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This research aims to evaluate various traditional or deep machine learning
algorithms for the prediction of groundwater level (GWL) using three key input
variables specific to Izeh City in the Khuzestan province of Iran: groundwater
extraction rate (E), rainfall rate (R), and river flow rate (P) (with 3 km distance).
Various traditional and deep machine learning (DML) algorithms, including
convolutional neural network (CNN), recurrent neural network (RNN), support
vector machine (SVM), decision tree (DT), random forest (RF), and generative
adversarial network (GAN), were evaluated. The convolutional neural network
(CNN) algorithm demonstrated superior performance among all the algorithms
evaluated in this study. The CNN model exhibited robustness against noise and
variability, scalability for handling large datasets with multiple input variables, and
parallelization capabilities for fast processing. Moreover, it autonomously learned
and identified data patterns, resulting in fewer outlier predictions. The CNN
model achieved the highest accuracy in GWL prediction, with an RMSE of
0.0558 and an R2 of 0.9948. It also showed no outlier data predictions,
indicating its reliability. Spearman and Pearson correlation analyses revealed
that P and E were the dataset’s most influential variables on GWL. This
research has significant implications for water resource management in Izeh
City and the Khuzestan province of Iran, aiding in conservation efforts and
increasing local crop productivity. The approach can also be applied to
predicting GWL in various global regions facing water scarcity due to
population growth. Future researchers are encouraged to consider these
factors for more accurate GWL predictions. Additionally, the CNN algorithm’s
performance can be further enhanced by incorporating additional input variables.
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1 Introduction

The groundwater level (GWL) is of critical importance, especially in arid and semi-arid
countries (Alfarrah andWalraevens, 2018; Bovolo et al., 2009; Priyan, 2021). In many areas,
the overexploitation of GWL has led to irreparable damage to the groundwater sources
(Alfarrah andWalraevens, 2018; Bovolo et al., 2009; Priyan, 2021). Predicting GWL is a key
challenge in hydrogeological investigations, effective aquifer management, and assessment
of subterranean water volume (Sun et al., 2022; Barzegar et al., 2017). Hydrogeological
studies have been conducted to estimate the potential of underground water, predict
changes in the GWL, and examine the current state of underground water resources (Hay
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and Mimura, 2005; Russo and Taddia, 2009). Empirical time series
models have been extensively used to predict GWL levels (Eriksson,
1970). The ability of empirical or numerical models such as finite
element groundwater flow system (FEFLOW)1 (Ma et al., 2022),
modular finite-difference flow model (MODFLOW)2 (Hughes et al.,
2022), and HydroGeoSphere3 (Kang et al., 2017) to estimate the
GWL has made these models helpful in predicting the GWL (Trefry
and Muffels, 2007; Wang et al., 2008; Brunner and Simmons, 2012).

1.1 Problem statement

The prediction of GWL is crucial for sustainable water resource
management, as accurate forecasts contribute to understanding the
availability and distribution of groundwater, essential for purposes
such as agriculture, drinking water supply, and ecosystem
maintenance (Singh et al., 2021a; Pragnaditya et al., 2021; Khan
et al., 2023). Machine learning (ML) techniques offer the potential to
analyze large and complex datasets, identify patterns, and make
predictions that inform decision-making in water resource
management (Singh, 2015; Singh et al., 2021b; Pham et al., 2022;
Ghobadi and Kang, 2023; Singh et al., 2024). By applying ML to
predict GWL, we can enhance our ability to monitor and manage
water resources effectively, ensuring their sustainable use over time
(Tao et al., 2022a; Pham et al., 2022). However, in Izeh City,
Khuzestan province of Iran, certain challenges, such as low
rainfall, increasing temperature, consecutive droughts, and
overexploitation of GWL for agricultural purposes, create gaps in
the prediction of GWL for this region. The absence of accurate
predictive models tailored to Izeh City’s unique context poses a
significant obstacle to achieving reliable predictions. Addressing
these challenges is crucial for developing robust ML models that
accurately forecast GWL in the region, thereby facilitating more
effective water resource management strategies.

1.2 Literature review

Using the mathematical model of the aquifer is one of the best
methods for managing and controlling the drop in water levels
(Rajaee et al., 2019). In GWL mathematical models, differential
equations are utilized to simulate GWL flow (Rajaee et al., 2019).
Since the dynamic behavior of a hydrological system changes with
the passage of time, the indicated models do not have adequate
ability to predict the characteristics of water resources and are not
suitable models (Rathinasamy et al., 2014). Physical models

generally excel at capturing and delineating the relationships
between variables, as they are built upon established scientific
principles and laws. These models are grounded in a
fundamental understanding of the underlying processes and
mechanisms governing the system under consideration. This
allows physical models to provide valuable insights into the
behavior and interactions of various components within the
system. Since the relationships between the variables affecting the
GWL are complex and non-linear, physical models in practice
require a lot of data to simulate the fluctuations of the GWL
(Nayak et al., 2006; Khan and Valeo, 2016). Deep learning
models, while powerful in terms of prediction performance, are
often considered black-box models with limited interpretability,
making it challenging to understand the exact relationships
between variables. Based on artificial neural network (ANN),
these models have shown remarkable success in various fields,
such as image recognition, natural language processing, and
gameplay (Nadiri et al., 2013).

