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Background: Air pollution, characterized by complex spatiotemporal dynamics and
inherent uncertainty, poses significant challenges in accurate air quality prediction,
and current methodologies often fail to adequately address these complexities.

Objective: This study presents a novel fuzzymodeling approach for estimating air
pollution concentrations.

Methods: This fuzzy evaluation method integrates an improved evidence theory
with comprehensive weighting and the K-nearest neighbor (KNN) interval
distance within the framework of the matter-element extension model. This
involves generating the basic probability assignment (BPA) based on interval
similarity, performing sequential fusion using the Dempster–Shafer evidence
theory, enhancing the fusion results via comprehensive weighting, and
conducting fuzzy evaluation of air pollution concentrations using the matter-
element extension KNN interval distance.

Results: Our method achieved significant improvements in monitoring air
pollution concentrations, incorporating spatiotemporal factors and pollutant
concentrations more effectively than existing methods. Implementing
sequential fusion and subjective–objective weighting reduced the error rate
by 38% relative to alternative methods.

Discussion: Fusion of multi-source air pollution data via this method effectively
mitigates inherent uncertainty and enhances the accuracy of the KNNmethod. It
produces more comprehensive air pollution concentration fusion results,
improving accuracy by considering spatiotemporal correlation, toxicity, and
pollution levels. Compared to traditional air-quality indices, our approach
achieves greater accuracy and better interpretability, making it possible to
develop more effective air quality management strategies. Future research
should focus on expanding the dataset to include more diverse geographical
and meteorological conditions, further refining the model to integrate external
factors like meteorological data and regional industrial activity, and improving
computational efficiency for real-time applications.
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1 Introduction

Atmospheric pollution is an urgent issue globally, especially
in regions undergoing rapid industrialization and urbanization.
The detrimental effects of pollution on ecological and climatic
stability and human health are increasingly evident (Murena,
2004; Chen and Zhu, 2014; Chen et al., 2022). With the increasing
global focus on environmental protection and low-carbon
development, research is focusing on how technological
innovation, green finance, and policy design can reduce
environmental pollution and foster sustainable development.
For example, Li et al. (2023) explored how digital finance
could facilitate green technological innovations in polluting
industries by easing funding constraints and augmenting
research and development investments. Meanwhile, Feng et al.
(2023) focused on reducing NOx emissions via advanced catalytic
technologies, thus improving air quality. The intensification of
global climate change has amplified the importance of research
into urban heat-island effects (Shang et al., 2023), biodiversity
loss (Wang et al., 2022), and the global carbon cycle (Zhang et al.,
2021; Xiong et al., 2022).

Within this context, Wu et al. (2023) investigated the impact of
clustered institutional investors on low-carbon innovation in family
businesses, discussing how green finance and family governance can
promote sustainable development in a changing economic
environment. Kong et al. (2023) proposed a lifecycle-oriented
low-carbon product design method to meet the challenges of
climate change. Using cloud computing technology, Shang et al.

(2021) explored factors influencing urban carbon footprints in
China, and proposed key strategies for optimizing carbon
emission predictions and low-carbon economic development
(Luo et al., 2024). These studies provide technological and
financial solutions while highlighting the significance of policy
design in advancing environmental protection and sustainable
development, which require accurate assessment of
atmospheric pollution.

The air quality index (AQI) is a widely accepted assessment
tool for air pollution; however, it presents several limitations.
For instance, by aggregating the concentration levels of multiple

TABLE 1 Literature review of related studies.

References Method Advantage Disadvantage

Murena (2004) Involved developing an air quality index (AQI)
through principal component analysis and linear
algebra to rank states by pollution levels based on
data from five pollutants in the transportation
sector

Furnished an initial understanding of the impact
of air pollution in industrialized and urbanized
areas

Possibly lacked granular data and in-depth
analysis of complex pollutant interactions

Chen and Zhu (2014) Delved deeper into the air pollution issues of
industrialized and urbanized areas

Focused on high-risk areas, delivering more
specific data on atmospheric pollution

Centered on particular regions, limiting the
broader applicability of the research findings

Pope III and Dockery
(2006)

Leveraged more precise data and measurement
methodologies to study atmospheric pollution

Provided high-quality data, advancing the
accuracy of air pollution research

Used many resources and technology to
acquire and analyze data

Vaidya and Kumar
(2006)

Evaluated and critiqued the limitations and
deficiencies of the analytic hierarchy
process (AHP)

Exposed the constraints of AHP, promoting the
development of new methodologies and
techniques

Primarily represented a critical study, offering
no explicit solutions

Li et al. (2010) Investigated the performance of the grey
relational analysis when dealing with intricate,
non-linear environmental variables

Disclosed the method’s applicability in certain
contexts

Faced challenges in data integrity and
precision when handling complex, non-linear
environmental elements

Carslaw and
Rhys-Tyler (2013)

Employed deep learning technologies to predict
concentrations of NO2 and PM10

Enhanced prediction accuracy and adaptability,
capable of processing intricate datasets

Required substantial data and computational
resources

Cui et al. (2022) Criticized the AQI for its shortcomings in
handling complex atmospheric pollutants

Pointed out the limitations of AQI, offering a
direction for the improvement and development
of new assessment standards

Presented a critical study that failed to provide
specific solutions or measures for
improvement

Sun et al. (2022b) Adopted the improved D-S evidence theory for a
comprehensive assessment of air quality;
determined the weights of evidence through the
entropy weight method and introduced decision
credibility by calculating the dispersion of
different evidence decisions

Validated the efficacy of the DCre-Weight
model, which showed higher accuracy and
consistency than other enhanced methods of the
evidence theory and recent fuzzy synthetic
evaluation methods; yielded improved credibility
of fusion results and well-articulated uncertainty

Presented limitations in complexity,
applicability, and comparison with other latest
methods

FIGURE 1
The K-nearest neighbor (KNN) model. Blue: sample to be
classified; red: classified sample; green: classified sample.
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pollutants into a single metric, the AQI may obscure the risks of
high concentrations of specific pollutants (Pope et al., 2022).
Further complications arise from the fact that not all pollutants

are considered in AQI computations (Priti and Kumar, 2022),
and the AQI calculations and standards differ between
countries, leading to interpretative challenges (Karavas et al.,

FIGURE 2
Pollution concentration evaluation factor set.

FIGURE 3
Air pollution concentration evaluation model.
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2021). Moreover, the AQI is inadequate for capturing and
processing the complexities of atmospheric pollutants and
their interactions (Cui et al., 2022). For instance, Zhang and
Cao (2015) examined the heterogeneity and complexity of PM2.5

levels, highlighting the shortcomings of current assessment
strategies. Further, accurate data and measurement
techniques are indispensable for controlling air pollution
(Pope III and Dockery, 2006).

Vaidya and Kumar (2006) expressed concerns about the
accuracy and consistency of other traditional assessment
methods, such as the analytic hierarchy process, under complex,
dynamic, and variable environmental conditions. While the analytic
hierarchy process, a multi-criteria decision-making tool, is used to
determine the significance of various pollutants (Saaty, 2008), its
reliance on subjective expert judgments may introduce bias (Dyer
and Forman, 1992). Grey relational analysis may be suited to specific
scenarios, but it presents challenges in model selection and
membership function when dealing with complex, non-linear
environmental factors (Wang and Klir, 2009; Li et al., 2010).
Quantification of uncertain information was proposed by Zadeh
(1965), and the fuzzy comprehensive evaluation method (Mo et al.,
2020) offered a new approach to handle ambiguous and uncertain
data. However, challenges persist regarding the scientific rigor and
reproducibility of data generated using the analytic
hierarchy process.

Considering these issues, attention has shifted towards more
advanced and innovative assessment techniques. The potential of
evidence theory and K-nearest neighbor (KNN) algorithms to
handle complex and dynamic air quality data has been widely

TABLE 2 Air pollution concentration standard.

Pollutant Air pollution concentration levels (μg/m³)

I II III IV V VI VII

PM2.5 35 75 115 150 250 350 500

PM10 50 150 250 350 420 500 600

SO2 50 150 475 800 1,600 2,100 2,620

NO2 40 80 180 280 565 750 940

CO 2 4 14 24 36 48 60

O38 100 160 215 265 800 1,000 1,200

FIGURE 4
Sequential fusion via the Dempster–Shafer (DS) theory based on
interval similarity.

FIGURE 5
Matter-element extensible distance.

TABLE 3 Nondimensionalization of the air pollution concentration
standards.

Pollutant Air pollution concentration levels

I II III IV V VI VII

PM2.5 0.17 0.36 0.55 0.71 1.19 1.66 2.37

PM10 0.15 0.45 0.75 1.06 1.27 1.51 1.81

SO2 0.04 0.13 0.43 0.72 1.44 1.89 2.35

NO2 0.10 0.20 0.44 0.69 1.40 1.85 2.32

CO 0.07 0.15 0.52 0.89 1.34 1.79 2.23

O38 0.28 0.34 0.52 0.69 1.38 1.72 2.07
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TABLE 4 Concentrations of different air pollutants in different regions.xi’an.

Region Pollutant concentration

SO2 (μg/m3) NO2 (μg/m3) CO (mg/m3) O3 (μg/m3) PM10 (μg/m3) PM2.5 (μg/m3)

Xingqing District 11 70 1.3 21 99 64

Xiaozhai 12 76 1 26 96 63

Municipal People’s Stadium 8 80 1.1 22 121 76

Kwong Wan Tam 11 66 1.2 20 118 70

Bureau of Culture and Sports 10 51 1.2 48 118 97

Radio monitoring center 20 59 1 27 132 98

Qujiang 8 62 1 24 114 60

Textile City 13 45 1.3 18 123 74

Economic Development Zone 12 74 1 26 110 83

Grass Beach (control point) 10 55 0.9 27 168 99

Chang’an District 9 52 0.9 44 95 62

High-voltage switch factory 11 66 0.9 27 120 84

High-tech Western District 11 71 1 25 99 77

Lintong District 15 67 1.2 34 97 67

Xingqing District 18 84 2 16 186 126

Xiaozhai 20 94 1.5 11 174 120

Municipal People’s Stadium 18 91 1.7 21 199 128

Kwong Wan Tam 21 71 2 25 191 142

Bureau of Culture and Sports 16 70 1.5 28 192 152

Radio monitoring center 28 57 1.4 46 146 117

Qujiang 12 81 1.5 8 194 112

Textile City 19 56 2 12 194 138

Economic Development Zone 26 82 1.7 30 169 133

Grass Beach (control point) 19 66 1.6 27 203 129

Chang’an District 14 75 1.5 13 192 124

High-voltage switch factory 23 82 1.5 21 201 135

High-tech Western District 22 88 1.6 14 173 127

Lintong District 24 72 2.2 48 167 120

: : : : : : :

: : : : : : :

: : : : : : :

Xingqing District 10 75 1.1 33 98 57

Xiaozhai 13 80 1.4 35 150 60

Municipal People’s Stadium 11 82 1.4 41 122 60

Kwong Wan Tam 10 76 0.8 19 109 65

Bureau of Culture and Sports 11 55 0.9 63 106 61

Radio monitoring center 13 58 1.1 27 196 118

(Continued on following page)
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TABLE 4 (Continued) Concentrations of different air pollutants in different regions.xi’an.

Region Pollutant concentration

SO2 (μg/m3) NO2 (μg/m3) CO (mg/m3) O3 (μg/m3) PM10 (μg/m3) PM2.5 (μg/m3)

Qujiang 10 71 1.1 23 192 75

Textile City 8 71 1 22 113 62

Economic Development Zone 13 84 1.1 39 167 74

Grass Beach (control point) 8 68 1 29 149 85

Chang’an District 11 55 0.8 53 129 54

High-voltage switch factory 14 80 1.2 54 156 80

High-tech Western District 13 77 1.3 55 124 73

Lintong District 14 73 1 31 127 76

TABLE 5 Concentrations of different air pollutants in different regions.beijing.

Region Pollutant concentration

SO2 (μg/m3) NO2 (μg/m3) CO (mg/m3) O3 (μg/m3) PM10 (μg/m3) PM2.5 (μg/m3)

Yanqing Summer Capital 9 31 0.8 49 69 31

Miyun New City 8 21 0.5 50 43 19

Pinggu New City 4 30 0.8 29 65 34

Miyun Town 7 38 0.7 36 54 23

Fengtai Xiaotun 8 64 1 21 104 39

Huairou New City 6 23 0.5 40 42 19

Yanqing Shiheying 9 32 0.9 46 62 32

Daxing Old Palace 4 61 0.7 16 80 33

Fangshan and Yanshan 6 36 0.8 48 56 31

Tongzhou Dongguan 5 57 0.6 15 85 36

Fengtai Yungang 7 46 0.6 22 66 29

Three stores in Mentougou 8 43 0.9 32 70 29

ancient city 6 47 0.8 20 95 38

Olympic Sports Center 7 54 0.6 25 61 27

Changping Town 8 34 0.7 26 52 25

Huairou Town 5 30 0.6 38 39 20

Shunyi New City 7 42 0.8 28 60 29

Haidian Wanliu 10 53 0.9 22 76 30

Official Garden 7 59 0.8 21 62 29

Agricultural Exhibition Hall 5 63 0.6 18 74 30

Temple of Heaven 3 58 0.9 15 58 32

Dongsi 4 52 0.6 18 63 30

Dingling (control point) 7 30 0.5 28 46 28

Wanshou West Palace 5 63 0.9 17 67 32

(Continued on following page)
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explored (Cover and Hart, 1967; Dempster, 1967; Shafer, 1976; Xiao
et al., 2013; Dai et al., 2018; Wang et al., 2021; Sun et al., 2022a;
Franklin et al., 2023). However, their efficacy under various
geographical and meteorological conditions remains questionable.
The research of Carslaw and Rhys-Tyler (2013), and the application
of deep learning in predicting the concentrations of pollutants such
as NO2 and PM10 (Kukkonen et al., 2003), signal a shift towards
more accurate and flexible assessment techniques. As a significant
improvement, Sun et al. (2022b) presented an ambient air quality
evaluation model based on an advanced evidence theory. Important
research developments in this field are presented in Table 1. While
advanced air quality assessment techniques provide significant
insights, they are often unable to distinguish between sources of
pollution and may not account for the latest scientific understanding

of pollutant interactions. Moreover, the evolving nature of industrial
emissions and urban development requires more adaptable and
sophisticated analytical methods. Thus, recognizing these
shortcomings, the development and deployment of more precise
and efficient air quality assessment techniques have become
paramount for both scientific research and policy formulation.

In this study, we present a fuzzy evaluation method that
innovatively integrates evidence theory and the KNN algorithm,
aiming to enhance atmospheric pollution concentration assessment
precision and efficiency. This approach strives to overcome the
limitations of conventional evaluation methods by synthesizing
multifaceted, uncertain, and ambiguous environmental data, thus
improving the precision and reliability. Via comparison with
established evaluation techniques, our study reveals the proposed

TABLE 5 (Continued) Concentrations of different air pollutants in different regions.beijing.

