MD and MLC.

In the present study, the number of training samplesmay have been
sufficient for SVMs but insufficient for the common algorithms, which
contributed to their poor accuracy. Indeed, some studies suggest that
SVMs require fewer training samples than common algorithms (Foody
andMathur, 2004). In this study, the training sample sets were larger for
the forest, pasture and agricultural classes and smaller for the other land
cover classes. The 1988 image was associated with the largest errors for
the MD and MLC algorithms. For this image, the training samples
represented 15.7% and 13.7% of the built-up and mined areas classified

by SVM-RBF (considered as a reference), respectively; this may not
have been sufficient for MD and MLC. The weight of training samples
was higher for the 1998 and 2008 images, where the SVMs algorithms
estimated mined and built-up surfaces with higher accuracy. For the
1998 image, training samples represented 19.3% of the mined class and
19.2% of the built-up class. For the 2008 image, they represented 24.9%
of the mined class and 12.8% of the built-up class. Therefore, the
percentage of training samples compared to the occupied surface
significantly affects the classification accuracy. Some studies have
noted that the training data can indeed have a greater impact than
the choice of algorithm (Huang et al., 2002).

Some studies suggest that SVM algorithms are insensitive to data
sizes, increases or decreases of band numbers taken into the
classification, and thus, that accuracy is independent of the
number of bands (Pal and Mather, 2006). Other studies show that
the classification accuracy using SVMs increases when the number of
bands included in the classification decreases (Weston et al., 2000).
The present study did not investigate the effect of the number of bands
on classification accuracy. The analysis focused solely on the six
optical bands aimed to assess and emphasize primary spectral features
and their influence on classification. Furthermore, the study
specifically examined temporal changes in spectral data, without
incorporating additional data that might have offered a more
spatial perspective rather than temporal. However, we can posit
that the number of bands used (6 bands) was too small to be a
decisive factor for classification accuracy for common algorithms.

Parametric classifiers assume that the data is representative and
normally distributed. However, most data collected in the field do
not follow any typical model (e.g., Gaussian mixture, linearly
separable), which is also the case with land cover classes. As such
parametric classifiers, MD and MLC provided poor accuracy
because the land cover data was not normally distributed, the
landscape being heterogeneous and complex. In addition, the
land cover surface distribution could not be described based on
data distribution as it exhibited a high level of uncertainty. In these
situations, non-parametric SVM algorithms yielded superior results.

Providing the weakest accuracy, the MD algorithm did not
consider the classes’ variability; this resulted in wide differences
among the classes’ variances and led to misclassifications. When the
landscape is complex, the parametric classifiers often produce ‘noisy’
results (Lu and Weng, 2007). Moreover, the MD algorithm computed
faster than SVMalgorithms due to itsmathematical simplicity, as it only
required mean vectors for each band in the training data.

The classification algorithms used in this study present both
advantages and disadvantages. Thus, the MD algorithm has proven to
be simple, fast, and works well when land cover classes exhibit good
discrimination in the feature space. However, the algorithm is sensitive to
variations anddata interferences,making it less efficient in classifying data
without a clear distribution. Additionally, in cases of multidimensional
data or data that does not separate well in the feature space, its
performance decreases. On the other hand, MLC is well-grounded
theoretically, having the ability to handle data with a more complex,
non-uniform distribution or with class overlap. Nevertheless, it is
sensitive to sample size, meaning its performance is affected when
using small samples. Also, with large datasets, it requires increased
computational power. Regarding SVMs, their advantage lies in their
ability to perform well in multidimensional spaces. By utilizing various
kernels, they adopt complex decision functions and can prevent
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overfitting. Furthermore, they are not as sensitive to sample size and can
work with smaller samples. However, SVMs are sensitive to kernel
selection, which means their performance is influenced by the correct
choice of the kernel and the establishment of optimal parameters. Also,
training an SVM model may require more time, especially with large
datasets or when using complex kernels. Therefore, each classification
algorithm has both strengths and limitations, and the choice of an
algorithm crucially depends on the specific objectives of the study, the
nature of the data, and the specific characteristics of the landscape.