Researchers have developed innovative approaches to predict the
water level in aquifers in light of the numerous issues with artificial
models for modeling aquifers (Tao et al., 2022b). Artificial intelligence
(AI) models have been applied in a number of areas recently,
including hydrogeological and underground water research (Nadiri
et al., 2014). AI algorithms can use sparse, brief data tomimic irregular
and non-linear time series with high accuracy. Due to their accuracy
and usefulness, these models have been employed in recent years to
anticipate the GWL (Franses and Van Dijk, 2000). Gong et al. (2015)
tested the validity of three nonlinear time-series intelligence models,
namely ANN, support vector machine (SVM), and adaptive neuro-
fuzzy inference system (ANFIS), for the prediction of GWL
considering surface water-groundwater interaction. The models
were applied to two wells near Lake Okeechobee in Florida,
United States, using a 10-year dataset of hydrological parameters.
Evaluation measures showed that the ANFIS and SVM models
provided more accurate predictions than the ANN model. Taking
into account the surface water-groundwater interaction improved the
prediction accuracy, particularly in areas close to the surface water,
such as the lake area (Gong et al., 2016). Wen et al. (2017) introduced
the wavelet analysis–artificial neural network (WA-ANN) model to
predict the GWL in China for the next 1, 2, and 3 months. GWL,
climate data, and water level were taken into consideration as input
data in this study. They concluded that the suggested model is most
accurate when the previous GWL is used as input data. In conclusion,
it can be claimed that the WA-ANN model is a reliable and effective
tool for estimating GWL (Wen et al., 2017). Kaya et al. (2018) used
196 data points from 2000 to 2015 to predict the GWL in the Turkish
province of Reyhanli. They applied ANN and M5tree (M5T) model
approaches in their investigation. They claimed that the
methodologies suggested in this study are remarkably accurate for
estimating the GWL and that the approaches presented in this study
perform effectively (Kaya et al., 2018). Zhang et al. (2018) developed a
Long short-term memory (LSTM) time series model to predict water
table depth in agricultural areas with complex hydrogeological
characteristics. Their proposed model outperformed the traditional
feed-forward neural network (FFNN) in GWL prediction, achieving
higher R2 scores (0.789–0.952). The dropout method effectively
prevented overfitting, and the model’s architecture demonstrated a
strong learning ability on time series data. The study suggests that the

1 FEFLOW: is a computer program for simulating groundwater flow, mass

transfer, and heat transfer in porous and fractured media

2 MODFLOW: is the U.S. Geological Survey modular finite-difference flow

model, which is a computer code that solves the groundwater

flow equation.

3 HydroGeoSphere: is a 3D control-volume finite element groundwater

model that accounts for surface and subsurface flow, solute and

energy transport, and heat transport.
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TABLE 1 List of the previous work on the prediction of the GWL based on DML.

References Study
year

Study
region

Sample size and data range ML/DL modeling method
used

Model
performance

RMSE R2

Gong et al 2015 United States A dataset of monthly records for 12 years and 10 years of data are used for training and the second 2 years’ data are
used for validation

ANN, SVM, and ANFIS 1.112 0.931

Wen et al 2017 China Dataset of monthly records for 7.5 years, a dataset from 2003/6–2008/12 were assigned for the training, and the
values of 2009/1–2010/12 for testing

WA-ANN 0.109 0.973

Zhang et al 2018 China Dataset of monthly records for 14 years, the first 12 years of time series data were used as a training set, and the next
2 years of data were used as a validation set

DNN, LSTM, Double-LSTM 0.070 0.952

Kaya, et al 2018 Turkey Dataset of monthly records for 16 years, total of 192, 144 data of 192 were used for training and 48 data were
analyzed for the test

ANN, M5T 2.050 0.892

Kombo, et al 2020 Rwanda Dataset of daily records for 2 years. The training and validation percentages for 90-day-ahead (t + 90) the used
prediction horizons were (98.0237% and 1.9763%) respectively

KNN-RF, ANN, KNN, SVM, RF 0.220 0.979

Kumar et al 2020 Japan Dataset of 84 data samples for 70 months, the training dataset (70% of total data), and the testing dataset (30% of
total data)

ELM-GPR 0.080 0.950

Sharafati et al 2020 Iran Dataset of monthly records for 10 years, the training dataset (75% of total data), and the testing dataset (25% of total
data)

GBR 0.088 0.940

Banadkooki et al 2020 Iran Dataset of monthly records for 13 years, the training dataset (70% of total data), and the testing dataset 30% of total
data)

MLP-WA, RBF-WA, GP 0.300 0.930

Osman et al 2021 Malaysia Dataset of daily data records for 9 months, the training dataset (70% of total data), and the testing dataset 30% of
total data)

Xgboost, ANN, SVR 0.138 0.920

Malakar et al 2021 India The dataset of data records for 23 years was collected four times per year; the total GWL dataset of 23 years (23 × 4 =
92 seasons, 1996–2018) is split into two parts: the training set (1996–2013, 18 years) and the testing data set

(2014–2018, 5 years) and finally predicted GWL for the next 5 years (2019–2023)

FNN, RNN, LSTM 0.490 0.920

Afan et al 2021 Malaysia Dataset of daily basis records from 2017 until mid of 2018, the training dataset (70% of total data), and the testing
dataset (30% of total data)

DL, EDL 0.145 0.790

Dehghani et al 2022 Iran Dataset of monthly records for 11 years, the training dataset (70% of total data), and the testing dataset (30% of total
data)

ANN, BWO, AIG, CSO 0.710 0.995

Khan et al 2023 World wide Dataset records of 109 articles with data records for 15 years, data processing, and the separation of training and
testing are not included in the Analysis