Region Pollutant concentration

SO2 (μg/m3) NO2 (μg/m3) CO (mg/m3) O3 (μg/m3) PM10 (μg/m3) PM2.5 (μg/m3)

: : : : : : :

: : : : : : :

: : : : : : :

Yanqing Summer Capital 5 39 0.6 36 47 20

Miyun New City 2 68 0.8 25 68 26

Pinggu New City 3 19 0.3 46 25 15

Miyun Town 3 36 0.6 38 39 19

Fengtai Xiaotun 4 59 0.8 23 51 24

Huairou New City 5 37 0.5 37 35 20

Yanqing Shiheying 5 65 0.7 26 68 28

Daxing Old Palace 3 52 0.5 30 48 21

Fangshan and Yanshan 3 45 1.1 27 65 24

Tongzhou Dongguan 2 26 0.4 42 43 17

Fengtai Yungang 3 29 0.6 42 41 19

Three stores in Mentougou 4 37 0.6 37 40 21

ancient city 2 57 0.7 24 59 23

Olympic Sports Center 5 67 0.7 23 51 22

Changping Town 2 37 0.4 33 37 16

Huairou Town 3 25 0.4 41 30 15

Shunyi New City 3 47 0.7 35 42 20

Haidian Wanliu 4 65 0.7 19 57 21

Official Garden 6 65 0.7 22 46 21

Agricultural Exhibition Hall 5 67 0.8 20 61 29

Temple of Heaven 3 56 0.7 28 36 21

Dongsi 3 57 0.8 24 50 23

Dingling (control point) 2 21 0.4 42 29 14

Wanshou West Palace 6 71 0.9 23 49 23
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TABLE 6 Concentrations of different air pollutants in different regions.tianjin

Region Pollutant concentration

SO2 (μg/m3) NO2 (μg/m3) CO (mg/m3) O3 (μg/m3) PM10 (μg/m3) PM2.5 (μg/m3)

BinshuiEastRoad 22 57 1.6 20 97 50

JiansheRoad 18 67 1.5 23 79 43

NorthRingRoad 10 36 1.2 45 56 29

Xisido 18 59 1.2 20 85 50

ZhongshanNorthRoad 14 64 1.4 14 95 49

DaliRoad 17 65 1.3 18 81 52

BinshuiWestRoad 15 57 1.2 14 84 52

JinguRoad 18 67 1.4 16 92 59

HexiYijingRoad 21 57 1.5 23 78 45

DiweiRoad 19 59 1.7 24 93 67

XinlaoRoad 20 74 1.9 19 102 66

YongyangWestRoad 15 61 1.5 20 90 47

Tuanpowa 10 64 1.4 18 93 59

HanbeiRoad 20 52 1.7 19 78 44

YongmingRoad 23 72 1.6 19 88 58

FourthStreet 20 64 1.9 14 77 53

LeapForwardRoad 14 68 1.5 20 99 57

HuaiheRoad 16 55 1 17 81 47

Forwardlane 19 66 1.4 20 94 56

DazhiguNo8Road 16 67 1.5 16 70 53

Thepathofdiligenceandfrugality 20 68 1.3 15 84 44

: : : : : : :

: : : : : : :

: : : : : : :

Yanqing Summer Capital 18 46 0.8 41 54 22

Miyun New City 14 54 0.9 35 63 31

Pinggu New City 11 28 0.9 47 40 18

Miyun Town 12 60 0.8 32 52 25

Fengtai Xiaotun 14 70 1.1 35 82 34

Huairou New City 18 60 0.9 34 90 48

Yanqing Shiheying 12 63 0.9 37 73 33

Daxing Old Palace 29 67 0.8 31 72 34

Fangshan and Yanshan 15 54 1.1 38 59 28

Tongzhou Dongguan 9 59 1.1 38 57 27

Fengtai Yungang 14 57 1.1 40 57 25

Three stores in Mentougou 11 46 0.7 50 39 18

ancient city 12 65 0.6 37 71 31

(Continued on following page)
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method’s advantages and contributions, which can be summarized
as follows:

a) Holistic evaluation of atmospheric pollution concentrations:
The approach introduces an assessment technique that
overcomes the constraints of traditional AQI. It integrates
multi-source data and physical property analyses,
comprehensively evaluates atmospheric pollution patterns,
and accurately quantifies key pollutant concentrations.

b) Innovative synthesis of evidence theory and KNN: This
synthesis enhances the precision of data fusion and
relevance of the results.

c) Focus on data quality and accuracy: This hybrid approach
emphasizes data integrity by applying interval similarity and
subjective–objective weighting and considering variability in
pollutant concentrations and toxicological characteristics.

To validate the robustness of this approach and its applicability
in diverse environmental contexts, the analysis includes data from
representative days across three distinct urban settings: Xi’an,
Beijing, and Tianjin, rather than focusing on a single urban area.
These cities were chosen for their varied geographic and
meteorological profiles, thus enhancing the robustness of the
findings. The findings confirm the method’s efficacy across varied
urban environments and address complex regional differences in air
pollution. This multifaceted approach substantially enhances
methodological rigor in air quality assessment.

2 Materials and methods

2.1 Theoretical background

2.1.1 KNN method
The KNN method, a commonly used machine learning

algorithm for classification and regression, stores all available
cases and classifies new data or cases based on a similarity
(distance) measure. It functions by finding the K-nearest
neighbors to the unknown sample within the known samples
(Altman, 1992; Huihui and Yanming, 2013; Wang et al., 2021).
Next, the class of the unknown sample is determined based on the

class of the nearest neighbors, typically via “majority rule.” The three
elements of the KNN model are the choice of k, a distance
measurement, and a classification-decision rule.

Regarding the choice of k, the blue triangle in Figure 1 represents
the sample to be classified. When k = 7, of the seven samples nearest
the sample to be classified, three belong to the red class and four to
the green class. Therefore, the sample to be classified is predicted to
belong to the green class. However, when k = 9, the sample to be
classified belongs to the red class. Therefore, when the samples are
unbalanced, the choice of k substantially impacts the results.

Next, distance is measured as follows:
Let the feature space χ be an n-dimensional real vector space Rn,

xi and xj ∈ χ, xi � (xi1, xi2......xin)T, xj � (xj1, xj2......xjn)T, with
the distance dP between xi and xj defined as

dp xi, xj( ) � ∑n

l�1 xil − xjl

∣∣∣∣ ∣∣∣∣2( ) 1
p (1)

When p � 2, this is the Euclidean distance:

d2 xi, xj( ) � ∑n

l�1 xil − xjl

∣∣∣∣ ∣∣∣∣2( ) 1
2 (2)

when p � 1, it is the Manhattan distance:

d1 xi, xj( ) � ∑n

l�1 xil − xjl

∣∣∣∣ ∣∣∣∣( ) (3)

and when p � ∞, it is the maximum distance between the
coordinates, i.e.,

d∞ xi, xj( ) � max
l

∑n

l�1 xil − xjl

∣∣∣∣ ∣∣∣∣) (4)

2.1.2 Evidence theory
The evidence theory, proposed by Dempster (2008), has been

further developed by Shafer (Ai et al., 2022; He et al., 2022; Liu et al.,
2022; Ren et al., 2022). Evidence theory applies fuzzy logic to handle
uncertainty, via the following steps.

a) Establishment of a discernment framework

The discernment framework is a set of all objects or entities
under consideration. Subsets in the discernment framework are
defined as follows:

TABLE 6 (Continued) Concentrations of different air pollutants in different regions.tianjin

Region Pollutant concentration

SO2 (μg/m3) NO2 (μg/m3) CO (mg/m3) O3 (μg/m3) PM10 (μg/m3) PM2.5 (μg/m3)

Olympic Sports Center 9 47 0.5 48 38 16

Changping Town 14 58 0.8 40 62 30

Huairou Town 19 70 0.7 29 57 25

Shunyi New City 12 62 0.9 37 75 33

Haidian Wanliu 15 71 1.3 34 78 33

Official Garden 14 63 1.1 40 64 30

Agricultural Exhibition Hall 13 65 0.8 36 65 30

Temple of Heaven 16 67 1.3 40 70 31
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TABLE 7 Standardized air pollutant concentrations across different regions.xi’an.

Region Pollutant concentration

SO2 NO2 CO O3 PM10 PM2.5

Xingqing District 0.25 0.71 1.00 0.10 0.05 0.10

Xiaozhai 0.33 0.89 0.25 0.27 0.01 0.08

Municipal People’s Stadium 0.00 1.00 0.50 0.13 0.36 0.41

Kwong Wan Tam 0.25 0.60 0.75 0.07 0.32 0.26

Bureau of Culture and Sports 0.17 0.17 0.75 1.00 0.32 0.95

Radio monitoring center 1.00 0.40 0.25 0.30 0.51 0.97

Qujiang 0.00 0.49 0.25 0.20 0.26 0.00

Textile City 0.42 0.00 1.00 0.00 0.38 0.36

Economic Development Zone 0.33 0.83 0.25 0.27 0.21 0.59

Grass Beach (control point) 0.17 0.29 0.00 0.30 1.00 1.00

Chang’an District 0.08 0.20 0.00 0.87 0.00 0.05

High-voltage switch factory 0.25 0.60 0.00 0.30 0.34 0.62

High-tech Western District 0.25 0.74 0.25 0.23 0.05 0.44

Lintong District 0.58 0.63 0.75 0.53 0.03 0.18

Xingqing District 0.38 0.74 0.75 0.20 0.70 0.35

Xiaozhai 0.50 1.00 0.13 0.08 0.49 0.20

Municipal People’s Stadium 0.38 0.92 0.38 0.33 0.93 0.40

Kwong Wan Tam 0.56 0.39 0.75 0.43 0.79 0.75

Bureau of Culture and Sports 0.25 0.37 0.13 0.50 0.81 1.00

Radio monitoring center 1.00 0.03 0.00 0.95 0.00 0.13

Qujiang 0.00 0.66 0.13 0.00 0.84 0.00

Textile City 0.44 0.00 0.75 0.10 0.84 0.65

Economic Development Zone 0.88 0.68 0.38 0.55 0.40 0.53

Grass Beach (control point) 0.44 0.26 0.25 0.48 1.00 0.43

Chang’an District 0.13 0.50 0.13 0.13 0.81 0.30

High-voltage switch factory 0.69 0.68 0.13 0.33 0.96 0.58

High-tech Western District 0.63 0.84 0.25 0.15 0.47 0.38

Lintong District 0.75 0.42 1.00 1.00 0.37 0.20

: : : : : : :

: : : : : : :

: : : : : : :

Xingqing District 0.33 0.69 0.50 0.32 0.00 0.05

Xiaozhai 0.83 0.86 1.00 0.36 0.53 0.09

Municipal People’s Stadium 0.50 0.93 1.00 0.50 0.24 0.09

Kwong Wan Tam 0.33 0.72 0.00 0.00 0.11 0.17

Bureau of Culture and Sports 0.50 0.00 0.17 1.00 0.08 0.11

Radio monitoring center 0.83 0.10 0.50 0.18 1.00 1.00

(Continued on following page)
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TABLE 7 (Continued) Standardized air pollutant concentrations across different regions.xi’an.

Region Pollutant concentration

SO2 NO2 CO O3 PM10 PM2.5

Qujiang 0.33 0.55 0.50 0.09 0.96 0.33

Textile City 0.00 0.55 0.33 0.07 0.15 0.13

Economic Development Zone 0.83 1.00 0.50 0.45 0.70 0.31

Grass Beach (control point) 0.00 0.45 0.33 0.23 149 85

Chang’an District 0.50 0.00 0.00 0.77 129 54

High-voltage switch factory 1.00 0.86 0.67 0.80 156 80

High-tech Western District 0.83 0.76 0.83 0.82 124 73

Lintong District 1.00 0.62 0.33 0.27 127 76

TABLE 8 Standardized air pollutant concentrations across different regions.beijing

Region Pollutant concentration

SO2 (μg/m3) NO2 (μg/m3) CO (mg/m3) O3 (μg/m3) PM10 (μg/m3) PM2.5 (μg/m3)

Yanqing Summer Capital 0.86 0.23 0.60 0.97 0.46 0.60

Miyun New City 0.71 0.00 0.00 1.00 0.06 0.00

Pinggu New City 0.14 0.21 0.60 0.40 0.40 0.75

Miyun Town 0.57 0.40 0.40 0.60 0.23 0.20

Fengtai Xiaotun 0.71 1.00 1.00 0.17 1.00 1.00

Huairou New City 0.43 0.05 0.00 0.71 0.05 0.00

Yanqing Shiheying 0.86 0.26 0.80 0.89 0.35 0.65

Daxing Old Palace 0.14 0.93 0.40 0.03 0.63 0.70

Fangshan and Yanshan 0.43 0.35 0.60 0.94 0.26 0.60

Tongzhou Dongguan 0.29 0.84 0.20 0.00 0.71 0.85

Fengtai Yungang 0.57 0.58 0.20 0.20 0.42 0.50

Three stores in Mentougou 0.71 0.51 0.80 0.49 0.48 0.50

ancient city 0.43 0.60 0.60 0.14 0.86 0.95

Olympic Sports Center 0.57 0.77 0.20 0.29 0.34 0.40

Changping Town 0.71 0.30 0.40 0.31 0.20 0.30

Huairou Town 0.29 0.21 0.20 0.66 0.00 0.05

Shunyi New City 0.57 0.49 0.60 0.37 0.32 0.50

Haidian Wanliu 1.00 0.74 0.80 0.20 0.57 0.55

Official Garden 0.57 0.88 0.60 0.17 0.35 0.50

Agricultural Exhibition Hall 0.29 0.98 0.20 0.09 0.54 0.55

Temple of Heaven 0.00 0.86 0.80 0.00 0.29 0.65

Dongsi 0.14 0.72 0.20 0.09 0.37 0.55

Dingling (control point) 0.57 0.21 0.00 0.37 0.11 0.45

Wanshou West Palace 0.29 0.98 0.80 0.06 0.43 0.65

: : : : : : :

(Continued on following page)
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Θ � θ1, θ2, θ3//θN{ } (5)
IfΘ is a finite complete set ofNmutually exclusive elements, it is

called a discernment framework. The set of 2N elements formed by
the power set 2Θ of Θ is:

2θ � φ, θ1, θ2, θ3//θN, θ1 ∪ θ2 ∪ θ3/,Θ{ } (6)

b) Determination of the basic probability assignment (BPA)

Initially, the evidence-based confidence (support) in each
combination is established by the evidence processor. The basic
probability is assigned as follows:

LetΘ be a discernment framework. The power set 2Θ ofΘ forms
the set of propositions 2Θ, ∀A ∈ Θ.

If the function m: 2Θ → [0, 1] satisfies the conditions

m ϕ( ) � 0 and∑
A⊆Θm A( ) � 1 (7)

then m is referred to as the BPA, and m(A) is the basic probability
assigned to proposition A (i.e., the confidence accurately
assigned to A).