4.3 Assessment of land cover changes

In addition to the results regarding map changes, the results
highlighted a 231.1 ha increase in surface mining in the study area
over the entire 1988–2017 period. The fluctuation in the surface area
subjected to surface mining during these three decades was high,
registering two peaks in the first two periods (1988–1998 and
1998–2008), followed by a decrease in the third period (2008–2017).
These two peaks correlate with the transition fromundergroundmining
to surfacemining that occurred after 1989, a transition that significantly
degraded the landscape in the area (Vorovencii, 2021). The relief was
modified by new forms, both positive (sterile dumps) and negative
(remaining quarry pits) (Fodor and Lazăr, 2006; Vorovencii, 2021). The
hydrological processes were affected by the removal of the topsoil and
vegetation cover by surface mining activity. The area experienced
changes in the quality and quantity of surface and underground
water, landslides and various geomechanical phenomena such as
subsidence (Fodor and Lazăr, 2006).

The profound changes observed during the study period are linked
to Romania’s socio-economic upheaval after 1989. These changes
touched all sectors of the economy through the transition from a
centralized economy to a market economy. An important factor is the
application of land laws, which aimed to restore property rights but also
led to the fragmentation of forests and agricultural lands. In the period
1988–2017, the forest class increased by 30.1% through the expansion of
trees and shrubs at the expense of pasture, which decreased by 47.7%.
The phenomenon followed the neglect of the pastures after 1989, which
were invaded by various shrub and tree species. The agricultural class
saw a decrease of 11.7% as the lands were no longer worked due to a
decreasing interest in agriculture. Inadequate government policies
regarding agricultural development were responsible for this decline.
New landowners did not own agricultural machinery or owned
inefficient machinery, resulting in low productivity. The move from
large-scale agricultural exploitations to small or very small areas
exploited by different owners also contributed to the decrease in
agricultural land. The built-up class experienced the largest growth
over the entire study period, particularly during the
1988–1998 subperiod. The reason for this growth is two-fold: first,
the construction sector underwent considerable growth after 1989;
secondly, numerous areas like riverbeds were misclassified as asphalt
or concrete areas. However, the built-up area decreased between
2008 and 2017 stands in contrast to the general upward trend
observed in built-up areas throughout the entire period. This
decrease is likely a result of including pixels from various classes,
notably those from the mined class, within the samples designated
as built-up. Romania joined the European Community in 2007, and
new environmental protection regulations were imposed that reduced

mining activity. As a result, numerous employees lost their jobs and
moved to other localities. The dump class decreased by 53% after 1988,
a decrease explained by their covering with grassy and shrubby
vegetation and some re-greening operations of surface mining areas.

4.4 Remarks to the study

The obtained results are specific to Romania’s Jiului Valley mining
basin. The possibility of generalizing the conclusions to other studies
conducted in regions with similar or dissimilar landscapes depends on
the specificities of these landscapes. This specificity can be influenced by
numerous factors, such as landscape structure, its unique characteristics,
human activities in the area, different geographical or ecological
variables that might be unique. Additionally, aspects related to the
methodology used, dataset specifics, algorithm peculiarities, and data
collection methods need to be considered.

Identifying regions with geographic, ecological characteristics,
and land cover classes similar to those in the Jiului Valley mining
basin is crucial. For landscapes with similar characteristics, the
conclusions drawn from this study might be applicable. However,
for landscapes with heterogeneity, diverse land cover types, intense
human activities, high ecological diversity, and substantial altitude
variations, generalizing the results and conclusions poses a
significant challenge. In such regions, the optimal algorithms and
parameters identified in this study might not be as effective or
suitable. In these circumstances, for SVMs, parameter tuning
becomes crucial to match the specifics of these landscapes and
ensure high accuracy and result relevance in a new context. For
common algorithms, the challenge lies in the quality and quantity of
data used for training and testing.

Moreover, adapting these algorithms andmethodologies in regions
with dissimilar landscapes might require additional resources such as
more detailed field data, satellite images with superior spatial,
radiometric, and spectral resolutions, and local expertise. Assessing
the availability of these resources can influence the practical applicability
of methodologies in other regions. Additionally, applying the
methodology in other regions with different landscapes necessitates
conducting additional field tests and validations to evaluate the
effectiveness and generalization of the conclusions. Comparing the
obtained results with field data and other information sources
strengthens confidence in generalizing the findings.