DL, ML - -

Mohammed et al 2023 Sonqor Dataset records of 306 months, training dataset (70% of total data), and the testing dataset (30% of total data) GA-ANN, GA-ICA, ELM, ORELM 0.420 0.916
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LSTM-based model can be a valuable alternative for the prediction
of GWL, particularly in data-scarce areas (Zhang et al., 2018).
Kombo et al. (2020) introduced the K-Nearest Neighbour-random
forest (KNN-RF) model along with ANN, KNN, SVM, and RF
models to predict changes in the GWL of an aquifer in eastern
Rwanda. The KNN-RF model is more accurate than other models,
as they determined from their research. They asserted that
planning and managing GWL resources can benefit from the
KNN-RF approach (Kombo et al., 2020). Kumar et al. (2020)
predicted GWL using a DL model alongside extreme learning
machine (ELM) and Gaussian process regression (GPR) models, in
the Konan basin, Japan. They assessed the DL model’s accuracy,
which showed excellent agreement during validation (RMSE =
0.08, r = 0.95, NSE = 0.87). Re-validation at different stations
demonstrated its robustness and generalization capabilities,
making it a reliable tool for predicting GWL and optimizing
resource allocation in groundwater systems (Kumar et al.,
2020). Sharafati et al. (2020) employed gradient boosting
regression (GBR) to predict monthly GWL in the Rafsanjan
aquifer, Iran, using various input variables, including satellite
data and pumping rates. They used the gamma test (GT) for
feature selection and assessed performance using error metrics.
The GBR yielded high predictive accuracy, especially with the
gravity recovery and climate experiment (GRACE) dataset
(Sharafati et al., 2020). Correlation analysis showed coefficient
of determination values ranging from 0.66 to 0.94 for different lead
times, with better accuracy in regions with higher water depth and
pumping rates. The study offers valuable insights for water
resource planning based on accurate modeling (Sharafati et al.,
2020). Banadkooki et al. (2020) aimed to predict GWL using
precipitation and temperature data with various temporal
delays. They employed the radial basis function–whale
algorithm (RBF-WA), multilayer perception (MLP–WA), and
genetic programming (GP) to build hybrid ANN models.
Results showed that the MLP–WA model outperformed others

when using temperature data with delays of 3, 6, and 9 months.
Combining precipitation and temperature data with these delays
yielded the best results (Banadkooki et al., 2020).

Osman et al. (2021) used three Xgboost models, an ANN, and
vector regression to predict the GWL in Selangor, Malaysia. This
study used 11 months fromOctober 2017 to July 2018 to collect data
for the models, including rainfall, temperature, previous day’s water
level, and evaporation. The study’s conclusions showed that the
Xgboost model produces more accurate prediction results (Osman
et al., 2021). Malakar et al. (2021) predicted future GWL trends in
India using GRACE-derived GWS, WaterGap model-based GWR,
and GWW. Their LSTM model outperformed FNN and RNN,
showing >84% of wells with r > 0.6 and RMSE <0.7. They
anticipate declining GWL trends in northwest, north-central, and
south India, which could impact water supply and crop production
for 1.3 billion people (Malakar et al., 2021). Afan et al. (2021)
employed deep learning (DL) and ensemble deep learning (EDL)
techniques to predict GWL in Malaysia. Their results revealed that
EDL outperformed DL in estimating GWL, except for the Paya
Indah Wetland. Additionally, EDL demonstrated superior
performance in predicting daily GWL across all stations,
reducing errors and providing precise results within a shorter
time lag. Overall, they revealed that the EDL model has the
potential to contribute to the sustainable management of GWL
in Malaysia (Afan et al., 2021). Khan et al. (2023) reviewed GWL
prediction models comprehensively. They examined 109 research
articles and concluded that ML and deep learning approaches are
efficient for modeling GWL. They also suggested future research
directions to enhance prediction accuracy and understanding in this
field (Khan et al., 2023). Dehghani and Torabi Poudeh, (2022)
predicted GWL in southwest Iran by employing several meta-
heuristic algorithms, including Feed-forward neural network
(FNN) and automated item generation (AIG) models. Utilizing
data on monthly rainfall, temperature, and water table height
from the Lorestan Regional Water Corporation spanning 2008 to
2018, their study demonstrated the superior accuracy of the ANN-
AIG hybrid model compared to other methods (Dehghani and
Torabi Poudeh, 2022). Mohammed et al. (2023) combined a
numerical model called GMS with methods like GA-ANN, GA-
ICA, extreme learning machine (ELM), and ORELM in order to
predict the GWL using piezometric data and rainfall information.
The results of this investigation showed that, compared to other
methods, the ORELM method accurately predicts the level of GWL
(Mohammed et al., 2023). Table 1 shows the research work for the
literature reviews used to predict GWL.

So far, no systematic study has been conducted to estimate the
GWL in Izeh City, which is located in the Khuzestan province of
Iran. Given that the region’s primary occupation is agriculture and
the prevalent use of GWL for domestic, agricultural, and industrial
purposes, accurate GWL prediction can significantly impact water
supply and crop production in this area.

2 Methodology

The diagram depicted in Figure 1 illustrates the prediction
procedure for GWL employing both traditional and deep ML
algorithms, including DT, RF, SVM, CNN, GAN, and RNN. The

FIGURE 1
Illustration of a flowchart for prediction of GWL based on
traditional and deep ML (DT, RF, SVM, CNN, GAN, and RNN).
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initial step of executing this methodology involves the collection of
data from Iran’s study area. Subsequently, the dataset undergoes
sorting and preprocessing stages, which encompass the removal of
outliers and duplicate data points. Following this, the data points are
normalized using Eq. (1).

ωl
i �

ωl
i − ωminl

ωmaxl − ωminl
( ) p 2 − 1 (1)

Finally, the dataset is randomly partitioned into training, testing,
and validation sets. To compare traditional and deep ML, various

metrics, such as RMSE and R-Square, are computed for each
algorithm. Sophistic ML models like CNN, GAN, and RNN are
developed using preprocessed data. Ultimately, the models’
performances are juxtaposed, leading to the selection of CNN as
the optimal approach for predicting GWL.