There are two ways to calculate the BPA: via expert opinion or
by constructing the corresponding mathematical model. The
approach of using expert experience requires values provided
by different experts, and thus tends to be subjective. Therefore,
this method calculates BPA by constructing the corresponding
mathematical model.

c) Evidence-combination rule

TABLE 8 (Continued) Standardized air pollutant concentrations across different regions.beijing

Region Pollutant concentration

SO2 (μg/m3) NO2 (μg/m3) CO (mg/m3) O3 (μg/m3) PM10 (μg/m3) PM2.5 (μg/m3)

: : : : : : :

: : : : : : :

Yanqing Summer Capital 0.75 0.38 0.38 0.63 0.51 0.40

Miyun New City 0.00 0.94 0.63 0.22 1.00 0.80

Pinggu New City 0.25 0.00 0.00 1.00 0.00 0.07

Miyun Town 0.25 0.33 0.38 0.70 0.33 0.33

Fengtai Xiaotun 0.50 0.77 0.63 0.15 0.60 0.67

Huairou New City 0.75 0.35 0.25 0.67 0.23 0.40

Yanqing Shiheying 0.75 0.88 0.50 0.26 1.00 0.93

Daxing Old Palace 0.25 0.63 0.25 0.41 0.53 0.47

Fangshan and Yanshan 0.25 0.50 1.00 0.30 0.93 0.67

Tongzhou Dongguan 0.00 0.13 0.13 0.85 0.42 0.20

Fengtai Yungang 0.25 0.19 0.38 0.85 0.37 0.33

Three stores in Mentougou 0.50 0.35 0.38 0.67 0.35 0.47

ancient city 0.00 0.73 0.50 0.19 0.79 0.60

Olympic Sports Center 0.75 0.92 0.50 0.15 0.60 0.53

Changping Town 0.00 0.35 0.13 0.52 0.28 0.13

Huairou Town 0.25 0.12 0.13 0.81 0.12 0.07

Shunyi New City 0.25 0.54 0.50 0.59 0.40 0.40

Haidian Wanliu 0.50 0.88 0.50 0.00 0.74 0.47

Official Garden 1.00 0.88 0.50 0.11 0.49 0.47

Agricultural Exhibition Hall 0.75 0.92 0.63 0.04 0.84 1.00

Temple of Heaven 0.25 0.71 0.50 0.33 0.26 0.47

Dongsi 0.25 0.73 0.63 0.19 0.58 0.60

Dingling (control point) 0.00 0.04 0.13 0.85 0.09 0.00

Wanshou West Palace 1.00 1.00 0.75 0.15 0.56 0.60
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TABLE 9 Standardized air pollutant concentrations across different regions.tianjing

Region Pollutant concentration

SO2 (μg/m3) NO2 (μg/m3) CO (mg/m3) O3 (μg/m3) PM10 (μg/m3) PM2.5 (μg/m3)

BinshuiEastRoad 0.92 0.55 0.67 0.19 0.89 0.55

JiansheRoad 0.62 0.82 0.56 0.29 0.50 0.37

NorthRingRoad 0.00 0.00 0.22 1.00 0.00 0.00

Xisido 0.62 0.61 0.22 0.19 0.63 0.55

ZhongshanNorthRoad 0.31 0.74 0.44 0.00 0.85 0.53

DaliRoad 0.54 0.76 0.33 0.13 0.54 0.61

BinshuiWestRoad 0.38 0.55 0.22 0.00 0.61 0.61

JinguRoad 0.62 0.82 0.44 0.06 0.78 0.79

HexiYijingRoad 0.85 0.55 0.56 0.29 0.48 0.42

DiweiRoad 0.69 0.61 0.78 0.32 0.80 1.00

XinlaoRoad 0.77 1.00 1.00 0.16 1.00 0.97

YongyangWestRoad 0.38 0.66 0.56 0.19 0.74 0.47

Tuanpowa 0.00 0.74 0.44 0.13 0.80 0.79

HanbeiRoad 0.77 0.42 0.78 0.16 0.48 0.39

YongmingRoad 1.00 0.95 0.67 0.16 0.70 0.76

FourthStreet 0.77 0.74 1.00 0.00 0.46 0.63

LeapForwardRoad 0.31 0.84 0.56 0.19 0.93 0.74

HuaiheRoad 0.46 0.50 0.00 0.10 0.54 0.47

Forwardlane 0.69 0.79 0.44 0.19 0.83 0.71

DazhiguNo8Road 0.46 0.82 0.56 0.06 0.30 0.63

Thepathofdiligenceandfrugality 0.77 0.84 0.33 0.03 0.61 0.39

: : : : : : :

: : : : : : :

: : : : : : :

Yanqing Summer Capital 0.45 0.42 0.38 0.57 0.31 0.19

Miyun New City 0.25 0.60 0.50 0.29 0.48 0.47

Pinggu New City 0.10 0.00 0.50 0.86 0.04 0.06

Miyun Town 0.15 0.74 0.38 0.14 0.27 0.28

Fengtai Xiaotun 0.25 0.98 0.75 0.29 0.85 0.56

Huairou New City 0.45 0.74 0.50 0.24 1.00 1.00

Yanqing Shiheying 0.15 0.81 0.50 0.38 0.67 0.53

Daxing Old Palace 1.00 0.91 0.38 0.10 0.65 0.56

Fangshan and Yanshan 0.30 0.60 0.75 0.43 0.40 0.38

Tongzhou Dongguan 0.00 0.72 0.75 0.43 0.37 0.34

Fengtai Yungang 0.25 0.67 0.75 0.52 0.37 0.28

Three stores in Mentougou 0.10 0.42 0.25 1.00 0.02 0.06

ancient city 0.15 0.86 0.13 0.38 0.63 0.47

(Continued on following page)
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LetmA andmB be sets of BPAs corresponding to focal elements
A1, A2......Ai and B1, B2......Bj, respectively. Let m denote the new
evidence after combining mA and mB. Then, the Dempster
combination rule is expressed as follows:

m ∅( ) � 0 (8)
m A( ) � 1

1 − k
∑

Ai∩Bj( )≠∅mA Ai( ) ·mB Bj( ) (9)
k � ∑

Ai∩Bj( )≠∅mA Ai( ) ·mB Bj( ) (10)

where K is the conflict coefficient, which reflects the degree of
conflict between focal elements. A larger K indicates greater conflict;
the combination rule cannot be used when K = 1.

2.1.3 Support vector machine (SVM)
We derived a data fusion method to assess air pollution based on

comprehensive fuzzy evaluation, the Dempster–Shafer (DS) evidence
theory, and the KNN algorithm. To comprehensively evaluate this
method, we chose the SVM method as a benchmark for comparison.
SVM, a widely used supervised learning method for classification and
regression, is based on structural risk minimization. SVM can
simultaneously process linear and non-linear data via kernel
functions, making it suitable for analyzing our dataset.

2.2 Model overview

2.2.1 Research concept
The atmospheric environment is complex, and air quality is

influenced by many factors, including uncertain and fuzzy factors
(Seinfeld and Pandis, 2016). To address this environmental
complexity, we propose an air pollution concentration evaluation
method based on the DS evidence theory corrected by subjective and
objective weighting and the extensible KNN. First, the set of air
pollution evaluation indicators is determined (Figure 2). Figure 3
presents the air-pollution modeling methodology and workflow.
The workflow encompasses each phase from the initial data
segmentation to the final evaluation of pollution levels and
elucidates the seamless transition between phases. This method
thus provides a cohesive approach to quantifying air pollution.

2.2.2 Research procedure
Comprehensive examination and iterative testing have revealed

that accurate quantification of air pollution requires consideration of
both the pollution intensity for specific contaminants and the
spatiotemporal dynamics of the atmosphere. We therefore
designed and refined an optimized algorithm combining evidence
theory-based data fusion and KNN-based fuzzy evaluation. This
algorithmwas not chosen arbitrarily; it emerged as the most effective
after several experimental iterations and methodological trials. Its
efficacy in addressing the complexity of pollution assessment
underscores its robustness. This integrated algorithm is deployed
by applying evidence theory, the KNN algorithm, and then
their synthesis.

2.2.2.1 Evidence theory application
For data segmentation, the air pollution data are initially divided

into different intervals, based on national air pollution
concentration standards, to ensure consistency and accuracy in
evaluation.

Basic Probability Assignment (BPA) values are constructed for
each pollutant, based on interval similarity. This step underlies
evidence theory fusion, with the key objective being the accurate
representation of uncertainty in pollutant concentration.

For each pollutant, evidence theory is applied to sequentially
fuse the concentration data from each region, thereby enhancing the
model’s capacity to handle regional disparities.

2.2.2.2 KNN algorithm application
Selecting the value of k: The optimal k value is determined based

on cross-validation results to ensure the model’s accuracy and
generalizability.

Distance Measurement: An improved method of distance
measurement is applied to calculate the similarity between data
points, aiding in more accurately identifying the nearest neighbors.

2.2.2.3 Synthesis of evidence theory and KNN
The evidence theory fusion results are further corrected using

subjective and objective weights to optimize assessment accuracy.
The output of the evidence theory computations is used as input

for the KNN algorithm, and the concentrations are estimated by

TABLE 9 (Continued) Standardized air pollutant concentrations across different regions.tianjing

Region Pollutant concentration

SO2 (μg/m3) NO2 (μg/m3) CO (mg/m3) O3 (μg/m3) PM10 (μg/m3) PM2.5 (μg/m3)

Olympic Sports Center 0.00 0.44 0.00 0.90 0.00 0.00

Changping Town 0.25 0.70 0.38 0.52 0.46 0.44

Huairou Town 0.50 0.98 0.25 0.00 0.37 0.28

Shunyi New City 0.15 0.79 0.50 0.38 0.71 0.53

Haidian Wanliu 0.30 1.00 1.00 0.24 0.77 0.53

Official Garden 0.25 0.81 0.75 0.52 0.50 0.44

Agricultural Exhibition Hall 0.20 0.86 0.38 0.33 0.52 0.44

Temple of Heaven 0.35 0.91 1.00 0.52 0.62 0.47
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applying thematter-element extensionmodel. This step accounts for
the spatiotemporal dynamics of air pollutants and their
environmental and health impacts.

Our model thus enhances the accuracy of air pollution
assessment based on multi-source data and effectively fuses the
data to improve the comprehensiveness and reliability of the results.

FIGURE 6
(Continued).
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FIGURE 6
(Continued). Comparison of the monitored concentrations of different pollutants in different regions. (A) Xi’an; (B) Beijing; (C) Tianjin.
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FIGURE 7
(Continued).
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2.3 Research methods

2.3.1 Fusion of air pollutant concentrations based
on interval similarity

The air pollutant concentrations were fused as follows:

a) For each urban area within the city, a distinct set (U) of
pollutant concentrations was determined:

U � U1, U2/UN{ } (11)

Each single factor was then decomposed into subsystem evaluation
factors, with the corresponding factor set Ui represented as

Ui � Ui1, Ui2/UiN{ } (12)
where Ui is the factor set and UiN is the Nth sub-factor indicator in
the ith factor set.

b) Based on the degree of harm to human health caused by air
pollution, the air pollution concentrations were categorized into
seven levels, thus determining the evaluation set
(Table 2), denoted as

V � V1, V2/V7{ } (13)
where V1–V7 correspond to seven levels of air pollution
concentration.

FIGURE 7
(Continued). Correlations among pollutant concentrations in different regions. (A) Xi’an; (B) Beijing; (C) Tianjin.
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FIGURE 8
(Continued).
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c) To determine the membership function, based on the
air pollution concentration standards of the
Chinese Environmental Protection Administration (EPA),
the air pollutant concentrations were classified by interval.
For each pollutant, the distance to each interval was calculated
using Equation (14). A larger distance to the interval
corresponds to a lower similarity and a greater impact of
pollutants on air pollution concentrations.

D U,Vk( ) � ∑n
k�1 U − Vk| |

n
(14)

Similarity was then calculated via Equation 15 and was
normalized to yield the basic probability distribution function,
as follows:

S U,Vk( ) � 1
1 +D U,Vk( )( ) (15)

d) The DS evidence from different regions for each pollutant was
then sequentially fused. Following the first law of geography,
the law of spatial correlation, which states that “all things are
related, but nearby things are more related than distant things”
(Tobler, 1970; Li et al., 2016), it is necessary to consider the
impact of pollutant concentrations and spatiotemporal
influences. During data fusion, data transmission can be
delayed. For greater efficiency, we applied sequential data

fusion, fusing the output data items one-by-one, based on
their to spatial sequence. Unlike other fusion techniques,
sequential data fusion better balances data quality and
processing speed, enabling real-time or near-real-time air
quality assessments. Figure 4 illustrates BPA-value
adjustment using interval similarity via DS evidence theory.
This adjustment effectively addresses the inherent uncertainty
associated with atmospheric pollution concentrations.
Merging the modified BPA values produces the final
atmospheric pollution concentrations:

UN � U1, U2, U3/UN( ) (16)

2.3.2 Construction of the DS evidence theory
model based on comprehensive weighting

To evaluate the air pollution concentrations, concentrations
of air pollutants from multiple sources were fused. This analysis
requires consideration of individual pollutant concentrations
and of the mutual influences among the pollution levels in
different regions for each pollutant. Therefore, each indicator
has both subjective and objective weights. Subjective (or expert)
weighting is derived from expert opinion or experience. Objective
weighting is based on the relationships among indicators and
relies on specific mathematical methods to calculate the weight of
each indicator.

FIGURE 8
Correlations among pollutant concentrations. (A) Xi’an; (B) Beijing; (C) Tianjin.
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TABLE 10 BPA values across different regions.xi’an.

Region Pollutant concentration

SO2 NO2 CO O3 PM10 PM2.5

Xingqing District 0.1334 0.723,083 0.72041 0.7047 0.68038 0.6795

Xiaozhai 0.1335 0.73219 0.71237 0.7116 0.67454 0.6764

Municipal People’s Stadium 0.133 0.738,389 0.71503 0.706 0.72652 0.7176

Kwong Wan Tam 0.1334 0.717,136 0.71771 0.7033 0.719,877 0.6987

Bureau of Culture and Sports 0.1332 0.695,682 0.71771 0.7437 0.719,877 0.7641

Radio monitoring center 0.1345 0.706,962 0.71237 0.713 0.75202 0.7665

Qujiang 0.133 0.711,287 0.71237 0.7088 0.71118 0.6673

Textile City 0.1336 0.687,456 0.72041 0.7006 0.73103 0.7121

Economic Development Zone 0.1335 0.729,129 0.71237 0.7116 0.70269 0.7325

Grass Beach (control point) 0.1332 0.701,277 0.70972 0.713 0.82813 0.7689

Chang’an District 0.1331 0.697,073 0.70972 0.7377 0.67262 0.6733

High-voltage switch factory 0.1334 0.717,136 0.70972 0.713 0.72429 0.7346

High-tech Western District 0.1334 0.724,585 0.71237 0.7102 0.68038 0.7197

Lintong District 0.1338 0.718,614 0.71771 0.7229 0.7265 0.676,476

Xingqing District 0.13472 0.71909 0.71463 0.7074 0.6335 0.671,995

Xiaozhai 0.13508 0.7267 0.72273 0.7102 0.7450 0.681,060

Municipal People’s Stadium 0.13484 0.72855 0.72273 0.7189 0.6805 0.68106

Kwong Wan Tam 0.13472 0.72060 0.70,670,944 0.68828 0.654,218 0.69672

Bureau of Culture and Sports 0.13484 0.690,182 0.709,331 0.7524 0.64844 0.68413

Radio monitoring center 0.135,089 0.69437 0.714,633 0.69911 0.8218 0.82859

Qujiang 0.13472 0.71312 0.714,633 0.69365 0.814,504 0.73031

Textile City 0.13447 0.713,121 0.71,197,217 0.6923 0.66209 0.68724

Economic Development Zone 0.13508 0.73041 0.714,633 0.71601 0.7717 0.726,812,618

Grass Beach (control point) 0.134,478 0.708,705 0.71,197,217 0.70187 0.742,507 0.752,074,228

Chang’an District 0.134,844 0.690,182 0.70,670,944 0.73680 0.69557 0.663,168,781

High-voltage switch factory 0.135,212 0.726,707 0.717,313 0.73833 0.75421 0.741,035,957

High-tech Western District 0.135,089 0.722,122 0.72,001,489 0.73987 0.68475 0.723,341,689

Lintong District 0.135,212 0.716,096 0.71,197,217 0.704,659 0.6912 0.732,435,926

: : : : : : :

: : : : : : :

: : : : : : :

Xingqing District 0.1,347,224 0.719,096 0.714,633 0.707,465 0.633,503 0.67,199,534

Xiaozhai 0.13,508,933 0.726,707 0.722,736 0.71029 0.74502 0.681,060,025

Municipal People’s Stadium 0.1,348,445 0.728,558 0.7,227,363 0.718,915 0.680,516 0.681,060,025

Kwong Wan Tam 0.1,347,224 0.720,606 0.70,670,944 0.68828 0.65422 0.696,723,779

Bureau of Culture and Sports 0.1,348,445 0.6,901,826 0.709,331 0.752,404 0.648,435 0.684,136,177

Radio monitoring center 0.1,350,893 0.69437 0.714,633 0.69911 0.821,803 0.828,598,193

(Continued on following page)
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2.3.3 Subjective weights
Each air pollutant has a specific toxicity level, with higher

toxicity correlating with increased pollution and potential harm
to humans. To ensure a well-rounded and credible representation
of pollutant toxicity, we derived subjective weights (denoted by
Wi) for each pollutant, by consulting a panel of experts and
corroborating their input using the literature. This approach both
leverages expert experience and ensures a balanced weighting
strategy supported by established knowledge.

