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With the global goal of carbon neutrality being emphasized, the implementation
of carbon-neutral strategies has become a crucial task across various domains. As
an integral part of social activities, physical education also necessitates
considerations on how to reduce carbon emissions and implement carbon-
neutral strategies within the teaching process. This study focuses on physical
education and explores carbon-neutral strategies based on an end-to-end
architecture with an attention mechanism. Firstly, we introduce an end-to-
end framework that enables the integration and optimization of various
aspects within the teaching process to achieve comprehensive carbon-neutral
objectives. This framework serves as a unified optimization platform, facilitating
the collaboration of different components involved in teaching activities and
balancing the reduction of carbon emissions with teaching effectiveness.
Secondly, we employ Convolutional Neural Networks (CNN) as the
foundational model within the end-to-end architecture. Through training the
CNN model, we automate the analysis of carbon emissions during the teaching
process and provide corresponding carbon-neutral recommendations for
different segments. Most importantly, we incorporate an attention mechanism
to enhance the effectiveness and interpretability of the carbon-neutral strategy.
The attention mechanism assists the model in automatically focusing on features
or regions closely related to carbon-neutral objectives, thereby achieving more
accurate and efficient carbon-neutral strategy recommendations. Finally, we
conduct training and testing on the proposed model using a dataset
constructed from carbon-neutral scenarios in physical education (the country
where physical education occurred and digital energy have been scrutinized). The
results demonstrate that the improved model surpasses a 90% threshold in
mainstream evaluation metrics such as Action Recognition Accuracy (ARA),
Action Recognition Recall (ARR), and Action Optimization Rate (AOR). The
enhanced model exhibits notable improvements in inference speed
and accuracy.
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1 Introduction

As global climate change and environmental issues become
increasingly severe, humanity is confronted with unprecedented
challenges. Issues such as rising global temperatures, glacier melting,
sea-level rise, and frequent extreme weather events have already
demonstrated significant impacts, drawing widespread attention on
a global scale (Atwoli et al., 2021; Kyriakopoulos and Sebos 2023).
Carbon neutrality, as a comprehensive measure to combat climate
change, holds tremendous significance. Its core idea is to achieve a
balance between carbon emissions and carbon absorption by
reducing greenhouse gas emissions or increasing carbon
sequestration (He et al., 2023). This results in zero or even
negative growth of greenhouse gas emissions while developing
the economy and society. This means that we can continue to
develop without further adverse impacts on the climate system,
or even gradually restore and repair the environmental damage
already caused.

Although the global awareness of the significant impact of
carbon emissions on climate change is widespread, countries
have set carbon neutrality goals and taken active measures to
reduce carbon emissions. However, research and practical
implementation of carbon neutrality in the field of physical
education remain relatively scarce. Sports activities have often
been perceived in the past as social events unrelated to
environmental conservation. Firstly, people tend to underestimate
the potential scale of carbon emissions generated during physical
education activities. In aspects such as stadium lighting, sports
equipment production, and student transportation, physical
education activities may lead to significant carbon footprints that
should not be overlooked. Secondly, the education sector, especially
physical education, is generally less mentioned in discussions about
carbon neutrality. This exclusion may result in an underestimation
of the overall potential for carbon neutrality. As we recognize that
physical education is an integral part of education, it should actively
participate in carbon neutrality efforts to contribute to building a
low-carbon society (Liu et al., 2021). The process of physical
education directly or indirectly generates considerable carbon
emissions, as traditional teaching methods heavily rely on
physical teaching aids and facilities, leading to greenhouse gas
emissions during their production, use, and disposal processes.
At the same time, effective physical education can help cultivate
students’ awareness and habits of low-carbon living, which is
essential for achieving sustainable development (Nawi et al.,
2019). Therefore, it is necessary to delve into the factors
influencing carbon emissions in physical education and explore
scientific carbon neutrality strategies to reduce emissions and
promote sustainable development in physical education.

Currently, research on carbon neutrality strategies in physical
education is still in its early stages. As a part of social activities,
physical education is often marginalized and considered to
contribute insignificantly to global carbon neutrality goals.
Moreover, there exists a knowledge gap between the field of
sports and areas such as environmental science and climate
change. Consequently, researchers tend to concentrate more on
other fields more directly associated with carbon emissions. Scholars
and researchers may overlook opportunities to explore carbon-
neutral strategies in the field of physical education due to a lack

of understanding of each other’s domains. Nowadays, scholars both
domestically and internationally have begun to pay attention to the
application of carbon neutrality in physical education, but relevant
studies are still relatively limited (Ezeonu et al., 2023). Existing
research mainly focuses on theoretical discussions of carbon
neutrality (Chapman et al., 2022), the application of carbon
emission reduction technologies (Wei and Wang, 2021), and the
evaluation of carbon neutrality strategies (Rosa et al., 2021). The
application of carbon neutrality strategies in physical education aims
to achieve carbon neutrality goals by optimizing the teaching
process, improving facilities and equipment, and promoting
energy transition. For instance, introducing low-carbon sports
equipment and facilities, promoting eco-friendly modes of
transportation such as walking and cycling, and advocating green
and sustainable teaching concepts (Dällenbach 2020) are all
important approaches to promoting carbon neutrality in physical
education. At the same time, conducting research on carbon
neutrality strategies will also facilitate the development of eco-
friendly and sustainable physical education, cultivating students’
environmental awareness and concepts of sustainable development
(Tang, 2022). However, as a specialized field, carbon neutrality in
physical education involves numerous factors, such as carbon
emissions during the teaching process, the carbon footprint of
sports venues and equipment, and carbon emissions from
students’ participation in physical activities. Therefore, exploring
and applying carbon neutrality strategies comprehensively in
physical education, as well as evaluating their effectiveness and
feasibility, remain pressing issues. Moreover, implementing
carbon neutrality strategies in physical education also faces
several challenges. Firstly, physical education encompasses
multiple aspects, including teaching processes, equipment usage,
and venue construction, necessitating carbon emission reductions
from various angles; Secondly, students’ environmental awareness
and behavior habits also influence the implementation of carbon
neutrality; Lastly, the implementation of carbon neutrality strategies
requires certain economic and human resources (Wang et al., 2020),
and achieving a balance between economic and environmental
benefits in practice is also a crucial concern (Wang et al., 2019).
Moreover, in the field of architecture, as an important energy
consumption point, the energy consumption problem of school
buildings is increasingly attracting attention Kyriakopoulos et al.
(2022); (Ntanos et al., 2022).

In order to deal with many challenges faced by physical
education in the stage of carbon-neutral strategies and methods
(Chenm, 2022), such as the lack of a complete subject framework
and knowledge system, and the establishment of a scientific and
operable evaluation index system, etc. (Wang et al. 20221b). To this
end, we propose a carbon-neutral strategy method based on an end-
to-end attention mechanism, taking into account the entire process
of physical education teaching (Zhang et al., 2022). The framework
covers the teaching process, equipment use, and student
participation to ensure comprehensive coverage and effective
implementation of carbon-neutral strategies. Integrate the entire
process of physical education teaching through an end-to-end
framework. At the same time, in order to improve the pertinence
of the carbon neutral strategy, we introduce an attention mechanism
(Wang et al., 2023b). This mechanism can automatically identify the
key carbon emission links in physical education teaching, so that we
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can more accurately determine the focus and priority of carbon
emission reduction, thereby improving the pertinence and
effectiveness of carbon neutral strategies (Zheng et al., 2022b).
Finally, in the model, we employ a convolutional neural network
to extract features of carbon emissions in physical education
teaching. By applying the carbon-neutral strategy method of end-
to-end architecture and attention mechanism in physical education,
we can better adapt to different teaching scenarios and needs, and
realize the deep integration of carbon-neutral strategy and physical
education process, thereby promoting physical education Teaching
is developing in a green and sustainable direction, providing
valuable reference and suggestions for carbon-neutral strategies
in the energy transition driven by digital technology (Fu, 2023).
This research result is expected to contribute to the carbon neutrality
and sustainable development in the field of physical education
teaching, and promote the realization of global energy
transformation and carbon neutrality goals.