2.1 Traditional machine learning

2.1.1 Decision tree (DT)
The DT is a widely used supervised ML algorithm that is

particularly valuable for classification and prediction tasks by
dividing data into sub-trees and branching out further
(Kotsiantis, 2013). In this algorithm, the input variables (R, P,
and E) are considered trees, and the control parameters related
to the RF algorithm are considered nodes between the trees. Finally,
the final decision is known as the GWL prediction. This study
employed a regression decision tree model with specified
parameters. The maximum depth of the tree was set to 100,
indicating the maximum number of levels in the tree structure.
The criterion for measuring the quality of a split was chosen as
“Gini,” which typically assesses impurity for classification tasks,
although it is worth noting that for regression tasks, other criteria
like “mse” (Mean Squared Error) might be more common. The
splitter strategy was set to “best,” meaning the algorithm considers

FIGURE 2
Illustration of the (A) chain of RNN network, (B) GAN network, (C) CNN algorithm for prediction of GWL.

TABLE 2 The hyperparameters for RNN algorithm.

Parameters Values

Chaos 1.5

Time constant for model unit 0.3

Learning rate 1.0

Time constant of filtered white noise inputs 0.1

White noise input weight 0.001

Number of training iterations 100

Data time step size 0.01

Model RNN integration step size 0.001
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all possible splits and selects the one that optimally reduces impurity
or minimizes the mean squared error.

2.1.2 Random forest (RF)
The RF algorithm amalgamates the predictions stemming from

all constituent trees within the forest, averaging them to yield a
prediction that is not only more robust but also more accurate
(Gomes et al., 2017). This ensemble approach effectively counteracts
the influence of individual trees that might have generated
erroneous predictions or excessively adhered to the training
data’s idiosyncrasies. In this algorithm (RF) context, the input
and output variables (R, P, E, and GWL) are metaphorically
conceptualized as trees. The aggregate decisions and the ultimate
amalgamated tree are denoted as the GWL outcomes upon
culmination. This study employed a regression random forest
model with specific parameter settings. The maximum depth of
the trees in the forest was set to 100, indicating the maximum
number of levels in each decision tree. The random state was fixed at
0, ensuring reproducibility by keeping the randomness constant.
The number of decision trees in the forest was set to 0, which
typically means an unrestricted growth of trees until the specified
maximum depth is reached. The objective function used for training
the model was the Mean Squared Error (MSE), a measure that
quantifies the average squared difference between the predicted and
actual values, guiding the optimization process toward minimizing
prediction errors.

2.1.3 Support vector machines (SVM)
The versatility of SVM is evident in its utilization for both

classification and regression tasks, mirroring the functionalities of
DT and RF algorithms (Wang et al., 2022). The algorithm diligently
endeavors to expand these margins to their fullest potential,
effectively delving into the essence of generalized error learning
theory and striving to minimize errors to the greatest extent possible
(Kecman, 2001). This endeavor aligns with SVM’s overarching
objective of achieving optimal separation between distinct classes
or the prediction of accurate numerical values in regression
scenarios (Ozer et al., 2020). In this algorithm, the input

variables (R, P, and E) are the objective parameters discussed in
this article, while the output variable (GWL) is the predictive
parameter. In this study, a prediction model was developed with
specific hyperparameters: a batch size of 100, determining the
number of training samples processed in a single iteration; a
regularization parameter (C), which helps control overfitting by
penalizing significant coefficients in the model, set to 0.1; and the
utilization of a polynomial kernel.

2.2 Deep machine learning

2.2.1 Recurrent neural network (RNN)
An RNN is a specialized neural network for handling sequential

and time-series data, particularly suited for prediction GWL based
on input parameters P, R, and E (Panahi et al., 2020). Unlike
multilayer perceptron (MLP) and CNN architectures, RNNs
emphasize time considerations. While feed-forward networks like
CNNs are common, RNNs incorporate a feedback loop, enabling
them to retain prior inputs and process input sequences, preserving
information across moments (Kanjo et al., 2019; Garbin et al., 2020).
This characteristic ensures historical data’s retention within the
network. Figure 2A presents an RNN cell example (Han et al., 2021).

An RNN consists of a hidden state memory input (‘h’) and a
primary input ‘x’ (R, E, and P) (Ming et al., 2017). Processing occurs
through layers ‘wh’ and ‘wx’ for ‘h’ and ‘x’, respectively. ‘ht-1’ and ‘xt’
is multiplied by ‘wh’ and ‘wx’ weight matrices (Mirsalari et al., 2020)
summed as per Eq. (2), and activated by functions like tanh, sigmoid,
relu, etc. (Giordano et al., 2019) to yield ‘ht.’ See Figure 2A for the
RNN architecture.

ht � f whht−1 + wxxt + bh( ) (2)

The output above corresponds to the next hidden state (ht) and
the output of the RNN at time t. In Figure 2A X (1) serves as the
input sequence; h (0) and X (1) combine for the subsequent stage.
Outputs h (1) and X (2) in the following stage form input. During
training, previous inputs are remembered (Shi et al., 2017).
Unfolding the RNN over time creates a network chain.
Hyperparameters are detailed in Table 2. In the realm of
predicting GWL using an RNN algorithm, controlling chaos is

TABLE 3 The hyperparameters for the GAN algorithm.

Parameters Values

Generator time 1.1

Bot filter quantile 0.0001

Top filter quantile 0.99

Loss RMSE

Maximum depth 2

Maximum bin 100

Learning rate 0.001

Random state yes

Estimators 100

Batch size 500

Patience 25

TABLE 4 The hyperparameters for the CNN algorithm.

Parameters Values

Input layer 37

CONV layer 1(f = 3, s = 1) 74

POOL layer 1 24

CONV layer 2(f = 3, s = 1) 28

POOL layer 2 16

Fully connected layer 1 14

Fully connected layer 2 8

Softmax 4

Kernel size 3

Stride size 1
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important for stability. Adjusting the time constant for model units
aids in capturing the system’s dynamics while optimizing the
learning rate to fine-tune the model’s responsiveness. The time
constant of filtered white noise inputs and the weight assigned to
white noise inputs influence noise incorporation, demanding careful
calibration. Iterating the training process and modifying the data
time step size ensures model accuracy with evolving data patterns.
Furthermore, the RNN integration step size impacts temporal
resolution, necessitating strategic adjustments to balance
precision and computational efficiency in predicting GWL.