2.3.4 Objective weights
Objective weighting has the advantage of relying primarily on

objective data without requiring human intervention. Therefore,
objective judgments are not limited by human subjectivity and are
considered true and reliable.

Air pollution levels depend both on differences between
pollutants and regional pollutant concentrations. Therefore, to
calculate the objective weights, we implemented the CRIteria
Importance Through Intercriteria Correlation (CRITIC) method
(Wang and Jiang, 2017; Ying and Yunyun, 2017), a sophisticated
approach that effectively integrates both contrasting and
conflicting indicators. In this context, associations between
information are used to quantify the conflict between
indicators. More closely associated indicators exhibit less
conflict, and are therefore assigned less weight. The contrast
between indicators was ascertained using the standard deviation
of the information; a larger standard deviation implies a greater
contrast. Here, we adopted the “Over-standard Multiple Method”
to represent this contrast, using the standard deviation of
information. Indicator similarity, conversely, was used to
compute the conflict between indicators. Among the various
weight-calculation methods, CRITIC was deemed the most
suitable for our research objectives; the other methods, in
contrast, exhibit greater computational complexity, specific
data prerequisites, or inherent limitations. The objective
weights were calculated as follows.

a) According to Chinese EPA monitoring data, the regions
P1, P2, P3I...Pj are currently monitored for the pollutants
SO2, NO2, CO, O3, PM2.5, and PM10. The daily air
pollutant concentrations in the different regions are as follows:

U �

U11 U12 U13 . . . . . . . . . . . . . . . U1N

U21 U22 U23 . . . . . . . . . . . . . . . U2N

U31 U32 U33 . . . . . . . . . . . . . . . U3N

U41 U42 U43 . . . . . . . . . . . . . . . U4N

..

. ..
. ..

. ..
. ..

. ..
.

..

. ..
. ..

. ..
. ..

. ..
.

Ui1 UI2 Ui3 . . . . . . . . . . . . . . . UiN

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(17)

where N is the number of air pollutants (SO2, NO2, CO, O3, PM2.5,
and PM10) and i is the monitoring region.

b) To better demonstrate pollution levels, the pollutant
concentration indicators for the different regions and
pollutants in the matrix were nondimensionalized. The
concentrations of the same pollutant in different regions
mutually affect one another. Therefore, range normalization
was used for nondimensionalization:

UiN
/ � UiN − min

max − min
(18)

After nondimensionalization, the relative pollution levels
for the same pollutant in different regions are obtained,
as follows:

U �

U11 U12 U13 . . . . . . . . . . . . . . . U1N

U21 U22 U23 . . . . . . . . . . . . . . . U2N

U31 U32 U33 . . . . . . . . . . . . . . . U3N

U41 U42 U43 . . . . . . . . . . . . . . . U4N

..

. ..
. ..

. ..
. ..

. ..
.

..

. ..
. ..

. ..
. ..

. ..
.

Ui1 UI2 Ui3 . . . . . . . . . . . . . . . UiN

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(19)

where N is the number of air pollutants (SO2, NO2, CO, O3, PM2.5,
and PM10) and i is the monitoring region.

c) The concentrations of different pollutants in the same region
can also mutually affect one another. When multiple different
pollutants are present in greater concentrations, their impact
on one another is greater. The contrast among indicators in the
CRITIC method can be represented by over-standard
multiples, as follows:

TABLE 10 (Continued) BPA values across different regions.xi’an.

Region Pollutant concentration

SO2 NO2 CO O3 PM10 PM2.5

Qujiang 0.1,347,224 0.7,131,217 0.71,463,303 0.69365 0.814,504 0.730,317,018

Textile City 0.1,344,789 0.7,131,217 0.71,197,217 0.6923 0.66209 0.687,240,243

Economic Development Zone 0.1,350,893 0.730,418 0.714,633 0.716,018 0.771,665 0.726,812,618

Grass Beach (control point) 0.1,344,789 0.708,705 0.71,197,217 0.70187 0.742,507 0.752,074,228

Chang’an District 0.1,348,445 0.690,182 0.70,670,944 0.7368 0.695,572 0.663,168,781

High-voltage switch factory 0.135,212 0.726,707 0.7,173,138 0.73833 0.754,212 0.741,035,957

High-tech Western District 0.13,508,933 0.722,122 0.72,001,489 0.73987 0.684,751 0.723,341,689

Lintong District 0.13,521,208 0.7,160,968 0.71,197,217 0.704,659 0.6,912,027 0.732,435,926
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TABLE 11 BPA values across different regions.beijing

Region Pollutant concentration

SO2 NO2 CO O3 PM10 PM2.5

Yanqing Summer Capital 0.41,729,175 0.41 0.41737 0.414,353 0.408,899 0.408,415

Miyun New City 0.41,691,635 0.42 0.41893 0.414,353 0.415,314 0.422,296

Pinggu New City 0.41,691,635 0.42 0.415,822 0.418,275 0.413,154 0.413,356

Miyun Town 0.41,654,162 0.41 0.414,285 0.426,345 0.405,764 0.39772

Fengtai Xiaotun 0.41,654,162 0.41 0.415,822 0.415,131 0.406,804 0.415,871

Huairou New City 0.41,654,162 0.42 0.414,285 0.420,663 0.413,154 0.419,702

Yanqing Shiheying 0.41,691,635 0.42 0.41737 0.414,353 0.417,498 0.42758

Daxing Old Palace 0.41,691,635 0.42 0.41737 0.415,131 0.419,705 0.413,356

Fangshan and Yanshan 0.41,654,162 0.42 0.41893 0.415,913 0.42993 0.415,871

Tongzhou Dongguan 0.41,654,162 0.42 0.415,822 0.427,169 0.412,081 0.400,048

Fengtai Yungang 0.41,691,635 0.41 0.414,285 0.415,913 0.412,081 0.408,415

Three stores in Mentougou 0.41,654,162 0.4 0.414,285 0.423,891 0.407,849 0.405,989

ancient city 0.41,616,756 0.43 0.41737 0.412,805 0.425,325 0.423,604

Olympic Sports Center 0.41,616,756 0.42 0.41737 0.416,697 0.425,325 0.423,604

Changping Town 0.41,654,162 0.41 0.41737 0.413,577 0.427,615 0.420,995

Huairou Town 0.41,691,635 0.42 0.414,285 0.416,697 0.412,081 0.41461

Shunyi New City 0.41,691,635 0.42 0.415,822 0.415,131 0.411,015 0.410,871

Haidian Wanliu 0.41,691,635 0.42 0.41737 0.413,577 0.42993 0.420,995

Official Garden 0.41,654,162 0.43 0.420,501 0.415,131 0.423,059 0.423,604

Agricultural Exhibition Hall 0.41,654,162 0.42 0.414,285 0.415,913 0.423,059 0.428,922

Temple of Heaven 0.41,616,756 0.41 0.41893 0.413,577 0.407,849 0.423,604

Dongsi 0.41,691,635 0.42 0.41893 0.415,913 0.418,598 0.422,296

Dingling (control point) 0.41,616,756 0.42 0.415,822 0.415,913 0.415,314 0.413,356

Wanshou West Palace 0.41,691,635 0.42 0.41737 0.413,577 0.418,598 0.424,921

: : : : : : :

: : : : : : :

: : : : : : :

Yanqing Summer Capital 0.41,729,175 0.41 0.41737 0.414,353 0.408,899 0.408,415

Miyun New City 0.41,691,635 0.42 0.41893 0.414,353 0.415,314 0.422,296

Pinggu New City 0.41,691,635 0.42 0.415,822 0.418,275 0.413,154 0.413,356

Miyun Town 0.41,654,162 0.41 0.414,285 0.426,345 0.405,764 0.39772

Fengtai Xiaotun 0.41,654,162 0.41 0.415,822 0.415,131 0.406,804 0.415,871

Huairou New City 0.41,654,162 0.42 0.414,285 0.420,663 0.413,154 0.419,702

Yanqing Shiheying 0.41,691,635 0.42 0.41737 0.414,353 0.417,498 0.42758

Daxing Old Palace 0.41,691,635 0.42 0.41737 0.415,131 0.419,705 0.413,356

Fangshan and Yanshan 0.41,654,162 0.42 0.41893 0.415,913 0.42993 0.415,871

Tongzhou Dongguan 0.41,654,162 0.42 0.415,822 0.427,169 0.412,081 0.400,048

(Continued on following page)
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Sj � UiN/ 1
n
∑n

j�1Vij( ) (20)

d) For the same pollutant, the levels are strongly positively
correlated among regions. The extent of correlation can be
determined from the similarity among indicators. Greater
similarity corresponds to less conflict. Here, the indicator
similarity matrix was constructed using Pearson correlation
coefficients. The level of conflict (qij) of each indicator in the
similarity matrix was calculated as follows:

Qj � 1 − qij
∣∣∣∣ ∣∣∣∣ (21)

e) Fj, the degree of pollution caused by the jth pollutant, was
calculated as

Fj � Qj*Sj (22)

f) Wj, the objective weight of the jth pollutant, was calculated as

Wj � Fj∑n
j�1Fj

(23)

2.3.5 Combined subjective and objective weights
The combined subjective and objective weights of the jth indicator

were determined using the normalized combined weights, as follows:

W*
j � wiwj/∑N

j�1
wiwj

where j � 1.....N (24)

Wi and Wj are, respectively, the subjective and objective weight
elements of the nth indicator.

2.3.6 Subjective and objective correction
Subjective and objective correction of the concentrations of

different pollutants in the same region was performed as follows:

D � W*
j *UN (25)

2.4 Construction of the corrected KNN
model based on the average
extensible distance

The KNN algorithm determines the class of a sample by counting
the number of nearest neighbors of the same class. However, if the
distribution of classified samples is highly scattered and the data
distribution is not considered, the results can easily be biased. Yang
et al. (2010) proposed using the extensible distance to vote and select the
target attribute of the dataset for classification. Tan et al. (2017)
developed an air quality evaluation model based on fuzzy matter-
element analysis. Xiao and Duan (2013) proposed improving the
importance of classes using attribute values. Dai et al. (2018)
introduced a method to calculate sample-attribute weights using the
analytic hierarchy process and to classify samples based on their
weighted distances. Lü et al. (2021) proposed correcting KNN
classification using the probability that the test sample belongs to
each fault type as the weight.

Pollutant concentration data is typically log-normally distributed,
as substantiated by Ott (1990), who provided the physical explanation
for this phenomenon. This log-normal distribution is further supported
by the method-fusion approach for enhancing long-term air pollution
estimates, as discussed by Chastko and Adams (2019). Air pollution
concentration data follow a normal distribution (Figure 5). Each

TABLE 11 (Continued) BPA values across different regions.beijing

Region Pollutant concentration

SO2 NO2 CO O3 PM10 PM2.5

Fengtai Yungang 0.41,691,635 0.41 0.414,285 0.415,913 0.412,081 0.408,415

Three stores in Mentougou 0.41,654,162 0.4 0.414,285 0.423,891 0.407,849 0.405,989

ancient city 0.41,616,756 0.43 0.41737 0.412,805 0.425,325 0.423,604

Olympic Sports Center 0.41,616,756 0.42 0.41737 0.416,697 0.425,325 0.423,604

Changping Town 0.41,654,162 0.41 0.41737 0.413,577 0.427,615 0.420,995

Huairou Town 0.41,691,635 0.42 0.414,285 0.416,697 0.412,081 0.41461

Shunyi New City 0.41,691,635 0.42 0.415,822 0.415,131 0.411,015 0.410,871

Haidian Wanliu 0.41,691,635 0.42 0.41737 0.413,577 0.42993 0.420,995

Official Garden 0.41,654,162 0.43 0.420,501 0.415,131 0.423,059 0.423,604

Agricultural Exhibition Hall 0.41,654,162 0.42 0.414,285 0.415,913 0.423,059 0.428,922

Temple of Heaven 0.41,616,756 0.41 0.41893 0.413,577 0.407,849 0.423,604

Dongsi 0.41,691,635 0.42 0.41893 0.415,913 0.418,598 0.422,296

Dingling (control point) 0.41,616,756 0.42 0.415,822 0.415,913 0.415,314 0.413,356

Wanshou West Palace 0.41,691,635 0.42 0.41737 0.413,577 0.418,598 0.424,921
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TABLE 12 BPA values across different regions.tianjin

Region Pollutant concentration

SO2 NO2 CO O3 PM10 PM2.5

Xingqing District 0.385,551 0.374,772 0.386,021 0.399,306 0.392,035 0.390,947

Xiaozhai 0.385,203 0.365,038 0.381,788 0.400,129 0.364,171 0.366,603

Municipal People’s Stadium 0.383,815 0.373,775 0.386,021 0.383,532 0.387,913 0.397,547

Kwong Wan Tam 0.384,855 0.381,901 0.3846 0.388,909 0.377,011 0.374,374

Bureau of Culture and Sports 0.385,203 0.402,857 0.388,896 0.377,566 0.432,226 0.406,366

Radio monitoring center 0.384,508 0.366,944 0.381,788 0.39205 0.362,917 0.366,603

Qujiang 0.385,551 0.375,774 0.387,453 0.396,858 0.384,878 0.393,122

Textile City 0.383,815 0.400,398 0.3846 0.373,931 0.403,837 0.395,322

Economic Development Zone 0.384,508 0.379,837 0.386,021 0.398,487 0.378,947 0.390,947

Grass Beach (control point) 0.384,161 0.397,165 0.383,189 0.373,212 0.40944 0.401,419

Chang’an District 0.384,855 0.388,537 0.383,189 0.378,302 0.388,935 0.386,668

High-voltage switch factory 0.385,203 0.386,249 0.387,453 0.385,818 0.39308 0.386,668

High-tech Western District 0.384,508 0.389,306 0.386,021 0.376,833 0.421,125 0.404,704

Lintong District 0.384,855 0.394,774 0.383,189 0.380,526 0.383,876 0.382,481

Xingqing District 0.385,203 0.377,794 0.3846 0.381,273 0.375,094 0.378,384

Xiaozhai 0.384,161 0.373,775 0.383,189 0.390,473 0.359,207 0.368,516

Municipal People’s Stadium 0.384,855 0.385,493 0.386,021 0.382,776 0.38288 0.386,668

Kwong Wan Tam 0.3859 0.393,984 0.387,453 0.378,302 0.399,464 0.388,796

Bureau of Culture and Sports 0.384,855 0.398,775 0.386,021 0.377,566 0.384,878 0.386,668

Radio monitoring center 0.384,161 0.402,034 0.383,189 0.375,376 0.397,313 0.388,796

Qujiang 0.38347 0.397,968 0.387,453 0.373,212 0.380,904 0.393,122

: : : : : : :

: : : : : : :

: : : : : : :

BinshuiEastRoad 0.477,904 0.47468 0.479,314 0.477,222 0.480,541,073 0.512,594,485

JiansheRoad 0.478,341 0.478,999 0.4825 0.478,138 0.481,408,476 0.507,314,542

NorthRingRoad 0.476,164 0.475,906 0.47204 0.474,497 0.471,201,936 0.443,376,925

Xisido 0.475,299 0.479,622 0.479,314 0.467,378 0.462,218,883 0.469,810,367

ZhongshanNorthRoad 0.474,437 0.476,521 0.483,841 0.470,023 0.463,826,601 0.528,169,295

DaliRoad 0.474,867 0.475,906 0.47204 0.483,705 0.490,257,897 0.470,933,419

BinshuiWestRoad 0.473,149 0.471,642 0.473,837 0.483,705 0.491,160,766 0.47,547,984

JinguRoad 0.478,341 0.479,622 0.479,314 0.479,979 0.490,257,897 0.503,425,418

HexiYijingRoad 0.476,598 0.475,906 0.475,649 0.477,222 0.476,250,528 0.441,390,173

DiweiRoad 0.478,341 0.475,906 0.477,474 0.472,697 0.470,370,892 0.436,500,326

XinlaoRoad 0.474,867 0.465,094 0.475,649 0.470,911 0.464,634,662 0.436,500,326

YongyangWestRoad 0.476,164 0.444,523 0.470,256 0.482,768 0.479,676,791 0.352,427,812

Tuanpowa 0.475,731 0.477,138 0.47204 0.47631 0.475,401,597 0.509,940,846

(Continued on following page)
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TABLE 12 (Continued) BPA values across different regions.tianjin

Region Pollutant concentration

SO2 NO2 CO O3 PM10 PM2.5

HanbeiRoad 0.474,437 0.468,048 0.470,256 0.473,595 0.470,370,892 0.436,500,326

YongmingRoad 0.480,097 0.476,521 0.473,837 0.482,768 0.48,846,208 0.480,114,899

FourthStreet 0.477,468 0.483,397 0.477,474 0.470,023 0.473,712,781 0.486,037,369

LeapForwardRoad 0.476,164 0.485,307 0.479,314 0.477,222 0.475,401,597 0.504,284,506

HuaiheRoad 0.475,299 0.487,232 0.477,474 0.470,911 0.464,634,662 0.507,314,542

Forwardlane 0.475,299 0.47468 0.47204 0.482,768 0.484,909,629 0.480,114,899

DazhiguNo8Road 0.475,731 0.480,247 0.473,837 0.478,138 0.482,279,016 0.504,284,506

Thepathofdiligenceandfrugality 0.475,299 0.4931 0.4825 0.470,023 0.463,021,347 0.513,485,179

TABLE 13 Sequential fusion results.xi’an.