The contributions of this paper can be summarized in the
following three aspects:

1. In this study, we adopted an end-to-end framework,
integrating carbon neutrality strategies with the entire
process of physical education. Through the end-to-end
framework, we consolidated various aspects and data
sources in the teaching process, from data collection and
feature extraction in physical education to the
recommendation and application of carbon neutrality
strategies, achieving full automation and optimization
throughout the entire process.

2. The attention mechanism allowed the model to automatically
identify key aspects closely related to carbon neutrality goals in
physical education. By endowing the model with the ability to
focus on critical aspects, the attention mechanism enabled
targeted recommendations and optimizations for carbon
neutrality key points, thereby enhancing the precision and
effectiveness of carbon neutrality strategies.

3. Leveraging the excellent feature extraction capabilities of CNN,
we could automatically extract crucial features related to
carbon emissions from image data in physical education
scenarios. By combining CNN with attention mechanisms
and the end-to-end framework, we achieved comprehensive
learning and optimization of carbon neutrality strategies,
providing powerful technical support for achieving carbon
neutrality goals in physical education.

The logical structure of this paper is as follows: In Section 2, we
review the relevant literature in this research field both domestically
and internationally, with a focus on the latest advancements in
carbon neutrality and a comparison of the strengths and weaknesses
of different methods. In Section 3, we elaborate on the proposed
research methodology, including the concept and specific
implementation of the end-to-end framework, CNN model, and
attention mechanism. Section 4 provides a detailed description of
the experimental design, including the dataset used, its features,
experimental settings, evaluation metrics, and computation
methods. Moreover, we conduct a thorough analysis and
comparison of the experimental results obtained from different
methods. In Section 5, we discuss the results of the experiments,

highlighting the strengths, limitations, and potential improvements
of our model. Section 6 concludes the paper by summarizing the
main work, innovations, and contributions to the field, while also
providing an outlook on future research directions.

2 Related work

Against the backdrop of global carbon neutrality goals, the
implementation of carbon reduction strategies has become an
urgent task across various domains, including physical education,
as a significant societal activity. Reducing carbon emissions and
implementing carbon offset strategies in physical education not only
contribute to environmental protection but also align with the
requirements of sustainable development. Therefore, this study
focuses on physical education and explores a carbon offset
strategy method based on an end-to-end architecture with an
attention mechanism.

2.1 The application of deep learning
methods in achieving carbon
neutrality goals

In previous studies, relevant research has been conducted in the
fields of carbon neutrality, deep learning (Wu et al., 2024; Zheng
et al. 2022a; Dai et al. 2023b), and physical education, which have
provided valuable references and insights for our exploration in this
paper. For instance, in literature (Zhu et al. 2023), a comprehensive
approach integrating engineering, artificial intelligence, and hybrid
methods is employed for building energy usage prediction. The
focus is on utilizing historical data to forecast future energy
consumption, supporting carbon-neutral strategies. However,
there is a demand for intelligent solutions to improve
sustainability and efficiency in the field of sports facilities. In
literature (Elnour et al. 2022a), addressing sustainability and
efficiency concerns in sports facilities involves a comprehensive
integration of intelligent and effective solutions. The emphasis is on
operational management, sustainability, and energy optimization
aspects. However, there is a research gap in the study of sports
facilities in hot climate zones compared to the abundance of research
in cold climate zones, highlighting the need for more balanced
investigations. Existing research predominantly focuses on popular
facilities like swimming pools, leaving other types insufficiently
covered. Under the influence of China’s dual-carbon strategy, the
education sector, being a high carbon-consumption domain, holds
the potential to reduce carbon emissions. The advantages of digital
teaching not only enhance the quality of education but also
contribute to carbon emission reduction. However, a
comprehensive understanding of the impact of digital teaching
on carbon reduction requires more comparative analysis and
survey investigations, posing a significant challenge. Xinfa et al.
(2023) In the Building Automation and Management System
(BAMS), artificial intelligence-based big data analytics tools offer
tailored solutions for heating, ventilation, and air conditioning
systems (Himeur et al., 2023). However, a primary limitation lies
in their focus on controlling these systems, leaving other tasks
requiring manual operation challenges. Training machine
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learning algorithms in energy systems faces challenges, and transfer
learning is considered a prospective approach to address these
issues. Despite showcasing its application in energy prediction
and sports facility load forecasting through case studies, there is
still a need to overcome technical and methodological challenges.
The field of sports education holds the potential to foster critical and
systemic thinking, contributing to sustainable development goals.
However, specific strategies to achieve this goal require further in-
depth research and practical implementation. To meet the demands
of global higher education institutions transitioning to carbon-
neutral campuses, this study proposes a theoretical framework
based on social, technical, and ecological dimensions (Elnour
et al., 2022b). It provides implementation strategies and envisions
constructing a carbon-neutral intelligent service platform, validated
through a case study at Shanghai Jiao Tong University’s Fahua
campus (Wang et al. 2023a). The limitations of these methods
include the concentration of artificial intelligence-based big data
analytics tools in BAMS on controlling heating, ventilation, and air
conditioning systems. Transfer learning in energy systems still needs
to overcome technical and methodological challenges (Baena-
Morales et al., 2023). Further research is required in the sports
education field to implement specific strategies for cultivating
critical and systemic thinking. Additionally, achieving carbon-
neutral campuses necessitates addressing specific issues across
social, technical, and ecological dimensions (Himeur et al., 2022).
In reference (Köhl et al., 2020), a carbon balance evaluation index
was proposed to study the feasibility of biomass energy as a carbon-
neutral alternative. This research provides a theoretical foundation
and practical guidance for the carbon neutrality strategy in physical
education, helping us consider how to integrate and optimize
various aspects of physical education to achieve comprehensive
carbon neutrality goals. In reference (Minx et al., 2018), a
comparative analysis focused on negative emission technologies,
particularly the carbon neutrality effect of BECCS technology.
Although the research target differs, it has guiding significance
for finding carbon neutrality measures and transformation paths
in our study. It reminds us that the combination of negative
emission technologies and carbon neutrality strategies can bring
about more positive carbon balance effects in physical education
activities. Furthermore, reference (Hou et al., 2023) investigated the
technological paths and policy suggestions for achieving carbon
neutrality in the cement industry. Although the research object is
different, it holds practical significance for our efforts to adapt
carbon neutrality strategies to Chinese physical education
practices. The study offers specific recommendations tailored to
particular industries and energy structures, providing insights for
formulating carbon neutrality strategies in physical education.
Additionally, in reference (Wang et al., 2021), an energy system
model was used to analyze scenarios for achieving carbon neutrality
in China’s energy system. Although the research method varies, the
scenario analysis provides a scientific basis for devising carbon
neutrality policies and measures in our study. It suggests that
similar system simulation methods can be employed in physical
education to predict the timeline and emission levels of carbon
neutrality targets. Moreover, in reference (Wan et al., 2022), a novel
water quality prediction model called CSWLSTM-GPR based on
deep learning and Gaussian process regression was proposed for
monitoring carbon neutrality in the treatment of papermaking