2.2.2 Generative adversarial networks (GAN)
The GANs, comprising a generator and a discriminator, identify

data patterns autonomously, engaging in a competition to evolve the
dataset (Shi et al., 2017). Figure 2B shows a GAN network.

The GANs consist of two neural networks: a generator G(x) and
a discriminator D(x). The generator produces synthetic samples to
increase the likelihood of fooling the discriminator (Dong and Lin,
2019). It takes noise vectors and generates fake data. Real and fake
data are then fed to the discriminator, which categorizes them (Li
et al., 2019). The model is trained by calculating the loss at the
discriminator’s end and adjusting parameters via backpropagation
(Alarsan and Younes, 2021). The GAN training process involves
selecting real data (X), passing it through the generator and applying
sigmoid activation, creating noise data (Z), generating samples
(G(Z)), evaluating loss, backpropagating to update discriminator
weights, using generator output to update its weights, and iterating
until optimal weights are achieved for both networks.

The discriminator loss function assesses D’s prediction on real/fake
data, calculated from errors made. Errors backpropagate to update
parameters (Azari et al., 2022). It comprises terms for real (x) and fake
(G(z)) inputs, with the real input loss term defined as expressed in Eq.
(3). The second term is for fake input (G(z)) as expressed in Eq. (4).

ld1 � log σ D x( )( ) (3)
ld2 � log (1 − σ D G z( )( )( ) (4)

In the equation, σ is the sigmoid function with an output range
of 0–1. An output near 1 implies accurate real data recognition by D,
resulting in minimal loss (Szandała, 2021).

The two-loss terms are computed and summed for the overall
discriminator network loss. The GAN hyperparameters, which are
pivotal for performance, are detailed in Table 3. Due to GAN-type
variance, tuning is essential. The generator time impacts training
duration and data quality; the lower filter quantile prevents biased
results, and the top filter quantile maintains alignment. The loss
function improves GAN via data distinctions, and the maximum
depth affects complexity and overfitting. The maximum bin and
learning rate control convergence, ensuring reproducibility through
a random state. Estimators boost diversity, batch size influences
stability, and patience counters overfitting. Control parameters are
fixed through careful calibration and iterative experimentation to
optimize performance for the prediction of GWL.

2.2.3 Convolutional neural network (CNN)
The CNN emulates the visual cortex with neurons, weights, and

biases. It comprises convolutional, pooling, and fully connected
layers (Azizah et al., 2017). Notably, the convolutional layer employs
operations, while the fully connected layer maps characteristics to
output. The CNNs maintain input structure, highlighting data
relationships (Yamashita et al., 2018). Training entails optimizing
parameters via backpropagation and gradient descent. Figure 2C
shows the structure of the CNN algorithm.

The main kernel of the CNN is the convolutional layer, which
has assigned most of the computations to the CNN (Wang et al.,
2017). Each convolutional layer in the CNN consists of a set of
filters, and the output is created from the convolution between the
filters and the input layer (O’Shea and Nash, 2015). The output of
the convolutional layer is called a feature map.

In CNNs, the convolution operator slides a kernel over the
input, multiplying its values with input values, creating a feature
map (Wang et al., 2021). Kernel count and size dictate operation
complexity, often 3 × 3, 5 × 5, or 7 × 7. The number determines the
output feature map depth. Padding maintains input size. The CNN
hyperparameters are in Table 4. Each control parameter serves a
specific function in the CNN algorithm for predicting GWL. The
input layer processes the initial data, the CONV layer extracts
features through convolution, the POOL layer reduces spatial
dimensions, and the Fully Connected layer combines features for

TABLE 5 Report of input/output variables in order to predict GWL for the data related to Izeh City of Khuzestan province of Iran.

Variable Groundwater extraction rate Groundwater recharge Groundwater level

Rainfall rate River flow rate

Abbreviation E R P GWL

Unit m3/day mm3/day m3/day m

Ave 5457.65 9.99 2,861.70 142.19

Std. Dev 253.18 11.25 221.91 6.11

Var 64070.96 126.47 49222.68 37.30

Min 5014.59 0.00 2,340.57 135.17

Max 5907.05 34.42 3359.47 157.69

Skew 0.03 0.58 −0.02 1.12

Kurt −1.21 −1.21 −0.69 0.18
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classification. Softmax provides probability scores. Kernel size
determines feature extraction scope, and Stride size controls filter
movement. Fixing parameters involves tuning through iterative
training and adjusting based on model performance and
validation results.

2.3 Spearman’s and Pearson’s correlation
and error metrics

One of the best methods for determining the relative importance
of input-independent variables compared to output-dependent
variables (GWL) is to use the Pearson’s coefficient (R) method.
This coefficient expresses a correlation between −1 and +1. Based on
this coefficient, a value of +1 has the most significant positive
impact, and a value of −1 has the most significant absolute
impact, while a zero value means there is no linear relationship
between two variables. Also, this parameter shows that it has no
effect. The Pearson’s correlation is shown in Eq. (5) (De Winter
et al., 2016).

Z � ∑n
i�1 Pi − �P( ) Ki − �K( )�����������∑n

i�1 Pi − �P( )2√ ������������∑n
i�1 Ki − �K( )2√ (5)

Spearman’s coefficient (ρ) is one of the coefficients of the input
data set compared to the output for the input variables compared to
the output variables. Data can be ranked using this parameter. This
equation is in the form of Eq. (6) (Alsaqr, 2021).

ρ � ∑n
i�1 Pi − �P( ) Ki − �K( )�����������������������∑n

i�1 Pi − �P( )2∑n
i�1 Ki − �K( )2√ (6)

In order to compare and measure the comparison, the equations
and statistical errors reported in Equations (7–9) are used.