Method Pollutant

SO2 NO2 CO O3 PM10 PM2.5

D-S Sequential Fusion Results1 9.21366E-13 0.01426 0.01430 0.01428 0.01401 0.01408

7,936 647 124 5,764 2,376

D-S Sequential Fusion Results2 5.8882 0.01415 0.0141 0.01415 0.01394 0.01416

6E-13 5,479 85,013 2,786 6,904 668

D-S Sequential Fusion Results2 1.001 0.02054 0.02057 0.0205 0.03142 0.02046

67E-12 5,705 6,677 60,332 1758 5,258

D-S Sequential Fusion Results2 4.3349 0.01447 0.01450 0.0144 0.0184 0.0144

5E-13 6,865 1,514 7,182 79,643 17,647

D-S Sequential Fusion Results2 6.015 0.01407 0.01416 0.0137 0.01102 0.01296

14E-13 9,683 2,273 7,331 1,291 1,657

D-S Sequential Fusion Results2 6.2820 0.01423 0.01427 0.01422 0.01410 0.0141

2E-13 8,819 6,197 9,081 1,476 6,153

TABLE 14 Sequential fusion results.beijing

Method Pollutant

SO2 NO2 CO O3 PM10 PM2.5

D-S Sequential Fusion Results1 1.14978E-10 1.35918E-10 1.25262E-10 1.1126E-10 1.44329E-10 1.4529E-10

D-S Sequential Fusion Results2 7.94276E-10 8.48062E-10 8.56334E-10 8.5093E-10 8.35209E-10 8.5155E-10

D-S Sequential Fusion Results2 7.92718E-10 8.45955E-10 8.52807E-10 8.5156E-10 8.36499E-10 8.4969E-10

D-S Sequential Fusion Results2 7.95042E-10 8.52818E-10 8.57729E-10 8.4851E-10 8.50694E-10 8.5444E-10

D-S Sequential Fusion Results2 7.94844E-10 8.5099E-10 8.57506E-10 8.5514E-10 8.43495E-10 8.2224E-10

D-S Sequential Fusion Results2 7.9371 8.5339 8.54802 8.5412 8.5186 8.510

2E-10 5E-10 E−10 E−10 6E-10 3E-10
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pollutant concentration has a standard interval, according to the
Chinese EPA standards. Given these standard intervals, we can
determine the air pollution concentrations via DS evidence theory
fusion and corrected via subjective and objective weighting. Here, we
propose a model algorithm based on KNN corrected using matter-
element average extensible distances (Ott, 1990. A Physical Explanation
of the Lognormality of Pollutant).

The matter-element extension theory (Xiang, 2008) considers the
objective world as comprising matter elements; contradictions in the
objective world are treated as contradictions among matter elements.
Matter elements have many types of features, each with a value. Here,
the matter elements (the evaluation subjects, denoted as U) and their
features (the evaluation indicators, denoted as T) are combined with the
values Y (which correspond to the features), forming R = (U, T, Y), the
three matter-elements. The model calculations are as follows.

(1) If the described matter U has n features T1, T2, . . . ,
Tm with corresponding values Y1, Y2, . . . , Ym, then R is
called an n-dimensional fuzzy matter-element (Zhang, 1997).
Combining n-dimensional matter-elements of m
matters forms n-dimensional composite fuzzy
matter-elements Rnm of m matters:

R �
U T1 Y1

T2 Y2

..

. ..
.

Tn Yn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (26)

R �

T1 T2 / Tn

U1 Y11 Y12 / Y1n

U2 Y21 Y22 / Y2n

..

. ..
. ..

.
1 ..

.

Um Ym1 Ym2 / Ymn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (27)

(2) The described matter U has a value of Y for each feature. Let us
assume that Y is within the range (a, b) belonging to a classified
sample; forX(X1, I......Xi), the samples to be classified, the aim
is to determine the feature interval to which they belong, using
the KNN algorithm. Therefore, we set K = 3 and use the quartile
method to divide the interval Y of each known classified sample
into three adjacent intervals.

(3) The average distance between the sample to be classified and
the three nearest neighbor intervals of different classes is
calculated using the interpoint distance:

d xi, yn( ) � x − am + bm( )
2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ − bm − am( )

2
(28)

(4) The average distance between the sample to be classified and the
nearest neighbor points of each class is calculated as follow:

�d xi, yn( ) � 1
3
∑ x − am + bm( )

2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ − bm − am( )

2
( ) (29)

(5) The average distance between the sample to be classified and
each classified sample point is then compared. A smaller
distance indicates that the sample to be classified more likely
belongs to the corresponding interval.

3 Results

3.1 Evaluation indicator set

In evaluating air pollution, pollutant concentrations were calculated
based on regional data for each city. It is assumed that each city has i
monitoring regions, each with N indicators u1, u2 . . . .uN, which form
the set u = {u1, u2 . . . .uN}. Each indicator set can be decomposed into
subsystem evaluation factors, and the corresponding factor set Ui is
represented as ui = {ui1, ui2 . . . .uiN}, i.e., the evaluation factor set for
each region. Based on the Chinese EPA’s air pollution concentration
standards, an evaluation set {I, II, III, IV, V, VI, VII} is defined, where a
higher level indicates a higher pollutant concentration and a greater
impact on health (Table 2). The data are then
nondimensionalized (Table 3).

3.2 Data source

The air quality data used here—the daily air quality data for
2022 for Xi’an, Beijing, and Tianjin—were obtained primarily
from the China National Environmental Monitoring Network.
Owing to space constraints, only a subset of the data is
presented (Tables 4–6).

Additionally, we based our in-depth statistical analyses on the
processed and analyzed datasets of the Qingyue
Open Environmental Data Center. We standardized
the concentrations of the various air pollutants, obtaining

TABLE 15 Sequential fusion results.tianjin

Method Pollutant

SO2 NO2 CO O3 PM10 PM2.5

D-S Sequential Fusion Results1 1.8865E-07 2.07734E-07 2.08179E-07 2.0799E-07 2.06534E-07 2.0539E-07

D-S Sequential Fusion Results2 1.88537E-07 2.06473E-07 2.06968E-07 2.0539E-07 1.90604E-07 2.074E-07

D-S Sequential Fusion Results2 1.89902E-07 2.10487E-07 2.10577E-07 2.1044E-07 2.08663E-07 2.0787E-07

D-S Sequential Fusion Results2 1.89337E-07 2.08476E-07 2.09041E-07 2.0859E-07 2.07962E-07 2.0802E-07

D-S Sequential Fusion Results2 1.89327E-07 2.08873E-07 2.09097E-07 2.0851E-07 2.05306E-07 2.0632E-07

D-S Sequential Fusion Results2 1.89425E-07 2.08922E-07 2.09619E-07 2.0953E-07 1.93548E-07 2.0614E-07
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TABLE 16 Subjective and objective weights of the pollutants.xi’an.

Pollutant Indicator item

Indicator variability Indicator conflict Objective weight (%) Subjective weight Weight

SO2_24 3.082 4.687 5.11 2 0.2511

NO2_24 10.324 6.23 22.75 2 0.6275

CO_24 0.144 5.61 0.29 1 0.2029

O3_8 8.666 5.632 17.26 3 0.7726

PM10_24 19.343 4.972 34.02 4 1.1402

PM2.5_24 13.719 4.239 20.57 5 1.2057

SO2_24 4.312 4.64 7.35 2 0.2735

NO2_24 11.006 5.212 21.09 2 0.6109

CO_24 0.15 3.612 0.20 1 0.202

O3_8 9.725 4.344 15.53 3 0.7553

PM10_24 22.635 3.7 30.78 4 1.1078

PM2.5_24 19.773 3.447 25.05 5 1.2505

SO2_24 1.598 4.488 1.77 2 0.2177

NO2_24 6.796 4.858 8.15 2 0.4815

CO_24 0.107 6.278 0.17 1 0.2017

O3_8 6.188 3.931 6.01 3 0.6601

PM10_24 42.135 4.62 48.06 4 1.2806

PM2.5_24 28.384 5.114 35.84 5 1.3584

SO2_24 1.626 6.091 4.02 2 0.2402

NO2_24 6.627 4.852 13.06 2 0.5306

CO_24 0.141 5.893 0.34 1 0.2034

O3_8 21.658 4.886 42.97 3 1.0297

PM10_24 8.483 5.672 19.54 4 0.9954

PM2.5_24 9.913 4.988 20.08 5 1.2008

SO2_24 1.73 4.985 7.68 2 0.2768

NO2_24 0.109 3.662 0.35 2 0.4035

CO_24 15.079 3.503 47.01 1 0.6701

O3_8 6.826 2.954 17.94 3 0.7794

PM10_24 3.269 4.439 12.91 4 0.9291

PM2.5_24 5.026 3.154 14.11 5 1.1411

SO2_24 1.834 4.694 3.16 2 0.2316

NO2_24 11.926 4.775 20.89 2 0.6089

CO_24 0.156 5.336 0.30 1 0.203

O3_8 11.825 5.931 25.72 3 0.8572

PM10_24 19.685 4.078 29.45 4 1.0945

PM2.5_24 12.065 4.628 20.48 5 1.2048
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TABLE 17 Subjective and objective weights of the pollutants.beijing

Pollutant Indicator item

Indicator variability Indicator conflict Objective weight (%) Subjective weight Weight

SO2_24 1.817 4.749 3.94 2 0.4394

NO2_24 13.721 4.477 28.05 2 0.6805

CO_24 0.149 3.424 0.23 1 0.2023

O3_8 11.461 6.522 34.14 3 0.9414

PM10_24 15.91 3.437 24.98 4 1.0498

PM2.5_24 5.29 3.583 8.66 5 1.0866

SO2_24 1.035 3.476 1.34 2 0.4134

NO2_24 14.387 3.851 20.58 2 0.6058

CO_24 0.146 3.082 0.17 1 0.2017

O3_8 11.098 6.171 25.44 3 0.8544

PM10_24 15.413 3.027 17.33 4 0.9733

PM2.5_24 23.961 3.95 35.15 5 1.3515

SO2_24 0.565 5.204 2.27 2 0.4227

NO2_24 10.23 3.515 27.74 2 0.6774

CO_24 0.098 3.647 0.27 1 0.2027

O3_8 5.291 6.808 27.78 3 0.8778

PM10_24 12.656 3.336 32.56 4 1.1256

PM2.5_24 3.651 3.329 9.37 5 1.0937

SO2_24 2.645 4.194 7.03 2 0.4703

NO2_24 8.704 3.614 19.94 2 0.5994

CO_24 0.096 3.525 0.22 1 0.2022

O3_8 14.689 5.058 47.11 3 1.0711

PM10_24 9.653 3.142 19.23 4 0.9923

PM2.5_24 3.472 2.938 6.47 5 1.0647

SO2_24 0.97 5.749 2.06 2 0.4206

NO2_24 12.105 4.528 20.26 2 0.6026

CO_24 0.114 4.229 0.18 1 0.2018

O3_8 8.016 6.858 20.32 3 0.8032

PM10_24 13.578 4.058 20.36 4 1.0036

PM2.5_24 23.66 4.211 36.83 5 1.3683

SO2_24 0.816 5.535 3.75 2 0.4375

NO2_24 6.283 3.921 20.46 2 0.6046

CO_24 0.118 4.21 0.41 1 0.2041

O3_8 4.934 7.215 29.57 3 0.8957

PM10_24 6.778 3.895 21.93 4 1.0193

PM2.5_24 6.653 4.322 23.88 5 1.2388
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TABLE 18 Subjective and objective weights of the pollutants.tianjin

Pollutant Indicator item

Indicator variability Indicator conflict Objective weight (%) Subjective weight Weight

SO2_24 3.514 3.983 8.81 2 0.4881

NO2_24 8.205 3.637 18.78 2 0.5878

CO_24 0.227 3.529 0.50 1 0.205

O3_8 6.49 7.159 29.24 3 0.8924

PM10_24 10.755 3.635 24.60 4 1.046

PM2.5_24 8.5 3.377 18.07 5 1.1807

SO2_24 3.723 4.747 4.79 2 0.4479

NO2_24 12.772 4.37 15.13 2 0.5513

CO_24 0.523 4.241 0.60 1 0.206

O3_8 16.067 5.435 23.67 3 0.8367

PM10_24 39.322 4.331 46.16 4 1.2616

PM2.5_24 9.25 3.851 9.65 5 1.0965

SO2_24 1.983 4.881 2.56 2 0.4256

NO2_24 2.809 4.754 3.53 2 0.4353

CO_24 0.086 5.276 0.12 1 0.2012

O3_8 5.114 4.755 6.43 3 0.6643

PM10_24 54.359 5.187 74.55 4 1.5455

PM2.5_24 9.805 4.938 12.80 5 1.128

SO2_24 1.155 5.006 4.58 2 0.4458

NO2_24 6.69 5.681 30.12 2 0.7012

CO_24 0.15 3.692 0.44 1 0.2044

O3_8 7.169 5.49 31.19 3 0.9119

PM10_24 6.982 3.816 21.12 4 1.0112

PM2.5_24 4.363 3.629 12.55 5 1.1255

SO2_24 3.232 3.712 8.90 2 0.489

NO2_24 5.579 4.555 18.85 2 0.5885

CO_24 0.126 3.647 0.34 1 0.2034

O3_8 8.549 3.675 23.31 3 0.8331

PM10_24 13.842 2.615 26.84 4 1.0684

PM2.5_24 10.002 2.933 21.76 5 1.2176

SO2_24 3.866 4.411 5.72 2 0.4572

NO2_24 13.185 3.198 14.15 2 0.5415

CO_24 0.235 3.566 0.28 1 0.2028

O3_8 5.698 6.026 11.52 3 0.7152

PM10_24 42.799 2.861 41.07 4 1.2107

PM2.5_24 29.539 2.752 27.27 5 1.2727
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dimensionless indices, facilitating robust comparisons
among different pollutants across various regions
(Tables 7–9). The daily pollutant concentrations, shown over
the course of the year, varied notably between Xi’an, Beijing, and
Tianjin (Figure 6).