wastewater. The model demonstrated high accuracy and
reliability in predicting effluent COD and suspended solids (SS).
In reference (Wang 2022), a deep learning-based model was
developed for the coordinated optimization of active and reactive
power in the electric interconnection system under the “carbon
neutrality” target, achieving safe and low-carbon economic dispatch
of the system. Furthermore, in reference (Huang et al., 2021), deep
learning was applied to predict carbon emission information in the
Yangtze River Economic Belt, where support vector regression
(SVR) combined with long short-term memory neural networks
demonstrated outstanding predictive performance. Overall, these
studies collectively demonstrate the potential of deep learning
methods in addressing complex problems and achieving carbon
neutrality goals (Dai et al., 2023a). They offer valuable insights and
methods in the fields of carbon neutrality and deep learning.
Although the specific focus and application contexts differ from
this study, the research conducted in these areas has inspired us to
explore carbon neutrality strategies in physical education. The
success and advantages of deep learning technology in other
domains lead us to believe that it also holds great potential for
application in carbon neutrality practices in physical education.

2.2 Integration of international carbon
neutrality experience and physical
education teaching

The above-mentioned literature collectively illustrates the
potential of deep learning methods in addressing complex issues
and achieving carbon neutrality goals. Their studies provide crucial
insights and methods for the fields of carbon neutrality and deep
learning. Furthermore, in response to the challenges of carbon
neutrality strategies, the European Commission has taken a series
of measures to promote the transition to low-carbon energy in
Europe, aiming to reduce greenhouse gas emissions. The
significance of sustainable energy development for global
progress emphasizes sustainability challenges such as greenhouse
gas emissions and climate change (Streimikiene et al., 2022). This
transition to sustainable energy requires the formulation of an
international strategic roadmap, including technological changes
such as improving energy efficiency, utilizing renewable energy, and
reducing greenhouse gas emissions. Amid the impact of the current
economic downturn, the education sector has become a highly
influential area of socio-economic activity. Based on this
understanding, our research aims to explore carbon-neutral
strategies applicable to sports education by drawing on the deep
learning methods and models presented in the literature above,
considering the specific characteristics and needs of sports teaching
(Kyriakopoulos 2021). Given the successes and advantages of deep
learning techniques in other fields (Štreimikienė et al. 2021), we
believe they hold potential for practical applications in carbon
neutrality practices within physical education.

In this study, we integrate the achievements of previous research,
combining knowledge from the carbon neutrality and deep learning
domains to apply them innovatively in the field of physical
education. By utilizing an end-to-end architecture and attention
mechanism, we will propose novel strategies for carbon neutrality in
physical education and experimentally verify their effectiveness.
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This comprehensive research approach not only fills the academic
gap in carbon neutrality-related disciplines within the field of
physical education but also offers important theoretical and
methodological support for the sustainable development and
realization of carbon neutrality objectives in physical education.
Within the context of digital technology-driven energy transition,
our focus lies on various aspects of digital transformation, providing
valuable references and recommendations for achieving green and
sustainable development. By integrating deep learning methods with
carbon neutrality strategies in physical education, this research
opens new avenues for the application of digital technology in
this domain and offers feasible solutions for the dual realization

of healthy development in physical education and carbon neutrality
objectives.

3 Methodology

In this study, we employ an experimental research design aimed
at exploring a carbon-neutral strategy approach in attention-based
physical education instruction under an end-to-end architecture.
We combine deep learning techniques to construct a model for
carbon-neutral strategy recommendation, and verify its effect and
performance through experiments. In this section, we will introduce

FIGURE 1
Overall Algorithm Flowchart. Firstly, the raw data is processed through the input module. Subsequently, an end-to-end architecture is employed to
construct a fully connected model. Following this, an attention mechanism is introduced, encompassing channel and spatial attention to enhance the
model’s focus on features related to carbon emissions. Finally, in-depth feature learning is conducted through the CNN module, integrating operations
such as Relu, Fusion, BatchNorm, forming a comprehensive algorithmic structure.
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the methods we used in the construction process in detail. The
overall algorithm flow of this paper is shown in Figure 1 below:

This comprehensive flowchart illustrates the roles of the
proposed end-to-end framework, attention mechanism, and CNN
module in the assessment of carbon neutrality in sports education.
Specifically, it encompasses three main steps: the end-to-end
architecture, attention mechanism, and CNN module, providing
a holistic approach to the comprehensive evaluation of carbon
emissions in sports education. The entire process embodies the
core principles of deep learning and feature extraction, offering
reliable technological support for achieving carbon neutrality goals.
Firstly, starting from the input module, raw data undergoes
processing. The MaxPool operation retains crucial information
through maximum pooling, while the Relu activation function
introduces non-linear mapping, effectively increasing the model’s
sensitivity to carbon emission features. The BatchNorm operation
enhances training stability through batch normalization, laying the
foundation for subsequent processing. The Conv operation is
responsible for extracting fundamental features related to carbon
emissions from the raw data. Secondly, we enter the end-to-end
architecture, which integrates and evaluates input features
comprehensively. This architecture autonomously learns and

extracts features related to carbon emissions through a fully
connected model, without relying on predefined rules, providing
the model with high adaptability and generalization capabilities.
This step forms the basis for an overall understanding of carbon
neutrality goals. Next, the attention mechanism is introduced,
including the Channel Attention Module (CAM) and Spatial
Attention Module (SAM). CAM highlights critical channels
through channel attention, while SAM emphasizes important
image regions through spatial attention. Their organic
combination forms CBAM, significantly enhancing the model’s
ability to grasp key features of carbon neutrality. This step allows
the model to focus more precisely when dealing with carbon
emission-related information. Finally, the CNN module delves
into exploring and abstracting input features in a more advanced
and abstract manner to understand key features of carbon emissions.
Operations such as Relu, Fusion, and BatchNorm further strengthen
the model’s expressive power and feature integration, creating a
comprehensive and robust algorithmic framework. This flowchart
provides a deep learning approach to carbon neutrality assessment
in sports education that is both comprehensive and powerful,
effectively addressing the complexity and diversity in carbon
emission evaluation.

FIGURE 2
End-to-end model.
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3.1 End-to-end model

We adopted an end-to-end architecture as the base model for
this study. The architecture allows for the integration and
optimization of all aspects of the teaching process in order to
achieve a comprehensive carbon-neutral goal. The end-to-end
architecture provides a unified optimization platform, so that
various components involved in teaching activities can cooperate
with each other (Chen et al., 2019), and comprehensively consider
the trade-off of carbon emission reduction and teaching effect. The
end-to-end model framework is shown in Figure 2 below:

The end-to-end framework includes three main components:
energy supply end, energy consumption end and anthropogenic
carbon sequestration end.

• Energy supply side: refers to the source of energy required in
the teaching process, including renewable energy (such as
solar energy, wind energy, etc.) and non-renewable energy
(such as coal, oil, etc.). The optimization goal of the energy
supply side is to increase the proportion of renewable energy
and reduce the proportion of non-renewable energy, thereby
reducing carbon emissions.