STD �

�����������������������������������������������������∑n
i�1

GWL Meas.( )−GWL Pre.( )
GWL Meas.( )

x 100( )
i
− 1

n∑n
i�1 GWLMeas. i − GWLPre. i( )( )( )2

n − 1

√√
(7)

RMSE �
��������������������������
1
n
∑n

i�1 GWLMeas.i − GWLPred.i( )2
√

(8)

R2 � 1 − ∑N
i�1 GWLMeas. i − GWLPre.i( )2∑N

i�1 GWLPre.i − ∑n

I�1GWLMeas. i

n( )2 (9)

3 Data gathering and data distribution

River water imports, precipitation, and the negative parameter
of GWL withdrawal are among the positive parameters for GWL
(Machiwal and Singh, 2015; Zhang et al., 2019). To predict this
essential and vital parameter for human society, 2136-point data
collected from 2018 to 2022 employing various methods, such as a
water level sensor for groundwater level, a flow meter for
groundwater extraction rate, a rain gauge for rainfall rate, and a
stream gauge for river flow rate with 3 km distance, was gathered

FIGURE 3
Illustration of heat map for input variable for prediction of GWL based on traditional and deep ML (DT, RF, SVM, CNN, GAN, and RNN).
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from Izeh City in the Khuzestan province of Iran for this article.
BothIzeh City’s hydrology influences hydrology in Izeh City is
influenced by human activities and seasonal changes (Kalantari
et al., 2009; Hoseini, 2022). Human activities such as agriculture
and industrialization significantly impact the region’s hydrological
system (Nassery et al., 2009; Rashidi and Hosseinzadeh, 2019).
Agricultural practices, particularly irrigation, heavily rely on E,
which can lower the water level and alter the natural balance
(Jafari et al., 2015; Neissi et al., 2020). Industrial activities and
urbanization contribute to changes in surface runoff patterns and
can introduce pollutants into water sources (Rashidi and
Hosseinzadeh, 2019; Ziyari and Latifi, 2022). Additionally,
seasonal variations play a crucial role in the hydrological cycle of
Izeh City (Bakhtiari et al., 2021). During the rainy season, increased
precipitation and runoff lead to rising GWL, while dry seasons result
in decreased groundwater recharge due to higher evaporation rates
(Kalantari et al., 2009). Understanding the intricate relationship
between human activities, seasonal changes, and hydrology is vital
for sustainable water resource management in Iran’s Izeh City of
Khuzestan province (e.g., Nassery et al., 2009; Mahdavi et al., 2021).

In order to build a hybrid model of AI, 70% of the data is used for
training, 15% for testing, and 15% for validation. The use of data to
build the model is random. The statistical information related to the
data used in this article is reported in Table 5. Based on this table, the
range and values of statistical parameters are reported.

A heat map is used in order to distribute the data. As shown in
Figure 3, 400 data points of the E are in the range of 145 <
GWL <150, 1,300 data points of the E are in the range of 140 <
GWL <145, and 436 data points of the E are in the range
of GWL <140.

As shown in that figure, 300 data points of the R are in the range
of 145 < GWL <150, 1,100 data points of the R are in the range of
140 < GWL <145, and 736 data points of the R are in the range
of GWL <140.

Also, 300 data points of the P are in the range of 145 <
GWL <150, 1,236 data points of the P are in the range of 140 <
GWL <145, and 600 data points of the P are in the range
of GWL <140.

To present the Mean and StDev values, we have included the
data distribution and data values in Figure 4. As depicted in Figure 4,
the histograms visually represent the input/output variables,
including E, R, P, and GWL. The distribution of the recorded
values is displayed in the histogram for E, which also reveals the
frequency of various extraction levels. Similarly, the histogram for R
presents the distribution of R values, allowing us to observe the
frequency of different precipitation amounts. The histogram for P
displays the distribution of P data, providing an overview of the
frequency of P measurements. Lastly, the histogram for GWL
illustrates the distribution of measured values, giving us an
understanding of the frequency of different water level readings.

FIGURE 4
Illustration of histograms for input/output variables (groundwater extraction rate (E), rainfall rate (R), river flow rate (P), and groundwater level (GWL)).
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By examining this histogram, we can gain insights into the
variability and distribution of GWL, which are crucial for
assessing groundwater resources and potential fluctuations (e.g.,
Kumar and Ahmed, 2003; Ahmadi and Sedghamiz, 2007; Dash
et al., 2010).

4 Discussion of results

In order to predict this critical parameter, DT, RF, SVM, CNN,
GAN, and RNN traditional and deepML algorithms have been used.
The reports related to the results of training, testing, validation, and
total data are given in Table 6.

This article uses traditional and deep ML (DT, RF, SVM, CNN,
GAN, and RNN) methods to predict GWL. The statistical
parameters R2, STD, and RMSE are used to evaluate the
delivered models in Table 6. After checking the results from
Table 6, it is clear that the reports of the CNN model are better
than those of the RNN and GAN models. Based on the results

shown, it is determined that the values of RMSE and R2 for train,
test, validation, and total data are [0.0507, 0.0561, 0.0594, 0.0558]
and [0.9968, 0.9951, 0.9926, 0.9948], respectively.

Based on Figure 5, which shows the cross plot between the
measured data points and the predicted data, the best AI model for
regression can be determined from among the models provided.
This figure gives six traditional and deep ML models (DT, RF, SVM,
CNN, GAN, and RNN). Based on this figure, a good comparison can
be made between the models based on R2. Based on the results
presented visually for the whole dataset, it is clear that the RNN
algorithm has a higher accuracy than the other algorithms. Based on
the results shown, it is clear that the accuracy of these algorithms is
SVM < RF < DT < GAN < RNN < CNN.

Figure 6 shows the histogram of the GWL prediction error for
three newly developed deep ML algorithms. As shown in the
histogram diagram, GWL prediction errors are symmetrically
distributed at the zero point, and for the CNN algorithm, this
distribution is normal. Its statistical error distribution is either
positively or negatively distributed.