3.3 Correlation analysis

Within a particular space, air pollution levels are influenced both
by the concentration and toxicity of the pollutants and the
interactions between different pollutants and regional

environments. To test this hypothesis, we used SPSS matrix
correlation analysis, which is widely recognized and utilized,
simple to use, intuitive to interpret, and broadly applicable.
Notably, this non-parametric method can robustly handle ordinal
data, which is crucial in our research context.

We assessed the correlations using the correlation coefficient
(Eq. (30)). This equation ensures reliable and statistically valid
results, enabling us to gain deeper insights into the relationships
and patterns within the data.

ρ12 �
cov m1, m1( )

σm1σm2

� E m1 − μm1
( ) m2, μm2

( )( )
σm1σm2

(30)

TABLE 19 Corrected D-S fusion results.xi’an.

Pollutant

SO2 NO2 CO O3 PM10 PM2.5

4.15628E-13 0.00895,313 0.002,902,783 0.011,033,686 0.015,980,774 0.016,979,121

2.78809E-13 0.008,647,582 0.002,865,373 0.010,689,599 0.01,545,038 0.017,715,433

4.18398E-13 0.009,892,757 0.004,150,316 0.013,571,875 0.040,238,703 0.027,800,006

1.90824E-13 0.007,681,425 0.002,949,608 0.014,901,633 0.018,394,637 0.017,312,711

2.87E-13 5.68E-03 9.49E-03 1.07E-02 1.02E-02 1.48E-02

2.71132E-13 0.008,670,017 0.002,898,068 0.012,197,168 0.015,434,065 0.017,061,811

TABLE 20 Corrected D-S fusion results.beijing

Pollutant

SO2 NO2 CO O3 PM10 PM2.5

3.28354E-10 5.13756E-10 1.72723E-10 7.27037E-10 8.12909E-10 1.15087E-09

5.05213E-11 9.2492E-11 2.53405E-11 1.04744E-10 1.51516E-10 1.57875E-10

3.47249E-10 5.15963E-10 1.74465E-10 7.65038E-10 8.68307E-10 1.05426E-09

3.35082E-10 5.7305E-10 1.72864E-10 7.47497E-10 9.41563E-10 9.29306E-10

3.73908E-10 5.11179E-10 1.73433E-10 9.08838E-10 8.44144E-10 9.09717E-10

3.34311E-10 5.12807E-10 1.73045E-10 6.86848E-10 8.46532E-10 1.12507E-09

TABLE 21 Corrected D-S fusion results.tianjin

Pollutant

SO2 NO2 CO O3 PM10 PM2.5

9.20799E-08 1.22106E-07 4.26766E-08 1.85607E-07 2.16034E-07 2.425E-07

8.44459E-08 1.13829E-07 4.26355E-08 1.71846E-07 2.40466E-07 2.27418E-07

8.08222E-08 9.16249E-08 4.2368E-08 1.39795E-07 3.22489E-07 2.34472E-07

8.44062E-08 1.46184E-07 4.27279E-08 1.90209E-07 2.10291E-07 2.3413E-07

9.2581E-08 1.22922E-07 4.25303E-08 1.73706E-07 2.19349E-07 2.51221E-07

8.66053E-08 1.13131E-07 4.25107E-08 1.49854E-07 2.34329E-07 2.62356E-07
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TABLE 22 Evaluation of the nearest neighbors in KNN.xi’an.

Pollutant Neighbor 1 Neighbor 2 Neighbor 3 Average Level

SO2 level 1 0.014,966,859 0.033,466,914 0.053,963,778 0.034,132,517 1

SO2 level 2 0.074,834,295 0.104,768,014 0.170,648,449 0.116,750,253

SO2 level 3 0.231,986,316 0.3,292,709 0.538,858,893 0.36,670,537

NO2 level 1 0.056,609,488 0.040,558,004 0.066,487,982 0.054,551,824 1

NO2 level 2 0.042,155,944 0.151,585,617 0.196,875,714 0.130,205,758

NO2 level 3 0.190,304,093 0.390,670,328 0.507,058,834 0.362,677,752

CO level 1 0.118,242,005 0.096,660,921 0.084,676,799 0.099,859,908 2

CO level 2 0.04,377,392 0.101,083,173 0.124,252,279 0.089,703,124

CO level 3 0.129,984,945 0.481,969,556 0.548,436,671 0.386,797,058

O3 level 1 0.041,178,291 0.24,512,773 0.458,592,325 0.248,299,449 1

O3 level 2 0.435,117,685 0.75,777,624 0.886,323,046 0.693,072,324

O3 level 3 0.7,002,692 1.127,437,411 1.245,273,238 1.024,326,617

PM10 level 1 0.109,520,385 0.077,700,514 0.100,971,768 0.096,064,222 1

PM10 level 2 0.09,162,904 0.316,484,973 0.457,855,132 0.288,656,382

PM10 level 3 0.599,634,053 0.741,587,328 0.883,630,931 0.741,617,437

PM2.5 level 1 0.113,124,541 0.079,991,266 0.113,333,526 0.102,149,778 1

PM2.5 level 2 0.181,487,194 0.265,597,113 0.352,406,719 0.266,497,009

PM2.5 level 3 0.440,322,166 0.528,792,178 0.617,578,473 0.528,897,606

SO2 level 1 0.014,966,859 0.033,466,914 0.053,963,778 0.034,132,517 1

SO2 level 2 0.074,834,295 0.104,768,014 0.170,648,449 0.116,750,253

SO2 level 3 0.231,986,316 0.3,292,709 0.538,858,893 0.36,670,537

NO2 level 1 0.831,836,401 0.799,592,627 0.768,817,483 0.80,008,217 3

NO2 level 2 0.733,070,969 0.712,425,697 0.687,232,475 0.710,909,714

NO2 level 3 0.584,922,821 0.57,526,776 0.554,805,356 0.571,665,313

CO level 1 0.261,714,568 0.238,188,844 0.217,802,665 0.239,235,359 2

CO level 2 0.187,246,482 0.190,368,447 0.185,305,735 0.187,640,222

CO level 3 0.013,487,617 0.481,969,556 0.461,347,048 0.318,934,741

O3 level 1 0.917,444,775 0.780,772,073 0.685,078,468 0.794,431,772 2

O3 level 2 0.523,505,381 0.696,175,417 0.722,294,137 0.647,324,978

O3 level 3 0.258,353,866 0.829,285,459 0.898,629,057 0.662,089,461

PM10 level 1 1.494,750,669 1.445,338,396 1.397,798,937 1.445,962,667 3

PM10 level 2 1.293,601,244 1.219,234,497 1.147,764,378 1.220,200,039

PM10 level 3 1.090,254,313 1.04,900,284 1.025,972,973 1.055,076,709

PM2.5 level 1 1.714,876,667 1.659,177,964 1.605,548,347 1.65,986,766 3

PM2.5 level 2 1.547,575,525 1.493,219,886 1.442,381,952 1.494,392,454

PM2.5 level 3 1.395,446,239 1.352,818,968 1.314,919,222 1.35,439,481

SO2 level 1 0.074,834,295 0.104,768,014 0.170,648,449 0.116,750,253 1

SO2 level 2 0.014,966,859 0.033,466,914 0.053,963,778 0.034,132,517

SO2 level 3 0.231,986,316 0.3,292,709 0.538,858,893 0.36,670,537

(Continued on following page)
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TABLE 22 (Continued) Evaluation of the nearest neighbors in KNN.xi’an.

Pollutant Neighbor 1 Neighbor 2 Neighbor 3 Average Level

NO2 level 1 0.956,353,885 0.924,018,745 0.892,941,158 0.92,443,793 3

NO2 level 2 0.857,588,453 0.835,114,723 0.808,675,472 0.833,792,883

NO2 level 3 0.709,440,305 0.68,673,658 0.654,206,705 0.683,461,196

CO level 1 0.39,020,888 0.366,228,386 0.344,162,978 0.366,866,748 2

CO level 2 0.315,740,795 0.307,395,511 0.29,361,696 0.305,584,422

CO level 3 0.14,198,193 0.481,969,556 0.411,128,385 0.345,026,624

O3 level 1 1.205,672,364 1.064,990,267 0.952,150,227 1.074,270,953 3

O3 level 2 0.81,173,297 0.903,940,112 0.895,405,672 0.870,359,585

O3 level 3 0.546,581,455 0.933,638,585 0.971,320,177 0.817,180,072

PM10 level 1 3.973,582,944 3.923,617,857 3.874,313,879 3.923,838,226 3

PM10 level 2 3.772,433,518 3.680,457,518 3.588,590,554 3.680,493,864

PM10 level 3 3.500,093,981 3.415,229,814 3.33,427,542 3.416,533,072

PM2.5 level 1 2.72,333,398 2.667,269,329 2.612,460,109 2.667,687,806 3

PM2.5 level 2 2.552,335,089 2.494,271,858 2.438,116,946 2.494,907,964

PM2.5 level 3 2.384,005,207 2.33,207,887 2.282,487,093 2.332,857,056

SO2 level 1 0.014,966,859 0.033,466,914 0.053,963,778 0.034,132,517 1

SO2 level 2 0.074,834,295 0.104,768,014 0.170,648,449 0.116,750,253

SO2 level 3 0.231,986,316 0.3,292,709 0.538,858,893 0.36,670,537

NO2 level 1 0.735,220,646 0.703,070,053 0.6,726,076 0.703,632,767 3

NO2 level 2 0.636,455,214 0.617,733,032 0.593,880,232 0.616,022,826

NO2 level 3 0.488,307,066 0.493,098,274 0.485,721,858 0.489,042,399

CO level 1 0.2,701,381 0.246,568,072 0.22,601,261 0.247,572,927 2

CO level 2 0.195,670,015 0.197,604,316 0.191,643,799 0.19,497,271

CO level 3 0.021,911,149 0.481,969,556 0.457,118,569 0.320,333,092

O3 level 1 1.338,648,154 1.19,676,297 1.079,042,028 1.204,817,717 3

O3 level 2 0.94,470,876 1.013,160,666 0.993,458,963 0.98,377,613

O3 level 3 0.679,557,245 1.006,262,957 1.030,623,299 0.905,481,167

PM10 level 1 1.789,176,344 1.739,615,972 1.691,594,142 1.740,128,819 3

PM10 level 2 1.588,026,918 1.508,553,784 1.430,853,337 1.50,914,468

PM10 level 3 1.363,601,525 1.308,410,507 1.266,857,561 1.312,956,531

PM2.5 level 1 1.674,604,385 1.618,929,761 1.565,379,105 1.61,963,775 3

PM2.5 level 2 1.507,553,451 1.453,455,946 1.402,995,156 1.454,668,184

PM2.5 level 3 1.35,657,697 1.314,629,677 1.277,593,731 1.316,266,793

SO2 level 1 0.014,966,859 0.033,466,914 0.053,963,778 0.034,132,517 1

SO2 level 2 0.074,834,295 0.104,768,014 0.170,648,449 0.116,750,253

SO2 level 3 0.231,986,316 0.3,292,709 0.538,858,893 0.36,670,537

NO2 level 1 0.027,240,659 0.068,581,108 0.11,401,783 0.069,946,532 1

NO2 level 2 0.126,006,091 0.206,396,724 0.252,789,344 0.195,064,053

NO2 level 3 0.274,154,239 0.453,178,439 0.568,909,964 0.432,080,881

(Continued on following page)
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Figure 7 presents the correlations of the concentrations in each
region. Figure 8 presents the correlations among different pollutant
concentrations (Figure 8). There were complex interconnections
and mutual influences among the diverse pollutants in terms of their
concentrations in varying intervals. The dynamics of the air
pollutants varied among the regions (Figure 7). This finding
offers insight into how regional differences contribute to macro-
scale air-pollution trends. Figure 8 illustrates the daily interactions
among the pollutants. All of the correlation values exceed 4,
indicating that they are statistically significant.

3.4 Case analysis

To verify the rationality and effectiveness of the air pollution
data fusion method based on fuzzy comprehensive evaluation
and DS evidence theory, this study utilized the original dataset
provided by the China National Environmental Monitoring
Center (CNEMC) and the Qingyue Open Environment Data
Center (Tables 4–6). Systematic analysis and quantification
(Tables 7–9) were conducted to consolidate air pollution
indices from different regions for the same time period.

TABLE 22 (Continued) Evaluation of the nearest neighbors in KNN.xi’an.

Pollutant Neighbor 1 Neighbor 2 Neighbor 3 Average Level

CO level 1 0.089,800,641 0.151,648,172 0.186,679,807 0.14,270,954 1

CO level 2 0.263,559,506 0.481,969,556 0.647,814,728 0.46,444,793

CO level 3 0.015,332,556 0.04,720,816 0.081,772,845 0.04,810,452

O3 level 1 0.140,780,234 0.32,923,158 0.537,396,648 0.335,802,821 1

O3 level 2 0.534,719,628 0.83,001,925 0.958,324,115 0.774,354,331

O3 level 3 0.799,871,143 1.198,804,543 1.316,557,244 1.105,077,643

PM10 level 1 0.040,047,475 0.103,388,587 0.172,886,878 0.10,544,098 1

PM10 level 2 0.2,411,969 0.424,297,408 0.565,316,163 0.410,270,157

PM10 level 3 0.706,822,133 0.848,571,614 0.99,046,006 0.848,617,936

PM2.5 level 1 0.04,187,612 0.11,367,406 0.192,183,295 0.115,911,158 1

PM2.5 level 2 0.276,877,138 0.365,921,565 0.455,171,042 0.365,989,915

PM2.5 level 3 0.544,524,755 0.633,938,628 0.723,390,353 0.633,951,245

SO2 level 1 0.074,834,295 0.104,768,014 0.170,648,449 0.116,750,253 1

SO2 level 2 0.014,966,859 0.033,466,914 0.053,963,778 0.034,132,517

SO2 level 3 0.231,986,316 0.3,292,709 0.538,858,893 0.36,670,537

NO2 level 1 0.834,079,878 0.801,834,207 0.771,052,741 0.802,322,275 2

NO2 level 2 0.587,166,298 0.577,228,944 0.556,506,914 0.573,634,052

NO2 level 3 0.735,314,446 0.714,630,635 0.689,410,854 0.713,118,645

CO level 1 0.190,516,019 0.193,165,568 0.187,746,342 0.190,475,976 1

CO level 2 0.264,984,104 0.241,440,818 0.22,098,739 0.242,470,771

CO level 3 0.016,757,154 0.481,969,556 0.459,692,083 0.319,472,931

O3 level 1 0.409,110,763 0.873,620,695 0.926,232,573 0.736,321,344 1

O3 level 2 0.674,262,278 0.798,637,341 0.804,648,908 0.759,182,842

O3 level 3 1.068,201,672 0.92,912,379 0.822,991,244 0.940,105,569

PM10 level 1 1.493,119,192 1.443,707,908 1.396,171,694 1.444,332,931 2

PM10 level 2 1.08,877,026 1.047,616,982 1.024,716,105 1.053,701,116

PM10 level 3 1.291,969,767 1.217,638,136 1.146,211,634 1.218,606,512

PM2.5 level 1 1.649,514,468 1.59,385,546 1.540,356,102 1.594,575,343 2

PM2.5 level 2 1.332,403,273 1.290,901,487 1.254,431,847 1.292,578,869

PM2.5 level 3 1.482,626,266 1.428,697,126 1.378,482,774 1.429,935,389
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TABLE 23 Evaluation of the nearest neighbors in KNN.beijing