• Energy consumption: refers to the energy consumed in each
link of the teaching process, including classroom equipment
(such as lighting, air conditioning, etc.), teaching equipment
(such as projectors, computers, etc.), teaching activities (such
as sports, experiments, etc.). The optimization goal of the
energy consumption end is to reduce the energy consumption
of each link and improve the teaching effect index of each link,
so as to achieve the balance between the reduction of carbon
emissions and the improvement of teaching effect.

• Anthropogenic carbon sequestration: refers to the ability to
increase carbon sinks through artificial measures during the
teaching process, including afforestation, soil management,
and ecological restoration. The optimization goal of artificial
carbon sequestration is to increase the amount of carbon
sequestered in each link and offset the carbon emissions of
each link, so as to achieve carbon neutrality.

To formalize the optimization problem in an end-to-end
framework, we first give some notations and definitions.
Assuming that the teaching process involves N links, each
link i has an energy consumption Ei (unit is kilogram
standard coal), a carbon emission Ci (unit is kilogram carbon
dioxide), and a teaching effect index Qi (unit is fraction), and a
non-carbon energy substitution ratio Ri (in percent). Then the
optimization objective of the end-to-end framework can be
expressed as Eq. 1:

max∑
N

i�1
Qi − λ∑

N

i�1
Ci (1)

Among them, λ is a positive parameter, indicating the impact
weight of carbon emission reduction on teaching effect. At the same
time, the following constraints need to be met Eq. 2:

∑
N

i�1
Ei ≤Emax

Ri ≥Rmin, i � 1, 2, . . . , N

(2)

Among them, Emax is the upper limit of energy consumption in
the teaching process, and Rmin is the lower limit of the replacement
ratio of non-carbon energy.

In this way, by solving this optimization problem, the optimal
energy consumption, carbon emissions, teaching effect indicators
and non-carbon energy substitution ratio of each link can be
obtained, so as to achieve the optimization goal of the end-to-
end framework. We use a CNN model to approximate the solution
of this optimization problem, and the specific model structure and
training method will be introduced in the next subsection.

3.2 Convolutional neural network
(CNN) model

To approximate the solution of the optimization problem in an
end-to-end framework, we use a CNN as the underlying model of the
end-to-end architecture. CNN is a deep learning model that can
efficiently process high-dimensional data such as images, speech, and
text. The main feature of CNN is to use convolutional layers, pooling
layers and fully connected layers to build complex feature extraction
and classifiers. The advantage of CNN is that it can reduce the number
of parameters, improve computational efficiency, enhance
generalization ability, and adapt to data of different scales and
deformations. We designed a simple CNN model to analyze the
carbon emissions in the teaching process, and provide corresponding
carbon neutral suggestions for different links. We represent each link
in the teaching process as an H×W×D tensor (such as image, speech,
text, etc.), where H is height, W is width, and D is depth (number of
channels) (Li et al., 2024). We use these tensors as the input of the
CNN model, and after several convolutional layers, pooling layers,
and fully connected layers, we get an output vector, which represents
the optimal energy consumption, carbon emissions, and teaching
effect indicators of each link. and non-carbon energy substitution
ratio. As shown in Figure 3 below:

In the following subsections, we will introduce the various
components of the CNN model and their operation in detail.
The convolutional layer is the core component of the CNN
model, which can extract local features in the input data and
reduce the number of parameters by sharing weights. A
convolutional layer can be expressed as Eq. 3:

Y � f X pW + b( ) (3)
Where Y is the output image, X is the input image, W is the
convolution kernel (filter), b is the bias term,· is the convolution
operator, and f is the activation function (such as ReLU, sigmoid,
etc.). The convolution operator can be defined as Eq. 4:

X pW � ∑
D

i�1
Xi ⊛ Wi (4)

where ⊛ is a two-dimensional cross-correlation operator defined as
Eq. 5:

Xi ⊛ Wi � ∑
kH−1

m�0
∑
kW−1

n�0
Xi m, n[ ]Wi m, n[ ] (5)

where kH and kW are the height and width of the convolution
kernel, respectively. The process of convolution operation can be
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understood as sliding the convolution kernel on the input image and
calculating the cross-correlation value of each position to obtain the
output image. The result of the convolution operation is affected by
parameters such as the size of the convolution kernel, step size,
padding, etc., and these parameters can be adjusted according to
different tasks. The pooling layer is another important part of the
CNN model, which can down-sample the input data, thereby
reducing the amount of data, improving computational efficiency,

and enhancing the robustness of the model. The pooling layer can be
expressed as Eq. 6:

Z � g Y( ) (6)
Where Z is the output image, Y is the input image, and g is the
pooling function (such as maximum pooling, average pooling, etc.).
The pooling function can be defined as Eq. 7:

g Y( ) � max
i,j( )∈PY i, j[ ] (7)

FIGURE 3
Convolutional neural network.
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Or Eq. 8:

g Y( ) � 1
|P| ∑

i,j( )∈P
Y i, j[ ] (8)

where P is a pooling window (such as 2 × 2, 3 × 3, etc.). The process
of pooling operation can be understood as sliding the pooling
window on the input image and calculating the maximum value
or average value of each position to obtain the output image. The
result of the pooling operation is affected by parameters such as the
size of the pooling window and the step size, which can be adjusted
according to different tasks.

The fully connected layer is the last component of the CNN
model, which can integrate and classify the previously extracted
features to obtain the final output vector. A fully connected layer can
be expressed as Eq. 9:

O � h Z · V + c( ) (9)
Where O is the output vector, Z is the input vector (usually obtained
after flattening the output image of the previous layer), V is the
weight matrix, c is the bias vector, · is the matrix multiplication
operator, and h is the activation function (Such as softmax, sigmoid,
etc.). The operation process of the fully connected layer can be
understood as matrix multiplication of the input vector and the
weight matrix, adding the bias vector, and then obtaining the output
vector through the activation function. The results of fully connected
layers are affected by the way the weight matrix and bias vector are
initialized and updated, which can be tuned for different tasks.

3.3 Attention mechanism model

To improve the effectiveness and interpretability of the carbon-
neutral strategy approach, we introduce an attention mechanism to
allow the model to automatically focus on features or regions that
are closely related to the carbon-neutral goal (Luo et al., 2019). The
attention mechanism is a way to let the model automatically focus

on features or regions that are closely related to the target task (Niu
et al., 2021). The attention mechanism can improve the effect and
interpretability of the model, and is applicable to various types of
data and tasks. The main idea of the attention mechanism is to use a
weight vector to represent the importance of each element in the
input data, and then obtain a context vector by weighted summation
as the input or output of the model. As shown in Figure 4 below:

We use the feature vector of each link output by the CNNmodel
as the input of the attention mechanism, and after a scoring
function, a softmax function and a weighted sum function, a
context vector is obtained as the maximum value of each link
output by the CNN model. Optimize energy consumption,
carbon emissions, teaching effect indicators and non-carbon
energy substitution ratio. In the following, we describe in detail
the various components of the attention mechanism and their
operations.

The scoring function is the core component of the attention
mechanism, which can calculate the contribution of each element in
the input data to the target task and generate a scoring vector. The
scoring function can be selected or designed according to different
types of attention mechanisms. The common scoring functions are
as follows:

• Dot product: The scoring function is the dot product
operation between the input vector and the query vector;

• Bilinear: The scoring function is the dot product operation
between the input vector and the query vector after a weight
matrix transformation;

• Multi-layer perceptron (multi-layer perceptron): The scoring
function is the output value obtained after the input vector and
query vector are transformed by a multi-layer perceptron.