Based on the data presented in Figure 7, which illustrates the
relative error (%) versus data index for GWL prediction using deep
ML algorithms RNN, CNN, and GAN, we can analyze the error
ranges associated with each algorithm (e.g., Yoon et al., 2011;
Banadkooki et al., 2020; Di Nunno and Granata, 2020; Azari
et al., 2021). The figure provides valuable insights into the
accuracy of the DT, RF, SVM, CNN, GAN, and RNN algorithms
by depicting their respective relative error (%) ranges. Upon
examining Figure 7, we observe that the error range for the CNN
algorithm falls between −0.192 and 0.194. In contrast, the RNN
algorithm exhibits an error range of −0.693 to 0.729, while the GAN
algorithm spans from −0.850 to 0.850, the DT algorithm exhibits an
error range of −8.1936 to 10.4948, and the RF algorithm exhibits an
error range of −13.7735 to 14.085. while the SVM algorithm spans
from −14.7825 to 15.2825. These error ranges show the magnitude
and direction of the relative errors between the predicted and actual
GWL values (e.g., Yoon et al., 2011; Marchant et al., 2016). Based on
this information, it is concluded that the CNN algorithm
outperforms the RNN and GAN algorithms in terms of accuracy.
The GWL predictions made by the CNN algorithm exhibit a smaller
relative error (%) when compared to the RNN, GAN, DT, RF, and
SVM algorithms. Therefore, a comparison of these algorithms
reveals that the accuracy ranking is as follows: CNN > RNN >
GAN > DT > RF > SVM.

According to the graphical data in Figure 8 and Table 6, which
show the RMSE and R2 for GWL prediction utilizing deep ML
algorithms (DT, RF, SVM, CNN, GAN, and RNN), the performance
accuracy of RMSE and R2 yields contrasting results. In other words,
as the R2 value increases, the corresponding RMSE value decreases.
Furthermore, this figure effectively demonstrates the performance
accuracy of the algorithms employed for GWL prediction, with the
ranking as follows: CNN > RNN >GAN >DT > RF > SVM. Figure 8
provides valuable insights into the relationship between RMSE and
R2 in the context of GWL prediction. As the R2 value increases, it
indicates a stronger correlation between the predicted and actual
GWL values (e.g., Sakaguchi and Berge, 1998; Seifi et al., 2020; Wu
et al., 2023). Consequently, the RMSE value decreases, signifying a
smaller average error in the prediction (e.g., Mukherjee and
Ramachandran, 2018; Yosefvand and Shabanlou, 2020; Iqbal

TABLE 6 Statistical reports related to train, test, validation, and total results
were used to predict GWL based on traditional and deep ML (DT, RF, SVM,
CNN, GAN, and RNN).

Split dataset Model STD RMSE R2

Train CNN 0.0506 0.0507 0.9968

RNN 0.1372 0.1375 0.9887

GAN 0.3854 0.3857 0.9559

DT 1.8314 1.8517 0.8388

RF 2.4736 2.4479 0.7632

SVM 2.6471 2.6532 0.7234

Test CNN 0.0561 0.0561 0.9951

RNN 0.2004 0.2004 0.9845

GAN 0.4085 0.4086 0.9403

DT 2.0513 2.6517 0.8532

RF 2.8881 2.8884 0.7715

SVM 3.0615 3.0615 0.7417

Validation CNN 0.0593 0.0594 0.9926

RNN 0.2135 0.2197 0.9799

GAN 0.4130 0.4130 0.9394

DT 2.0009 2.0010 0.8523

RF 2.7894 2.8963 0.7709

SVM 3.0043 3.0017 0.7398

Total CNN 0.0558 0.0558 0.9948

RNN 0.2026 0.2025 0.9844

GAN 0.4086 0.4084 0.9452

DT 1.9612 2.1681 0.8481

RF 2.7170 2.7442 0.7685

SVM 2.9043 2.9055 0.7350
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FIGURE 5
Cross plot diagram for prediction of GWL value using new traditional and deep ML algorithms for RF (orange color), SVM (gray color), DT (purple
color), CNN (red color), RNN (green color), GAN (blue color) (DT, RF, SVM, CNN, GAN, and RNN).

FIGURE 6
Histogram plot to determine the error rate for GWL prediction using deepML algorithms RF (orange color), SVM (gray color), DT (purple color), CNN
(red color), RNN (green color), GAN (blue color) (DT, RF, SVM, CNN, GAN, and RNN).
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et al., 2021; Lin et al., 2022; Samantaray et al., 2022). The figure
reinforces the conclusion that the CNN algorithm outperforms the
RNN and GAN algorithms in terms of accuracy for GWL prediction.
The higher R2 and lower RMSE values associated with CNN
demonstrate its superior performance compared to the other
algorithms. Therefore, the comparative analysis suggests the
following accuracy ranking: CNN > RNN > GAN >
DT > RF > SVM.

A comparison of Pearson and Spearman correlation coefficients
based on Figure 9 can provide insight into the relationship between

input variables and GWL (e.g., Hauke and Kossowski, 2011; Worsa-
Kozak et al., 2020; Balacco et al., 2022). The observed negative
correlation between groundwater recharge (R and P) and GWL
indicates that these input factors yield a negative influence when
incorporated into the linear relationship governing GWL or when
included in the proportion it affects. In contrast, the observed
positive correlation between E and GWL indicates that E has a
positive power or direct proportionality when placed in the physical
linear relationship of GWL (e.g., Hauke and Kossowski, 2011;
Mukherjee and Ramachandran, 2018). The E involves drawing
water from underground aquifers for purposes like irrigation,
industry, and domestic use (Foster and Chilton, 2003; Worsa-
Kozak et al., 2020). This often leads to declining GWL as
extraction outpaces natural replenishment from R and
infiltration, creating a positive correlation between E and
GWL reduction.