Pollutant Neighbor 1 Neighbor 2 Neighbor 3 Average Level

SO2 level 1 0.014,966,859 0.033,466,914 0.053,963,778 0.034,132,517 1

SO2 level 2 0.074,834,295 0.104,768,014 0.170,648,449 0.116,750,253

SO2 level 3 0.231,986,316 0.3,292,709 0.538,858,893 0.36,670,537

NO2 level 1 0.131,687,243 0.210,802,444 0.257,127,561 0.199,872,416 2

NO2 level 2 0.032,921,811 0.073,615,407 0.118,701,276 0.075,079,498

NO2 level 3 0.279,835,391 0.457,660,536 0.573,302,873 0.436,932,933

CO level 1 0.024,822,695 0.055,505,233 0.0894,995 0.056,609,143 1

CO level 2 0.09,929,078 0.1,589,428 0.193,871,446 0.150,701,675

CO level 3 0.273,049,645 0.481,969,556 0.655,337,954 0.470,119,052

O3 level 1 0.151,515,151 0.338,798,178 0.546,295,648 0.345,536,326 1

O3 level 2 0.545,454,545 0.838,140,405 0.966,376,892 0.783,323,947

O3 level 3 0.810,606,061 1.206,735,193 1.324,458,238 1.113,933,164

PM10 level 1 0.050,287,356 0.112,445,947 0.181,313,642 0.114,682,315 1

PM10 level 2 0.251,436,781 0.432,588,196 0.573,364,079 0.419,129,685

PM10 level 3 0.714,717,621 0.85,636,282 0.998,175,522 0.856,418,654

PM2.5 level 1 0.056,666,667 0.126,710,519 0.204,314,572 0.129,230,586 1

PM2.5 level 2 0.288,694,379 0.377,432,849 0.466,488,061 0.37,753,843

PM2.5 level 3 0.555,707,757 0.645,023,686 0.734,400,738 0.64,504,406

SO2 level 1 0.313,386,769 0.298,794,995 0.285,029,225 0.29,907,033 3

SO2 level 2 0.253,519,332 0.223,585,614 0.220,175,824 0.232,426,923

SO2 level 3 0.096,367,312 0.000917,272 0.343,602,867 0.146,962,484

NO2 level 1 0.480,833,936 0.449,120,382 0.420,181,322 0.450,045,213 2

NO2 level 2 0.1317 0.21,080,244 0.355,661 0.232,716,977

NO2 level 3 0.233 0.31,781,801 0.368,536 0.306,441,699

CO level 1 0.147,899,935 0.125,555,459 0.110,084,606 0.127,846,667 2

CO level 2 0.07,343,185 0.110,550,934 0.126,372,269 0.103,451,684

CO level 3 0.100,327,015 0.481,969,556 0.528,420,676 0.370,239,082

O3 level 1 0.575,521,889 0.450,264,983 0.407,527,949 0.477,771,607 2

O3 level 2 0.181,582,495 0.552,939,714 0.63,636,368 0.456,961,963

O3 level 3 0.08,356,902 0.827,610,162 0.928,302,504 0.613,160,562

PM10 level 1 0.762,621,255 0.714,106,716 0.669,642,365 0.715,456,778 2

PM10 level 2 0.56,147,183 0.525,020,578 0.503,730,411 0.530,074,273

PM10 level 3 0.521,826,732 0.575,606,671 0.656,356,636 0.58,459,668

PM2.5 level 1 1.094,204,967 1.039,084,615 0.98,739,739 1.040,228,991 3

PM2.5 level 2 0.933,154,078 0.885,500,181 0.844,682,812 0.887,779,024

PM2.5 level 3 0.811,733,934 0.787,641,638 0.773,234,224 0.790,869,932

SO2 level 1 0.014,966,859 0.033,466,914 0.053,963,778 0.034,132,517 1

SO2 level 2 0.074,834,295 0.104,768,013 0.170,648,449 0.116,750,253

SO2 level 3 0.231,986,316 0.3,292,709 0.538,858,893 0.36,670,537
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TABLE 23 (Continued) Evaluation of the nearest neighbors in KNN.beijing

Pollutant Neighbor 1 Neighbor 2 Neighbor 3 Average Level

NO2 level 1 0.03,292,181 0.073,615,406 0.118,701,276 0.075,079,497 1

NO2 level 2 0.131,687,242 0.210,802,444 0.257,127,561 0.199,872,416

NO2 level 3 0.27,983,539 0.457,660,535 0.573,302,873 0.436,932,933

CO level 1 0.024,822,695 0.055,505,233 0.0894,995 0.056,609,143 1

CO level 2 0.09,929,078 0.1,589,428 0.193,871,446 0.150,701,675

CO level 3 0.273,049,645 0.481,969,556 0.655,337,954 0.470,119,052

O3 level 1 0.151,515,151 0.338,798,178 0.546,295,647 0.345,536,325 1

O3 level 2 0.545,454,545 0.838,140,405 0.966,376,892 0.783,323,947

O3 level 3 0.81,060,606 1.206,735,192 1.324,458,237 1.113,933,163

PM10 level 1 0.050,287,355 0.112,445,946 0.181,313,641 0.114,682,314 1

PM10 level 2 0.251,436,781 0.432,588,195 0.573,364,078 0.419,129,685

PM10 level 3 0.71,471,762 0.856,362,819 0.998,175,521 0.856,418,654

PM2.5 level 1 0.056,666,666 0.126,710,518 0.204,314,572 0.129,230,585 1

PM2.5 level 2 0.288,694,378 0.377,432,848 0.46,648,806 0.377,538,429

PM2.5 level 3 0.555,707,756 0.645,023,685 0.734,400,738 0.64,504,406

SO2 level 1 0.022,423,972 0.016,721,705 0.030,861,364 0.02,333,568 1

SO2 level 2 0.037,443,464 0.067,377,183 0.142,988,629 0.082,603,092

SO2 level 3 0.194,595,485 0.291,880,069 0.509,772,943 0.332,082,832

NO2 level 1 0.018,196,089 0.036,065,115 0.081,275,272 0.045,178,825 1

NO2 level 2 0.080,569,343 0.173,844,103 0.220,301,831 0.158,238,426

NO2 level 3 0.228,717,492 0.418,380,857 0.534,650,438 0.393,916,262

CO level 1 0.007,479,424 0.040,738,103 0.075,682,951 0.041,300,159 1

CO level 2 0.081,947,509 0.145,803,071 0.180,889,043 0.136,213,207

CO level 3 0.255,706,374 0.481,969,556 0.641,628,662 0.459,768,197

O3 level 1 0.060,631,355 0.260,697,106 0.473,367,897 0.264,898,786 1

O3 level 2 0.454,570,749 0.771,407,102 0.899,971,971 0.708,649,941

O3 level 3 0.719,722,264 1.141,043,592 1.258,893,552 1.039,886,469

PM10 level 1 0.034,127,017 0.052,820,212 0.12,054,281 0.069,163,346 1

PM10 level 2 0.167,022,408 0.367,190,242 0.509,374,706 0.347,862,452

PM10 level 3 0.651,580,846 0.793,797,013 0.936,018,637 0.793,798,832

PM2.5 level 1 0.034,305,073 0.060,919,225 0.138,166,242 0.077,796,847 1

PM2.5 level 2 0.221,735,932 0.311,054,413 0.400,483,852 0.311,091,399

PM2.5 level 3 0.489,963,498 0.579,470,091 0.668,992,816 0.579,475,468

SO2 level 1 0.319,344,384 0.304,745,278 0.290,954,568 0.305,014,743 3

SO2 level 2 0.259,476,947 0.229,543,229 0.225,433,568 0.238,151,248

SO2 level 3 0.102,324,927 0.005,040,343 0.341,947,841 0.149,771,037

NO2 level 1 0.479,884,773 0.448,173,778 0.419,243,912 0.449,100,821 2

NO2 level 2 0.1317 0.21,080,244 0.355,661 0.232,716,977

NO2 level 3 0.233 0.31,781,801 0.368,536 0.306,441,699
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TABLE 23 (Continued) Evaluation of the nearest neighbors in KNN.beijing

Pollutant Neighbor 1 Neighbor 2 Neighbor 3 Average Level

CO level 1 0.148,222,082 0.125,871,263 0.110,372,229 0.128,155,191 2

CO level 2 0.073,753,996 0.11,069,296 0.126,433,301 0.103,626,752

CO level 3 0.100,004,869 0.481,969,556 0.528,208,239 0.370,060,888

O3 level 1 0.535,332,911 0.412,641,387 0.381,827,011 0.443,267,103 1

O3 level 2 0.141,393,518 0.547,785,851 0.637,646,321 0.44,227,523

O3 level 3 0.123,757,998 0.836,641,503 0.939,933,043 0.633,444,181

PM10 level 1 0.796,244,551 0.747,650,289 0.702,902,409 0.748,932,416 2

PM10 level 2 0.595,095,126 0.554,771,028 0.52,830,418 0.559,390,112

PM10 level 3 0.539,352,214 0.585,796,387 0.660,208,371 0.595,118,991

PM2.5 level 1 1.068,399,516 1.013,318,543 0.96,176,705 1.014,495,037 3

PM2.5 level 2 0.907,792,639 0.860,633,606 0.820,571,371 0.862,999,205

PM2.5 level 3 0.788,688,146 0.76,600,591 0.753,356,197 0.769,350,084

SO2 level 1 0.332,282,096 0.317,668,013 0.303,826,544 0.317,925,551 3

SO2 level 2 0.27,241,466 0.242,480,941 0.236,965,522 0.250,620,374

SO2 level 3 0.115,262,639 0.017,978,055 0.338,686,952 0.157,309,215

NO2 level 1 0.483,041,049 0.451,321,586 0.42,236,131 0.452,241,315 3

NO2 level 2 0.384,275,617 0.375,221,304 0.358,462,099 0.372,653,007

NO2 level 3 0.236,127,469 0.31,932,639 0.369,134,398 0.308,196,086

CO level 1 0.149,642,357 0.127,263,955 0.111,642,546 0.129,516,286 2

CO level 2 0.075,174,272 0.111,328,075 0.126,711,793 0.104,404,713

CO level 3 0.098,584,594 0.481,969,556 0.527,272,976 0.369,275,709

O3 level 1 0.613,522,829 0.486,217,991 0.433,858,241 0.511,199,687 2

O3 level 2 0.219,583,435 0.560,426,398 0.637,483,248 0.472,497,694

O3 level 3 0.04,556,808 0.820,790,936 0.918,787,912 0.595,048,976

PM10 level 1 0.818,019,546 0.769,377,368 0.724,460,049 0.770,618,987 2

PM10 level 2 0.616,870,121 0.57,426,597 0.544,734,604 0.578,623,565

PM10 level 3 0.551,499,107 0.593,319,335 0.663,600,401 0.602,806,281

PM2.5 level 1 0.997,590,959 0.942,629,108 0.891,490,883 0.94,390,365 3

PM2.5 level 2 0.838,341,633 0.792,709,598 0.754,986,597 0.795,345,943

PM2.5 level 3 0.726,405,853 0.708,075,284 0.700,799,685 0.711,760,274

TABLE 24 Evaluation of the nearest neighbors in KNN.tianjing

Pollutant Neighbor 1 Neighbor 2 Neighbor 3 Average Level

SO2 level 1 0.014,966,767 0.033,466,832 0.053,963,701 0.034,132,433 1

SO2 level 2 0.074,834,203 0.104,767,922 0.170,648,377 0.116,750,167

SO2 level 3 0.231,986,224 0.329,270,808 0.53,885,882 0.366,705,284

NO2 level 1 0.032,921,689 0.073,615,297 0.118,701,175 0.075,079,387 2

NO2 level 2 0.131,687,121 0.210,802,349 0.257,127,468 0.199,872,312
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TABLE 24 (Continued) Evaluation of the nearest neighbors in KNN.tianjing

Pollutant Neighbor 1 Neighbor 2 Neighbor 3 Average Level

NO2 level 3 0.279,835,269 0.457,660,439 0.573,302,778 0.436,932,829

CO level 1 0.024,822,652 0.055,505,195 0.089,499,464 0.056,609,104 1

CO level 2 0.099,290,737 0.158,942,767 0.193,871,413 0.150,701,639

CO level 3 0.273,049,603 0.481,969,556 0.65,533,792 0.470,119,026

O3 level 1 0.54,545,436 0.838,140,264 0.966,376,752 0.783,323,792 2

O3 level 2 0.151,514,966 0.338,798,012 0.546,295,493 0.345,536,157

O3 level 3 0.810,605,875 1.206,735,055 1.324,458,101 1.11,393,301

PM10 level 1 0.05,028,714 0.112,445,754 0.181,313,462 0.114,682,119 1

PM10 level 2 0.251,436,566 0.43,258,802 0.573,363,908 0.419,129,498

PM10 level 3 0.714,717,454 0.856,362,655 0.998,175,359 0.856,418,489

PM2.5 level 1 0.056,666,424 0.126,710,302 0.204,314,371 0.129,230,365 1

PM2.5 level 2 0.288,694,183 0.377,432,658 0.466,487,874 0.377,538,238

PM2.5 level 3 0.555,707,572 0.645,023,503 0.734,400,557 0.645,043,877

SO2 level 1 0.612,472,845 0.515,188,261 0.532,036,473 0.553,232,527 1

SO2 level 2 0.769,624,866 0.739,691,148 0.717,448,218 0.742,254,744

SO2 level 3 0.829,492,302 0.814,662,939 0.800,118,714 0.814,757,985

NO2 level 1 1.105,366,352 1.072,949,738 1.041,605,919 1.073,307,336 2

NO2 level 2 0.858,452,772 0.825,053,904 0.782,664,951 0.822,057,209

NO2 level 3 1.00660,092 0.982,543,911 0.955,049,965 0.981,398,265

CO level 1 0.401,532,374 0.377,526,619 0.355,371,797 0.378,143,597 2

CO level 2 0.327,064,289 0.318,133,054 0.303,916,765 0.316,371,369

CO level 3 0.153,305,423 0.481,969,556 0.408,348,675 0.347,874,552

O3 level 1 1.566,949,046 1.423,520,267 1.299,737,648 1.430,068,987 3

O3 level 2 1.173,009,652 1.211,801,257 1.177,887,605 1.187,566,171

O3 level 3 0.907,858,137 1.156,254,011 1.16,124,607 1.075,119,406

PM10 level 1 2.354,368,872 2.30,463,022 2.256,037,098 2.305,012,063 3

PM10 level 2 2.153,219,447 2.067,987,152 1.983,554,754 2.068,253,784

PM10 level 3 1.906,008,697 1.836,221,647 1.775,108,958 1.839,113,101

PM2.5 level 1 2.217,512,352 2.161,588,579 2.107,228,935 2.162,109,955 3

PM2.5 level 2 2.047,913,844 1.991,230,661 1.93,703,186 1.992,058,788

PM2.5 level 3 1.885,531,689 1.836,957,136 1.791,546,185 1.83,801,167

SO2 level 1 0.57,623,542 0.478,950,836 0.504,071,873 0.519,752,709 1

SO2 level 2 0.73,338,744 0.703,453,722 0.681,619,786 0.706,153,649

SO2 level 3 0.793,254,877 0.778,431,914 0.76,390,786 0.77,853,155

NO2 level 1 0.883,326,864 0.851,042,068 0.820,130,621 0.851,499,851 3

NO2 level 2 0.784,561,432 0.763,088,232 0.737,327,222 0.761,658,962

NO2 level 3 0.636,413,284 0.620,761,114 0.594,764,283 0.617,312,894

CO level 1 0.324,389,632 0.315,593,107 0.301,477,285 0.313,820,008 1

CO level 2 0.150,630,767 0.481,969,556 0.408,978,678 0.347,193,001
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TABLE 24 (Continued) Evaluation of the nearest neighbors in KNN.tianjing