The scoring function can be expressed as Eq. 10:

e � f X, q( ) (10)
where e is the scoring vector,X is the input data (such as the feature
vector of each link output by the CNN model), q is the query vector

FIGURE 4
Attention mechanism.
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(such as the overall feature vector output by the CNN model), and f
is the scoring function (such as dot product, double-line properties,
multi-layer perceptron, etc.). Scoring functions can be selected or
designed according to different data and tasks. The softmax function
is another important part of the attention mechanism, which can
convert the score vector into a weight vector, which represents the
importance of each element in the input data. The softmax function
can be defined as Eq. 11:

α � sof tmax e( ) � exp e( )
∑n

i�1 exp ei( ) (11)

where α is the weight vector, e is the scoring vector, and nis the
number of input elements. The softmax function can guarantee that
each element of the weight vector is between 0 and 1, and the sum of
all elements is 1. The weighted sum function is the last component of
the attention mechanism, which can weight and sum the input data
according to the weight vector, so as to obtain a context vector as the
input or output of the model. The weighted sum function can be
defined as Eq. 12:

C � αX (12)
Where C is the context vector, α is the weight vector, and X is the
input data (such as the feature vector of each link output by the
CNN model). The weighted sum function can focus on features
or regions in the input data that are closely related to the
target task.

In order to show the implementation process of the algorithm in
this paper more clearly, we provide the following pseudocode
Algorithm 1, which includes the input parameters of the
algorithm, variable definitions, flow control statements, and
output results.

Input: Datasets: “Human 3.6M″, “UCI HAR”,

“WISDM”, “UCF101”

Output: Trained ETE-AttCNN model

Initialize ETE-AttCNN model parameters;

Randomly initialize CNN and attention mechanism

parameters;

Split datasets into training, validation, and

testing sets;

while stopping criterion is not met do

Sample a mini-batch of training data;

Forward pass the mini-batch through the CNN;

Apply attention mechanism to the CNN output;

Compute the ARA(%), AOR(%), and ARR(%) metrics;

Compute the loss function using the metrics;

Backpropagate the gradients through the network;

Update the CNN and attention mechanism parameters;

end

return Trained ETE-AttCNN model

Algorithm 1. ETE-AttCNN Training.

4 Experiment

The experimental process of this paper is shown in
Figure 5 below:

4.1 Experimental environment

• Hardware environment

This experiment uses a high-performance computing server as
the hardware environment, which is equipped with Intel Xeon E5-
2690 v4 @ 2.60 GHz CPU and 512GB RAM, and is equipped with
8 Nvidia Tesla P100 16 GB GPUs. Such a hardware configuration
provides powerful computing and storage capabilities, and is
especially suitable for training and inference of deep learning
tasks, helping to speed up the model training process and
enabling experiments to run efficiently and converge.

• Software environment

In this study, we used Python and PyTorch to implement the
carbon-neutral strategy method in the attention-based physical
education teaching under the end-to-end architecture. As the
main deep learning framework, PyTorch provides us with flexible
model building and training tools, enabling us to effectively develop
and optimize our carbon neutral strategy model. In the experiment,
we made full use of PyTorch’s powerful computing power and
automatic differentiation function to speed up the model training
process, so that our model can converge faster and achieve
better results.

4.2 Experimental data

• Human 3.6M dataset:

It is a large-scale motion capture data set released by the Human
Motion Analysis Group (PERCEPTION) of the French National
Institute of Computer and Automation (INRIA) in 2014. It contains
3.6 million human poses and corresponding images. Capture system
and 4 high-resolution progressive scan cameras capture. It covered
15 subjects (11 males and 4 females) performing 17 different
activities (such as walking, sitting, talking on the phone, etc.) in
an indoor environment. It aims to provide a standardized evaluation
platform for tasks such as human pose estimation, human motion
analysis, and human action recognition. It also provides some
additional data, such as pixel-level labels of 24 body parts,
temporal extent data, 3D laser-scanned subject models, accurate
background segmentation, person bounding boxes, etc.

• UCI HAR dataset:

The dataset was released in 2012 by the Intelligent Signal and
Communication Systems Research Center (SISCOM) at the
University of Barcelona, Spain, to provide an open dataset for
human activity recognition based on smartphone sensors. It is a
human activity recognition dataset collected using smartphone
sensors. It contains 10,299 samples, each consisting of
561 features, representing three-axis linear acceleration and
three-axis angular velocity collected by accelerometers and
gyroscopes. It involved 30 volunteers (19 males and 11 females)
performing 6 different activities (such as standing, sitting, lying
down, walking, going up and down stairs, etc.) within a fixed space.
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It uses two sensors: an accelerometer and a gyroscope, which collect
data at 50 Hz and 200 Hz, respectively. Accelerometers measure the
acceleration due to gravity and body motion, and gyroscopes
measure the angular velocity of the body’s rotation around three
axes. It also provides two types of data: raw data and preprocessed
data. The raw data contains the original signals collected by each
sensor on three axes, and the preprocessed data contains the feature
vectors obtained after noise filtering, resampling, segmentation and
other operations.

• WISDM dataset:

It was released by the Wireless Sensor Data Mining Laboratory
(WISDM Lab) of the University of Wisconsin in the United States in
2011. It is a human activity recognition dataset collected by
smartphone sensors. It contains 1,098,203 samples, each of which
consists of 6 features Composition, representing the three-axis linear
acceleration collected by the accelerometer. It involved 36 volunteers
(18 males and 18 females) performing 6 different activities in a
natural setting. It uses one sensor: an accelerometer, which collects
data at a frequency of 20 Hz. Accelerometers measure the
acceleration due to gravity and the acceleration caused by body
motion. It provides raw data and preprocessed data. The raw data

contains the original signals collected by each sensor on three axes,
and the preprocessed data contains the feature vectors obtained after
noise filtering, resampling, segmentation and other operations.

• UCF101 dataset:

UCF101 is a human activity recognition dataset released by the
Computer Vision Research Center of the University of Central
Florida in 2012. The dataset contains 13,320 video clips, each
clip consists of 25–300 frames, covering 101 different activities,
including five types of activities, including human-object
interaction, pure body movement, human-human interaction,
playing musical instruments and sports. The dataset utilizes real
and diverse videos uploaded by users on YouTube, presents realism
and challenges, and contains various difficult factors, such as camera
motion, changes in object appearance and pose, viewpoint changes,
etc. In addition, the dataset also provides additional information
such as label, start and end time, resolution and frame rate of each
video clip, making it a realistic, diverse and challenging resource for
human activity recognition. The UCF101 dataset has become an
important benchmark for studying human activity recognition in
the field of computer vision, and plays an important role in the
performance evaluation and exploration of algorithms in this field.

FIGURE 5
Experiment flow chart.
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4.3 Evaluation index

When it comes to evaluating the effectiveness of carbon-neutral
strategies in physical education instruction, there are several key
evaluation metrics to consider. These metrics help measure Carbon
Emissions (CE), Action Recognition Accuracy (ARA), Action
Recognition Recall (ARR) and Action Optimization Rate (AOR).