In contrast, P can exhibit a negative correlation with GWL due
to stream-aquifer interaction. Elevated GWL can feed P, bolstering
their flow, while low GWL prompts P to recharge adjacent aquifers
by seeping water into the ground, establishing a dynamic that yields
a negative correlation between P and GWL. Given that the Pearson
value for R is approximately −0.00357 and close to zero, it can be
assumed that this parameter has little effect on GWL. The use of
both Pearson and Spearman correlation methods provides a robust
analysis of the data, and the results can be used to develop GWL
prediction models based on the input variables (Hauke and
Kossowski, 2011; Worsa-Kozak et al., 2020). Expressing the
relationships between input variables and GWL in Eq. (10)

FIGURE 7
Illustration of the relative error (%) versus data index for GWL prediction using deep ML algorithms (RF (orange color), SVM (gray color), DT (purple
color), CNN (red color), RNN (green color), GAN (blue color)).

FIGURE 8
Illustration of RMSE and R2 for GWL prediction using deep ML
algorithms (DT, RF, SVM, CNN, GAN, and RNN).
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allows quantitative data analysis and facilitates comparison with
other studies.

GWL � ∝ E( ) and GWL � ∝
1
P, R( ) (10)

The analysis of the Spearman and Pearson correlation
coefficient values indicates that variables P and E have a
stronger influence on GWL than variable R. This suggests that
E and P flow are more significant factors affecting GWL than R
(e.g., Kim et al., 2016; Csáfordi et al., 2017). However, it is
important to note that the relative importance of these
variables may vary depending on the specific site conditions
and hydrological characteristics. The relative contributions of
these variables to GWL can be determined with the aid of
additional analysis, such as regression modeling, which can
also offer insights into the underlying mechanisms causing the
observed correlations (Hauke and Kossowski, 2011). The
interpretation of the correlation coefficients should also
consider the statistical significance of the results as well as the
potential for confounding variables or measurement error
(Mukherjee and Ramachandran, 2018; Iqbal et al., 2021).

Deep learning’s outstanding capabilities include forecasting
crucial GWL characteristics (Sit et al., 2020; Afan et al., 2021;
Wunsch et al., 2021). By employing powerful algorithms, these
predictions can ensure accurate estimations, meet the water
supply needs of the people in the Izeh area, and enhance their
quality of life. The AI, including deep learning, has demonstrated its
value in predicting GWL parameters. Leveraging these sophisticated
algorithms, we can achieve precise predictions, thereby effectively
addressing the water supply requirements of the community in Izeh
and safeguarding their wellbeing.

5 Limitation

The limitations of this article are the lack of access to additional
information about water diversion, evaporation rate, and
temperature data in the target area, especially Izeh City. It is
recommended that other researchers consider the influence of

these parameters due to their considerable availability when
predicting GWL. Including these parameters in the prediction
model can provide a more accurate estimate of groundwater
resources. This is particularly important because various factors,
such as evaporation and temperature, affect GWL. Additionally, a
similar article has not been published for Izeh City so far, and it has
been somewhat challenging to provide data at this wide level.

Furthermore, it is essential to highlight that the effectiveness of
CNN algorithms in predicting GWL is enhanced when a substantial
number of input variables are employed. In this article, only three
parameters were utilized as input variables, leading to the
anticipation that augmenting the inputs will likely boost the
accuracy of GWL predictions. Hence, it is recommended that
researchers to incorporate a greater number of input variables to
enhance the algorithm’s accuracy.

6 Conclusion

An extensive 2,136 time series data points dataset has been
collected from the Izeh City of Khuzestan province in Iran. The
collected data was utilized using the DML technique to effectively
predict the GWL in the proximate wellbore regions by means of
three input variables: groundwater extraction rate (E), rainfall rate
(R), and river flow rate (P). Through analysis, it has been discovered
that deep machine learning (DML) algorithms, such as recurrent
neural network (RNN), convolutional neural network (CNN),
generative adversarial network (GAN), decision tree (DT),
random forest (RF), and support vector machine (SVM), which
are traditional and deep ML algorithms, can be employed to predict
GWL with remarkable precision. Moreover, the correlation
coefficient analyses of Pearson and Spearman revealed that the
GWL is negatively and indirectly related to the input variables of
groundwater recharge (R and P). However, the input variable “E”
exhibits a positive correlation with GWL.

Furthermore, the Spearman and Pearson correlation
coefficients ascertain that the input variables P and E have a
more significant influence on GWL compared to variable R.
Considering that the Pearson value for R is

FIGURE 9
Correlation between input and output parameters for Pearson and Spearman equations to predict GWL.
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approximately −0.00357 and close to zero, it can be inferred that
this parameter has little effect on GWL. However, deep learning
algorithms possess the capability to select impactful features and
eliminate less influential ones. The level of GWL prediction
accuracy achieved by the CNN model, applied to all data
records in the comprehensive dataset, is impressive: RMSE =
0.0558 and R2 = 0.9948. CNN, a cutting-edge deep ML
algorithm that is a robust and efficacious ML tool for data
point prediction processing, is applied in this study. Its
capability to learn and detect patterns in vast datasets makes it
an excellent choice for prediction data points with multiple input
variables. Some of the advantages of using CNN over DT, RF,
SVM, GAN, and RNN algorithms for the prediction of data points
include robustness to noise and variability, scalability to handle
extensive datasets with multiple input variables, parallelization for
rapid processing speeds for real-time and near real-time
applications, generalization to learn and identify patterns in
data without explicit programming, and fewer outlier data
predictions. This research can assist the residents of Izeh City
in the Khuzestan province in conserving and managing their water
resources and achieving increased crop productivity for the local
economy. This approach can be applied to predict GWL in
different parts of the world, and it can potentially improve
water management in regions facing water scarcity due to
global population growth.
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