Pollutant Neighbor 1 Neighbor 2 Neighbor 3 Average Level

CO level 3 0.398,857,717 0.374,857,792 0.352,723,566 0.375,479,692

O3 level 1 1.246,437,568 1.105,356,024 0.990,880,736 1.114,224,776 3

O3 level 2 0.852,498,174 0.936,770,299 0.924,537,901 0.904,602,125

O3 level 3 0.587,346,659 0.95,452,167 0.987,977,376 0.843,281,902

PM10 level 1 3.174,600,904 3.124,718,222 3.075,671,033 3.12,499,672 3

PM10 level 2 2.973,451,479 2.883,858,764 2.794,560,926 2.883,957,056

PM10 level 3 2.709,789,892 2.62,998,343 2.555,606,682 2.631,793,335

PM2.5 level 1 2.288,053,493 2.232,106,243 2.177,671,283 2.23,261,034 3

PM2.5 level 2 2.118,219,613 2.061,302,393 2.006,769,848 2.062,097,285

PM2.5 level 3 1.954,821,561 1.905,668,884 1.859,533,516 1.906,674,653

SO2 level 1 0.014,966,775 0.033,466,839 0.053,963,708 0.03,413,244 1

SO2 level 2 0.074,834,211 0.104,767,929 0.170,648,383 0.116,750,174

SO2 level 3 0.231,986,232 0.329,270,816 0.538,858,826 0.366,705,291

NO2 level 1 0.032,921,665 0.073,615,276 0.118,701,155 0.075,079,365 1

NO2 level 2 0.131,687,097 0.21,080,233 0.257,127,449 0.199,872,292

NO2 level 3 0.279,835,245 0.45,766,042 0.57,330,276 0.436,932,808

CO level 1 0.024,822,652 0.055,505,195 0.089,499,464 0.056,609,104 1

CO level 2 0.099,290,737 0.158,942,767 0.193,871,413 0.150,701,639

CO level 3 0.273,049,603 0.481,969,556 0.65,533,792 0.470,119,026

O3 level 1 0.151,514,961 0.338,798,008 0.54,629,549 0.345,536,153 1

O3 level 2 0.545,454,355 0.838,140,261 0.966,376,749 0.783,323,788

O3 level 3 0.81,060,587 1.206,735,052 1.324,458,097 1.113,933,007

PM10 level 1 0.050,287,146 0.112,445,759 0.181,313,467 0.114,682,124 1

PM10 level 2 0.251,436,571 0.432,588,025 0.573,363,913 0.419,129,503

PM10 level 3 0.714,717,458 0.85,636,266 0.998,175,363 0.856,418,494

PM2.5 level 1 0.056,666,433 0.126,710,309 0.204,314,377 0.129,230,373 1

PM2.5 level 2 0.28,869,419 0.377,432,665 0.46,648,788 0.377,538,245

PM2.5 level 3 0.555,707,579 0.645,023,509 0.734,400,563 0.645,043,884

SO2 level 1 0.01,774,672 0.012,186,998 0.112,918,074 0.047,617,264 1

SO2 level 2 0.077,614,157 0.064,410,331 0.056,297,884 0.066,107,457

SO2 level 3 0.1,394,053 0.236,689,884 0.468,997,091 0.281,697,425

NO2 level 1 0.089,999,811 0.06,589,191 0.070,134,899 0.075,342,207 1

NO2 level 2 0.008,765,621 0.138,128,099 0.180,728,192 0.109,207,304

NO2 level 3 0.156,913,769 0.368,148,393 0.484,274,969 0.33,644,571

CO level 1 0.017,707,586 0.025,822,296 0.059,031,247 0.034,187,043 1

CO level 2 0.056,760,499 0.128,508,664 0.163,482,011 0.116,250,392

CO level 3 0.230,519,365 0.481,969,556 0.622,042,264 0.444,843,728

O3 level 1 0.022,191,318 0.199,202,146 0.413,156,024 0.211,516,496 1

O3 level 2 0.371,748,076 0.715,242,837 0.843,441,924 0.643,477,612
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3.4.1 Calculation of BPA using the interval distance
similarity

Calculation of interval similarity is critical in assessing the
similarity between two intervals of data, particularly in the
context of the variability of pollution concentrations. Equations
(14) and (15) (Wu and Mendel, 2009), which calculate the similarity
between fluctuating concentration values, generate BPA values that
encapsulate the relationships among interval data points for
atmospheric pollutants (Graziani et al., 2019). This approach
ensures the accuracy of these similarity measures and establishes
the foundation for data fusion, fostering more robust analysis and a
comprehensive understanding of pollution trends.

BPA values corresponding to the atmospheric pollutant
concentrations on selected days are illustrated in Tables 10–12.
These values, derived from the interval similarity calculations
(equations (14) and (15), facilitate objective assessment of the
regional pollution levels for each pollutant, following Qin and
Xiao (2019). These BPA values quantify the pollution level and

establish the basis for the advanced stages of data fusion. These
empirical insights (Tables 10–12) are paramount, enabling a
systematic comparison pollutant levels and thereby highlighting
the broader importance and impact of each pollutant.

3.4.2 Sequential fusion via DS evidence theory
Regional pollution levels were estimated via sequential fusion

(Figure 4) using DS evidence theory (Tables 13–15). The
uncorrected fusion results deviate significantly from the CNEMC
AQI values, yielding an error rate of 50%.

3.4.3 Subjective and objective weights
Relying on uncorrected fusion data can lead to misleading

conclusions. To improve estimation accuracy, the influence of
toxicity and the interactions between pollutants must be
considered. We therefore calculated the subjective and objective
weights of the pollutants using the CRITIC weighting method
(Tables 16–18).

TABLE 24 (Continued) Evaluation of the nearest neighbors in KNN.tianjing

Pollutant Neighbor 1 Neighbor 2 Neighbor 3 Average Level

O3 level 3 0.636,899,591 1.084,351,258 1.202,017,625 0.974,422,825

PM10 level 1 0.562,374,208 0.703,334,095 0.84,472,128 0.703,476,528 2

PM10 level 2 0.169,061,528 0.128,981,092 0.121,678,744 0.139,907,121

PM10 level 3 0.032,087,897 0.284,288,275 0.422,269,749 0.246,215,307

PM2.5 level 1 0.170,938,446 0.237,717,889 0.315,981,141 0.241,545,825 2

PM2.5 level 2 0.194,553,876 0.149,077,139 0.139,431,779 0.161,020,931

PM2.5 level 3 0.399,027,333 0.484,402,713 0.571,063,577 0.484,831,208

SO2 level 1 0.851,085,969 0.836,253,056 0.821,697,661 0.836,345,562 3

SO2 level 2 0.791,218,533 0.761,284,814 0.738,817,138 0.763,773,495

SO2 level 3 0.634,066,512 0.536,781,928 0.549,160,487 0.573,336,309

NO2 level 1 1.098,390,041 1.065,976,733 1.034,643,654 1.066,336,809 3

NO2 level 2 0.999,624,609 0.97,563,099 0.948,178,819 0.974,478,139

NO2 level 3 0.85,147,646 0.818,494,539 0.77,648,706 0.81,548,602

CO level 1 0.400,284,714 0.376,281,669 0.354,136,415 0.376,900,933 2

CO level 2 0.325,816,629 0.316,947,957 0.302,778,315 0.315,180,967

CO level 3 0.152,057,764 0.481,969,556 0.408,640,498 0.347,555,939

O3 level 1 1.347,022,528 1.205,070,424 1.087,081,933 1.213,058,295 2

O3 level 2 0.687,931,619 1.011,247,384 1.034,816,307 0.91,133,177

O3 level 3 0.953,083,134 1.020,227,789 0.999,904,147 0.99,107,169

PM10 level 1 2.29,300,266 2.243,279,017 2.1,947,336 2.243,671,759 3

PM10 level 2 2.091,853,234 2.007,090,084 1.923,193,434 2.007,378,918

PM10 level 3 1.846,455,106 1.7,778,023 1.718,204,491 1.780,820,632

PM2.5 level 1 2.566,897,862 2.510,870,718 2.456,180,641 2.511,316,407 3

PM2.5 level 2 2.396,269,009 2.338,567,532 2.282,922,575 2.339,253,039

PM2.5 level 3 2.229,488,128 2.17,842,686 2.129,909,458 2.179,274,815
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3.4.4 DS fusion result correction using
objective–subjective weights

The DS fusion results were corrected using
objective–subjective weights (Tables 19–21). The high error

rate in the uncorrected data (Table 7) underscores the need
for careful interpretation and potential correction. Fusion-
based correction achieved a remarkable and significant
reduction in error, from the initial 50%–11%, suggesting a

FIGURE 9
Comparison of predicted concentrations of major pollutants. (A) Xi’an; (B) Beijing; (C) Tianjin. (A) Xi’an; (B) Beijing; (C) Tianjin.
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close correlation between the corrected results and the AQI
values, reflecting the efficacy of the correction approach. This
highlights the importance of addressing potential biases and
uncertainty in the fusion process, generating more precise and
reliable outcomes.

3.4.5 Concentration estimation via on the KNN
approach and matter-element extension model

We used an extended KNN algorithm to estimate air pollutant
levels, which were then correlated with air-quality levels.
Tables 22–24 illustrates the variability in air quality (from good

FIGURE 10
(Continued).
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to severely polluted) during the study period. These results were
consistent with the AQI values, facilitating the identification of
major pollutants such as PM2.5 and PM10 (Figure 9) and
validating the accuracy and efficacy of the proposed method.

3.4.6 Further refinement of the DS fusion results
Given that air quality data are influenced by multiple factors,

including meteorological conditions, vehicular traffic, and industrial
activity, such data are inherently uncertain. Exclusive reliance on the
raw DS fusion results might overlook pivotal environmental and
socio-economic variables.

Refining DS fusion outcomes extends beyond merely
enhancing accuracy, by more comprehensive and accurately
portraying air quality and thereby equipping policymakers with
evidence-based recommendations. For instance, a raw high
pollution reading might trigger unwarranted alarm and panic,
while a refined reading could suggest the necessity for additional
monitoring sites or improved data fusion methodology. As air
quality directly impacts public health, it is imperative to deliver
precise data. Using raw values may cause the effects of pollutants
to be under- or over-estimated, leading to misguided health
advisories and policies. Here, via objective–subjective
weighting, were able to integrate environmental and socio-
economic aspects into the analysis, achieving more accurate
and reliable outcomes. Such refinement is not limited to air
quality assessment. As this method can handle uncertainty and
complexity, it is applicable in other contexts, such as water and
soil quality evaluations, highlighting the versatility and value of
this novel approach.

The refinement of DS fusion outcomes were comprehensively
validated using expanded datasets from urban environments in
Xi’an, Beijing, and Tianjin, cities with distinct environmental and
socioeconomic profiles. These findings highlight both the robustness
of this refinement process and its applicability in diverse air quality
scenarios. By integrating data from these cities, the method can provide
substantially more refined and precise air quality assessments. This is
critical for informed policy-making and effective public health
management.

3.5 Comparison with SVM

To establish the effectiveness of the proposed method, we
compared it to SVM. For our dataset, SVM achieved 75%
prediction accuracy (Figure 10), whereas our method performed
significantly better, achieving 86% accuracy (Figure 11). Further,
unlike traditional SVM approaches, our method exhibited
remarkable robustness and stability in handling uncertainty and
noise. These findings validate the efficacy of our method and
highlight its potential for evaluating trends in air pollution.

4 Discussion

In the current context of environmental science, precise
estimation is essential for effective policy development. Our novel
method aims to characterize air pollution dynamics with greater
accuracy by integrating the evidence theory and the KNN algorithm.

FIGURE 10
Comparison of support vector machine (SVM) training results. (A) Xi’an; (B) Beijing; (C) Tianjin.
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BPA, a cornerstone of the DS theory of evidence, effectively
addresses the uncertainty inherent in atmospheric pollution data;
we therefore used it for decision-making under uncertainty.

Consistent with the findings of Zhong and Liu (2019),
integrating BPA into our data fusion strategy reduced the
uncertainty, enhancing the precision and reliability of the results.

FIGURE 11
Comparison between values based on fuzzy evaluation of atmospheric pollution concentrations using evidence theory with KNN on the one hand
and actual values on the other. (A) Xi’an; (B) Beijing; (C) Tianjin.
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Given the complexity of atmospheric pollution, a single monitoring
point cannot capture the full extent of pollutant diffusion and
distribution. Sequential fusion of atmospheric pollution
concentrations, however, integrates multi-source monitoring data,
estimates pollution levels more accurately and reliably, enhances
data accuracy and reliability, and comprehensively describes the
spatiotemporal variation in air pollution. By considering spatial
correlation, this method more precisely assesses pollutant
concentrations. This method achieves several key innovations, in
terms of its strategy for handing small datasets, interdisciplinary
approach, improved pollution atmospheric monitoring and
prediction, and ability to consider multiple environments.

4.1 Innovative strategy for small samples

Limited data availability poses a primary challenge in
environmental science, and especially in atmospheric pollution.
Therefore, the effective analysis of small samples is important in
improving the universality and applicability of models. Here, we
aimed to achieve efficient and accurate air quality assessment with
limited data availability. Consequently, we did not use the
commonly applied neural network approach, primarily because it
typically requires large datasets for effective training, and may not
achieve optimal performance for small samples. By integrating
evidence theory and the KNN approach, our method can handle
limited data. Compared to other methods, this approach is more
adaptable and precise, extracting meaningful insights from
small datasets.

4.2 Interdisciplinary approach

By integrating evidence theory and the KNN algorithm, this
model applies an interdisciplinary strategy. It represents a paradigm
shift in atmospheric pollution data processing, with applicability in
other environmental monitoring domains.

4.3 Enhanced monitoring and prediction

Compared to the traditional AQI approach, our model yields
more comprehensive and precise assessments, by integrating
multiple data sources and considering the characteristics of
multiple pollutants. It thus comprehensively characterizes air
pollution-related dynamics, especially for regions with limited
data. This approach lays a robust foundation for effective policy
development.

4.4 Data quality and
methodological accuracy

This hybrid method, integrating interval similarity and
subjective–objective weighting, accurately accounts for the inherent
variability in pollutant concentrations and toxicological characteristics.
By emphasizing data integrity and credibility, this approach will
facilitate accurate and reliable assessments.

4.5 Expansion to multiple environments

Expanding our data to include Xi’an, Beijing, and Tianjin, which
have varied urban settings, substantially strengthened the robustness
and applicability of our findings, demonstrating the model’s
adaptability and effectiveness across different geographical
landscapes. Such broad applicability reveals its potential for
accurate and comprehensive air quality assessment for diverse
urban contexts. This will enable it to become an essential tool for
policymakers and environmental scientists.

4.6 Limitations

Although this method achieved significant results using a small
sample data, this dataset was limited in its scope and diversity,
focusing on specific urban environments and particular pollutants.
This may restrict the model’s applicability under a broader range of
geographical and environmental conditions. The model does not
currently adequately incorporate key external factors such as
meteorological conditions, regional industrial activity, and
traffic flow, which significantly impact air quality. While the
model performs well with historical data, its ability to process
real-time data and predict future trends remains to be validated.
The current model’s complexity may limit its direct application by
non-professional users such as policymakers and environmental
management agencies.

4.7 Future directions

Data from a wider range of geographical areas and more
complex environmental and meteorological factors should be
included to enhance the model’s generalizability and accuracy.
New and optimized algorithms should be used to enhance
computational efficiency and accuracy. To validate its cross-field
applicability, the method should be applied in environmental
monitoring fields such as water quality assessment or forest
health monitoring. Long-term research is required to better
understand how pollutants change over time and under varying
conditions. Finally, research findings should be translate into
concrete policy recommendations and practical guidelines to
promote environmental protection and sustainable development.

4.8 Conclusion

Our data-fusion evaluation method, which considers
spatiotemporal variation, facilitates integration of multi-pollutant
measurement data, provides a more granular view of air quality, and
improves the evaluation of pollution levels and potential health
impacts. It thus provides a tool for air quality evaluation during
environmental assessments and in formulating public
health policies.

Despite this significant progress, there remains broad scope for
future development, particularly in terms of expanding the dataset,
diversifying the model’s applications, and optimizing the user
interface. These improvements are anticipated to enhance the
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model’s role in air quality assessment and in formulating
environmental management policies.
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