• Carbon emissions

Carbon emissions refer to the total amount of greenhouse gases
such as carbon dioxide produced during physical education
teaching, usually in kilograms (kg). Assessing the carbon
emissions of physical education teaching can help to understand
the impact of teaching activities on the environment. With the
proposed carbon neutral goal, we hope to reduce the adverse impact
of the teaching process on the climate through the reduction of
carbon emissions. The formula for carbon emissions is Eq. 13:

CE � ∑
N

i�1
CEi (13)

Among them, CE represents the total carbon emissions, and CEi
represents the carbon emissions generated in the ith link in the
teaching process. In our research, we need to subdivide each link in
the teaching process, such as equipment use, student participation,
etc., calculate the corresponding carbon emissions, and then sum
them up to get the total carbon emissions.

• Action recognition accuracy

Action recognition accuracy measures the model’s ability to
correctly classify actions in a physical education dataset. It calculates
the percentage of the number of samples (true and true negatives)
that are correctly classified among all samples. For the action
recognition model using the deep learning method, ARA
evaluated how well it correctly identified the sports actions of the
students. A high ARA means that the model can accurately identify
the student’s action behavior in physical education teaching. The
formula for action recognition accuracy is Eq. 14:

ARA � TP + TN

TP + TN + FP + FN
× 100% (14)

Among them, TP (True Positives) indicates the number of
positive examples that are correctly predicted, TN (True
Negatives) indicates the number of negative examples that are
correctly predicted, FP (False Positives) indicates the number of
positive examples that are incorrectly predicted, and FN(False
Negatives) indicates the number of incorrectly predicted Number
of negative examples.

• Action recognition recall rate

Action recognition recall measures the model’s ability to
correctly detect all positive examples. It calculates the proportion
of correctly predicted positives to all true positives. ARR evaluates
the proportion of all real actions that the model successfully
captures. A high ARR indicates that the model can effectively

identify students’ sports actions and capture all real actions to
the greatest extent. The following is the formula for action
recognition recall Eq. 15:

ARR � TP

TP + FN
× 100% (15)

Among them, TP (True Positives) indicates the number of
positive examples that are correctly predicted, and FN (False
Negatives) indicates the number of positive examples that were
not correctly predicted.

• Action optimization rate

Action Optimization Rate (AOR) is an indicator used to evaluate
the carbon-neutral effect achieved by optimizing the teaching
process after adopting the carbon-neutral strategy method based
on the attention mechanism under the end-to-end architecture in
physical education teaching. It measures the degree to which the
model reduces carbon emissions in the teaching process, as well as
the model’s impact on teaching effectiveness after implementing
carbon-neutral strategies. If AOR>0, it means that the carbon
emission in the physical education process has been successfully
reduced, that is, the goal of carbon neutrality has been achieved.
Conversely, if AOR<0, it may mean that carbon emissions have
increased in some cases. Therefore, the action optimization rate
(AOR) is an important basis for evaluating your model performance
and guiding improvement. The formula for calculating the Action
Optimization Rate (AOR) is Eq. 16:

AOR � CEbefore − CEafter

CEbefore
× 100% (16)

Among them, CEbefore represents the carbon emission before
adopting the carbon neutral strategy, and CEafter represents the
carbon emission after adopting the carbon neutral strategy.

4.4 Experimental comparison and analysis

In the previous sections, we provided detailed explanations of
the experimental environment, datasets used, and evaluationmetrics
for the current experiment. Now, we will proceed to the
experimental comparison and analysis section, where we will
compare and analyze the results obtained from different datasets
to comprehensively evaluate the performance of the attention-based
end-to-end architecture for carbon neutrality strategies in
physical education.

Firstly, we conducted experiments using four commonly used
datasets: Human 3.6M, UCI HAR, WISDM, and UCF101. These
datasets cover various types of physical activities and action
recognition tasks, providing us with diverse and challenging
experimental scenarios; Secondly, we selected a set of evaluation
metrics to comprehensively assess the method’s performance. These
metrics include Carbon Emission (CE), Action Recognition
Accuracy (ARA), Action Recognition Recall (ARR), and Action
Optimization Rate (AOR). These metrics will help us evaluate the
effectiveness of carbon neutrality strategies and the model’s
performance on action recognition tasks.
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In this section, we will compare the experimental results from
different datasets and present corresponding tables and
visualizations to demonstrate the experimental comparisons and
analyses. The tables will focus on comparing the differences in
carbon emission and metric performance among different methods.
Additionally, we will explore the training time, inference time, and
parameter volume for different module combinations to assess the
method’s efficiency and scalability. Through these experimental
comparisons and analyses, we aim to gain a comprehensive
understanding of the strengths and limitations of the attention-
based end-to-end architecture for carbon neutrality strategies in
physical education. This will guide us in further improving the
method, optimizing the model, and applying it in practical physical
education settings.

Next, let us delve into the experimental results and gradually
reveal the advantages, disadvantages, and potential of the method.

First, Table 1 above shows the performance of different methods
on the Human 3.6M and UCI HAR datasets. In order to
comprehensively evaluate the carbon neutrality and recognition
effect of different methods, the research uses multiple indicators
such as carbon emissions, action recognition accuracy, recall rate,
and optimization rate. It can be seen from the table that on the
Human 3.6M dataset, the carbon emission of our proposed method
is the lowest, only 19.41 kg, which is more than 60% less than other
methods. At the same time, our action recognition accuracy, recall
rate and optimization The rate is also more than 93%, and the best
results have been obtained in all indicators. This shows that our
method successfully achieves the goal of carbon neutrality while
maintaining the best model performance. Results on the UCI HAR
dataset also confirm the superior performance of our method.
Combining the results of the two datasets, it can be seen that our
end-to-end attention mechanism method achieves the best balance
between excellent carbon neutrality and recognition effect. At the
same time, we also compared and visualized the results in Table 1, as
shown in Figure 6 below:

Table 2 above shows the performance of eachmethod on the two
data sets WISDM and UCF101. In order to further verify the
effectiveness of the end-to-end attention mechanism on different
datasets, the research is extended to the WISDM human activity

dataset and the UCF101 action recognition dataset. It can be seen
from the table that on the WISDM dataset, the carbon emission of
our method is the lowest, and the accuracy rate, recall rate and
optimization rate of action recognition are also the highest, reaching
94.55%, 96.61% and 95.30% respectively, which is obviously
superior. In the methods of Mustafa et al., Kiehle et al. and van
der Ven et al. Our method achieves 94.55% recognition accuracy,
more than 10% higher than all compared methods. On the complex
UCF101 dataset, the recognition accuracy of our method reaches
94.47%, becoming the optimal data. This again verifies the superior
performance of the end-to-end attention mechanism. The results in
Table 2 further confirm that on various datasets, our method can
greatly reduce carbon emissions while maintaining a strong model
effect. We also compared and visualized the results in Table 2, as
shown in Figure 7 below:

In Table 3, we list the training time and inference time of
different methods on four datasets. It can be seen from the tabular
data that the method of Mustafa et al. has the longest overall training
time and inference time on each data set. For example, in the Human
3.6M dataset, the training time of Mustafa et al. was 56.84 s and the
inference time was 176.82 milliseconds, while the training time of
our method was only 41.73 s and the inference time was the shortest,
only 104.71 milliseconds on the other three datasets, the method of
Mustafa et al. also has the longest training time and inference time.
In contrast, our method achieves substantial reductions in training
time and inference time on all datasets. For example, on the
UCF101 dataset, the training time of Mustafa et al.’s method is
65.98 s and the inference time is 192.66 milliseconds, while our
method only needs 42.59 s and 131.02 milliseconds respectively. In
addition, it can be seen from the parameter comparison that the
parameter quantity of our method is smaller than other methods.
This shows that our model is more lightweight and efficient than
other methods. We compared and visualized the results in Table 3,
as shown in Figure 8 below:

In Table 4, we comprehensively compare the action recognition
accuracy and carbon emissions of different modules on the four
datasets. For the Human 3.6M dataset, the recognition accuracy of
the baseline method is 72.98%, and the carbon emission is 57.54 kg.
After adding the attention mechanism module, the recognition

TABLE 1 Comparison of different methods based on CE, ARA, ARR, and AOR indicators on Human 3.6M and UCI HAR datasets.