Examining how the findings of this study correspond to the
prerequisites and aims of particular domains (such as environmental
conservation and natural resource management) in diverse regions
is crucial to evaluate the usefulness and significance of the outcames.
In conclusion, although this study might provide relevant
information regarding land cover classification, highlighting, and
assessing land cover changes in Romania’s Jiului Valley mining
basin, the direct applicability of conclusions to other regions with
similar or dissimilar landscapes requires a more careful approach
and adequate adaptation.

5 Conclusion

Highlighting and assessing the long-term changes in the
complex landscape with surface mining from Jiului Valley,
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Romania, during the period of 1988–2017, was achieved by pursuing
two specific objectives. The first objective, integral to the adopted
method for highlighting land cover changes, involved mapping land
cover classes within the study area using multiple classification
algorithms. Using the same training data set, Landsat satellite
images were classified, resulting in various levels of accuracy. The
ability of SVM algorithms to generate an optimal separating
hyperplane led to improved performance compared to the MD
and MLC algorithms. The accuracies varied slightly among the four
SVM algorithms, and SVM-RBF performed best. The final results
depended on the chosen kernel, the optimization of the selected
kernel parameters and the method used to generate the SVM. An
accuracy assessment based on the confusion matrix revealed that
SVM algorithms produce more accurate estimates for classes with
overlapping spectral reflectance values on the signature plot. Among
the common algorithms, MLC performed better thanMD. However,
common algorithms give less reliable results than SVMs for complex
landscapes. Both common and advanced algorithms operate at the
pixel level rather than the sub-pixel level, possibly resulting in lower
accuracy due to mixed pixels when using medium spatial resolution
satellite images.

The second objective was to highlight and assess the land cover
changes in surface mining areas over a 29-year period. The
assessment was conducted based on the results obtained from
SVM-RBF algorithm, as it ensured the best accuracy. The PCC
technique was used to obtain change maps and “from–to”
information. Results suggest that detecting changes from satellite
images in a complex landscape is a complicate process, requiring a
unique approach applicable to all cases. During the study period,
mined areas increased on average by 6.5%, with considerable
increases and decreases in the intermediate periods. The
transition from underground to surface mining was the main
driving force behind this change. The expansion of surface
mining affected the landscape by changing the area’s relief and
degrading the ecological balance.

This study analyzes the long-term changes in Jiului Valley’s
mining landscape, shedding light on Romania’s shift from
underground to surface mining post-1989 and its socio-
economic impacts. The results provide valuable insights into the
relationship between socio-economic shifts and land cover, aiding
future research and land management strategies in analogous
settings. Emphasizing the significance of assessing land cover
changes in complex mining landscapes, the study highlights the
role of satellite imagery and machine learning algorithms,
particularly SVM, in ensuring accurate evaluations. It
underscores the use of satellite images over time as a key tool
for understanding human environmental impact and prioritizes
monitoring land cover changes to aid surface mining activities and
area reclamation.

To enhance the assessment of land cover changes, future
research will concentrate on utilizing images from new satellite
programs and data collected by unmanned aerial vehicles to depict
analyzed features more distinctly. For instance, we can utilize
satellite imagery from Copernicus programs such as radar images
from Sentinel-1 and optical images from Sentinel-2, the latter having
a spatial resolution of 10 m, as well as satellite images from Planet,
which offer a spatial resolution of 3.7 m. Additionally, the
exploration will involve the adoption of new, more effective

classification algorithms like machine learning and deep learning,
along with the utilization of alternative metrics for assessing
classification accuracy. Among machine learning algorithms,
successful candidates may include RF, Gradient Tree Boosting
(GTB), k-NN, while deep learning algorithms such as Convolutional
Neural Networks (CNNs), Recurrent Neural Networks (RNNs), U-Net
will also be examined. Furthermore, we aim to integrate texture features,
topographic details, vegetation indices, and other non-spectral
information into machine learning algorithms to further enhance
their performance in satellite image classification. Consequently, the
grey level co-occurrence matrix (GLCM) may be employed to extract
texture features like entropy, variance, correlation, contrast,
homogeneity, etc. Topographic data represented by digital elevation
model, slope, and aspect can significantly contribute to improving
classification accuracy, particularly in areas where vegetation is altitude-
dependent. Vegetation indices selection will be tailored based on the
study’s objectives, landscape nature, and land cover types. Other non-
spectral data that could be utilized encompass climatic or
meteorological data, geographical and socio-economic information,
or additional supplementary data sources.
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