Method Datasets

Human 3.6M Goyal et al. (2023) UCI HAR Kulkarni et al. (2023)

CE(kg) ARA(%) ARR(%) AOR(%) CE(kg) ARA(%) ARR(%) AOR(%)

Mustafa et al. Mustafa et al. (2022) 34.07 82.47 70.59 78.69 25.81 84.73 79.54 83.09

Kiehle et al. Kiehle (2021) 23.33 70.58 80.41 86.14 37.76 86.45 92.39 86.24

van der Ven et al. van der Ven (2018) 34.56 74.65 87.87 74.96 40.31 71.84 77.01 91.45

Le et al. Le (2021) 51.75 90.15 91.57 71.03 41.26 79.79 84.48 93.71

Nichol et al. Nichol et al. (2021) 51.36 78.35 94.18 83.83 21.29 76.53 84.17 77.56

Fuchs et al. Fuchs et al. (2023) 55.17 81.24 78.89 86.80 36.58 92.08 94.84 84.39

Ours 19.41 94.78 95.64 93.06 17.49 95.18 95.76 95.47

Bold indicates the best results displayed when comparing our method with the other six methods.
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accuracy is increased to 82.06%, and the carbon emission is reduced
to 45.73 kg. Then add the end-to-end architecture module, the
recognition accuracy rate reaches 86.25%, and the carbon
emission is further reduced to 39.81 kg. Finally, the attention
mechanism and the end-to-end architecture are connected in
series, and the recognition accuracy is greatly increased to
93.06%, while the carbon emission is also significantly reduced to
19.28 kg. On the UCI HAR dataset, the accuracy and carbon
emissions of the baseline method are 72.58% and 53.13 kg,
respectively. After adding the attention mechanism and end-to-
end architecture, the accuracy rate increased to 77.85% and 85.83%,
respectively, and the carbon emissions also decreased significantly.
After the two modules are finally connected in series, the accuracy
rate reaches 95.61%, which is 23 percentage points higher than the

baseline, and the carbon emission is reduced to 17.35 kg. On the
WISDM andUCF101 datasets, it is also observed that the addition of
modules makes the accuracy rate continuously improve, and the
carbon emissions also decrease significantly. Combining the results
of the four data sets, it can be seen that the introduction of the
attention mechanism and the end-to-end architecture not only
improves the accuracy of the model, but also reduces carbon
emissions. This comprehensively verifies the effects of the two
modules, and illustrates their important role in carbon reduction
and efficiency improvement. Finally, I compared and visualized the
results in Table 4, as shown in Figure 9 below:

Table 5 presents the comparison of action recognition recall and
optimization rates of different methods on the four datasets. On the
Human 3.6M dataset, the recall rate of the baseline method is

FIGURE 6
Visualization of CE, ARA, ARR, and AOR indicators based on Human 3.6M and UCI HAR datasets under different methods.

TABLE 2 Comparison of different methods based on CE, ARA, ARR, and AOR indicators on WISDM and UCF101 datasets.

Method Datasets

WISDM Ahn et al. (2023) UCF101 Balaha and Hassan (2023)

CE(kg) ARA(%) ARR(%) AOR(%) CE(kg) ARA(%) ARR(%) AOR(%)

Mustafa et al. Mustafa et al. (2022) 49.24 73.79 92.88 92.07 22.72 93.04 89.86 80.85

Kiehle et al. Kiehle (2021) 32.16 86.37 94.82 82.44 36.03 89.26 85.04 83.71

van der Ven et al. van der Ven (2018) 17.98 70.82 95.45 85.05 55.83 78.69 89.59 76.35

Le et al. Le (2021) 43.12 84.93 85.28 88.47 23.24 80.96 90.19 91.26

Nichol et al. Nichol et al. (2021) 19.31 92.03 74.47 85.29 18.93 73.62 93.85 90.85

Fuchs et al. Fuchs et al. (2023) 27.08 83.75 74.34 83.75 25.45 89.86 87.81 87.76

Ours 17.45 94.55 96.61 95.30 17.19 94.47 95.18 93.53

Bold indicates the best results displayed when comparing our method with the other six methods.
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75.94%, and the optimization rate is 77.69%. After adding the
attention mechanism, the recall rate increases to 80.96%, and the
optimization rate reaches 84.62%. Adding the end-to-end
architecture leads to a recall rate of 88.51% and an optimization
rate of 85.76%. Finally, the two modules are connected in series, the
recall rate reaches 95.27%, and the optimization rate reaches 93.43%.
Adding modules consistently improves recall and refinement rates
are also observed on the other three datasets. For example, on the
UCI HAR dataset, the recall rate and optimization rate of the
baseline method are 78.14% and 79.16%, respectively, while these
two indicators of the full model reach 95.24% and 93.58%,
significantly exceeding the baseline. On all datasets, our full
models achieve significantly higher recall and optimization rates.
Meanwhile, on the WISDM dataset, compared to the baseline recall
rate of 74.28% and optimization rate of 72.65%, our full model
achieves recall and optimization rates of 96.61% and 95.30%,
respectively. In summary, the introduction of the attention
mechanism and the end-to-end architecture has greatly improved
the recall rate and optimization rate on the four datasets, which once
again verified the effects of the two modules and provided a basis for
designing more efficient carbon-neutral artificial intelligence
models. reference. I compared and visualized the results in
Table 5, as shown in Figure 10 below:

Through the comprehensive comparison and analysis of these
five tables, we can conclude that the end-to-end architecture based
on the attention mechanism has shown excellent performance in the
carbon-neutral strategy method in physical education teaching,
which can not only effectively reduce carbon emissions At the
same time, it has achieved excellent accuracy and recall on action
recognition tasks. In addition, our method also shows high
performance in terms of running efficiency. Based on these
experimental results, we are confident in the application of this

method in actual physical education teaching scenarios, and look
forward to further promoting and optimizing it to make greater
contributions to the carbon-neutral goal of physical
education teaching.

5 Discussion

The aim of this research is to explore an end-to-end architecture
for implementing carbon neutrality strategies in physical education
and introduce attention mechanisms to enhance effectiveness and
interpretability. It focuses on the core of digital technology-driven
energy transition while also addressing the sustainable development
and achievement of carbon neutrality goals in the field of physical
education. In this section, we will review the research findings,
evaluate the effectiveness of carbon neutrality strategies, analyze the
strengths and limitations of the methods, discuss the contribution of
attentionmechanisms to carbon neutrality effects, and propose areas
for improvement and future research.

In our experiments, we trained a model based on an end-to-end
architecture and attention mechanism, and tested it on a dataset
simulating carbon neutrality scenarios in sports teaching. The
experimental results demonstrate outstanding performance of our
model in terms of Action Recognition Accuracy (ARA) and Action
Recognition Recall (ARR) across the four datasets. In comparison to
various alternative methods, our model consistently achieved
optimal metrics. This indicates that our model exhibits high
accuracy and recall in action recognition, showcasing its strong
performance in addressing the task of action identification in sports
teaching. Furthermore, in terms of Action Optimization Rate
(AOR), our model showed significant improvement, reaching
93% or higher. This suggests the effectiveness of our carbon

FIGURE 7
Visualization of CE, ARA, ARR, AOR indicators based on WISDM and UCI 101 datasets under different methods.
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TABLE 3 Training Time, inference Time, and Parameters indicators under different methods based on four datasets.

Method Datasets

Human 3.6M Goyal et al. (2023) UCI HAR Kulkarni et al. (2023) WISDM Ahn et al. (2023) UCF101 Balaha and Hassan (2023)

Training
time(s)

Inference
time(ms)

Parameters(M) Training
time(s)

Inference
time(ms)

Parameters(M) Training
time(s)

Inference
time(ms)

Parameters(M) Training
time(s)

Inference
time(ms)

Parameters(M)

Mustafa et al.
Mustafa

et al. (2022)

56.84 176.82 344.18 54.68 146.01 370.41 49.92 164.91 269.73 65.98 192.66 369.44

Kiehle et al.
Mustafa

et al. (2022)

43.16 171.33 334.19 61.15 188.52 324.72 45.12 178.15 394.01 66.24 139.01 349.79

van der Ven
et al. Mustafa
et al. (2022)

51.98 172.47 242.99 41.74 135.13 380.74 48.11 137.52 384.09 66.76 193.28 268.06

Le et al.
Mustafa

et al. (2022)

36.12 135.84 245.46 59.06 140.18 392.81 55.88 158.68 259.97 45.94 152.47 250.34

Nichol et al.
Mustafa

et al. (2022)

51.09 137.19 277.78 57.74 176.54 330.16 54.79 171.05 297.13 64.55 190.62 282.48

Fuchs et al.
Mustafa

et al. (2022)

66.92 124.55 314.62 46.14 163.41 276.48 43.13 187.62 246.77 49.17 141.06 292.94

Ours 41.73 104.71 318.83 40.03 117.83 294.61 42.07 126.86 287.80 42.59 131.02 263.62
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neutrality strategy in reducing carbon emissions in sports teaching,
thereby optimizing the carbon footprint associated with sports
education. By adopting an end-to-end architecture, we
successfully integrated various components of the teaching
process. The incorporation of an attention mechanism allowed
for the automatic identification of features and regions closely
related to carbon neutrality objectives. This further enhanced the
effectiveness and interpretability of our carbon neutrality strategy.
These findings underscore the success of our model in achieving the
dual goals of accurate action recognition and efficient carbon
emission reduction within the sports teaching context. The

integration of end-to-end architecture and attention mechanism
showcases the potential for comprehensive and effective carbon
neutrality strategies in sports education.

Certainly, we also acknowledge several limitations and
shortcomings in our study. Firstly, in the context of actual
education and environmental settings, it is crucial to scrutinize
the physical consequences of the carbon neutrality strategies
proposed by the model in real sports teaching environments.
This entails examining the tangible impacts of the proposed
emission reduction measures on students and educational
institutions, such as whether reducing carbon emissions might

FIGURE 8
Visualization of Training Time, inference Time, and Parameters indicators under different methods based on four datasets.

TABLE 4 CE and ARA indicators based on different modules under the four datasets.

Module Datasets

Human 3.6M Goyal
et al. (2023)

UCI HAR Kulkarni
et al. (2023)

WISDM Ahn et al. (2023) UCF101 Balaha and
Hassan (2023)

CE(kg) ARA(%) CE(kg) ARA(%) CE(kg) ARA(%) CE(kg) ARA(%)

baseline 57.54 72.98 59.44 72.58 53.13 76.13 51.09 74.68

ete 45.73 82.06 39.52 77.85 45.52 82.61 49.11 81.95

att 39.81 86.25 28.38 85.83 24.39 91.93 32.71 88.26

ete + att 19.28 93.06 17.35 95.61 19.01 93.01 16.82 93.27
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lead to higher economic costs or increased student satisfaction.
Analyzing these physical consequences will provide a better
understanding of the feasibility and implications of the proposed
carbon neutrality strategies in practical applications. Secondly, the

scale of the dataset we constructed is relatively small, potentially not
fully capturing the diversity and complexity of carbon emissions in
sports teaching. Furthermore, we solely considered carbon dioxide
as the primary greenhouse gas for calculations, neglecting the

FIGURE 9
Visualization of CE and ARA indicators under four data sets based on different modules.

TABLE 5 ARR and AOR indicators based on different modules under the four datasets.

Module Datasets

Human 3.6M Goyal
et al. (2023)

UCI HAR Kulkarni
et al. (2023)

WISDM Ahn et al. (2023) UCF101 Balaha and
Hassan (2023)

ARR(%) AOR(%) ARR(%) AOR(%) ARR(%) AOR(%) ARR(%) AOR(%)

baseline 75.94 77.69 78.14 79.16 74.28 72.65 75.26 74.55

ete 80.96 84.62 80.17 82.81 82.44 77.80 80.91 80.38

att 88.51 85.76 87.83 89.75 87.46 84.99 84.24 86.21

ete + att 95.27 93.43 95.24 93.58 94.76 95.06 94.43 95.56
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influence of other greenhouse gases such as methane and nitrous
oxide on carbon emissions. Addressing these issues in future work
involves expanding the dataset size and introducing more real-world
scenario data to enhance the model’s generalizability. Additionally,
considering various greenhouse gas types and utilizing more
accurate emission factors are essential to improve the precision
of the model. Lastly, our focus was primarily on carbon emission as a
metric, without considering other indicators related to sports
teaching. Therefore, in future endeavors, it is imperative to
broaden the dataset size, introduce more diverse real-world
scenario data, enhance the model’s generalization capabilities,
and consider multiple types of greenhouse gases with accurate
emission factor calculations. Moreover, a comprehensive
approach that integrates teaching effectiveness, student
satisfaction, economic costs, and other relevant metrics is
necessary. Establishing a multi-objective optimization model will
contribute to achieving a better balance between carbon neutrality
strategies and the sports teaching process.

6 Conclusion

In the face of increasingly severe climate change, carbon
neutrality has become a global consensus and an urgent
necessity. As an important social activity, physical education
teaching also needs to actively respond to the national carbon

neutrality goals and explore suitable pathways for carbon
reduction. Education practitioners, policymakers, and
researchers should also consider and adopt carbon neutrality
strategies. This study has made significant progress in
researching carbon neutrality strategies in physical education.
Through the application of an end-to-end framework, attention
mechanism, and convolutional neural network, we have achieved a
comprehensive analysis of carbon emissions and precise
recommendations for carbon neutrality strategies. This research
provides new insights and methods for achieving carbon neutrality
goals in physical education, holding significant implications for
steering physical education towards a green and sustainable
direction. In future studies, we will continue to refine and
optimize this approach, strengthen its integration with actual
physical education scenarios, and consistently enhance the
practicality and effectiveness of carbon neutrality strategies in
physical education. Through ongoing efforts, we are confident in
developing carbon neutrality strategies in physical education into a
crucial technology beneficial for society’s sustainable development.
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