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Introduction

Humanity has now breached six of the nine ‘planetary boundaries’ that define the safe
operating space in which our civilization evolved (Richardson et al., 2023). As natural
systems come under increasing anthropogenic pressure, it is imperative that we safeguard
our ecosystems and the services they provide. Such efforts must extend beyond protection of
the habitat that remains, and embrace the global restoration of areas that have been degraded
through land use conversion, pollution, and over-exploitation. Governments worldwide
have recognised the urgency of this mission, launching the ‘UN Decade on Ecosystem
Restoration’ in 2021, and committing to large-scale restoration efforts through the Bonn
Challenge, The Glasgow Leaders’ Declaration on Forests and Land Use, the Kunming-
Montreal Global Biodiversity Framework, and more. Yet restoration efforts on the ground
have lagged far behind targets set by these and pre-existing global initiatives. For example,
the 2010 Aichi Biodiversity Target of restoring 15 percent of degraded ecosystems was not
achieved by 2020 (Convention on Biological Diversity, 2020), and 10 million hectares of
forest continued to be lost each year between 2015 and 2020 (FAO and UNEP, 2020). To
accelerate ecosystem restoration and meet policy targets, two key obstacles must be
overcome. The first challenge is to implement restoration innovations at the scales
necessary to halt and even reverse net loss of forest, grassland, wetland, mangroves, and
other habitats. The second challenge is to achieve this large-scale restoration in a way that
involves the full participation of local stakeholders.

Scaling restoration solutions

The response of any particular site to a standard management intervention will be highly
context dependent, which challenges restoration practitioners. Community dynamics in any
ecosystem are very sensitive to stochastic processes, including priority effects (when the
random order of species arrival influences subsequent community development) (Weidlich
et al., 2021), unpredictable disturbances, climatic fluctuations, etc. Although there is an
increasing focus on landscape-scale approaches to ecosystem rehabilitation, in practice,
restoration interventions are often conducted at relatively small scales, and geared towards
solving site-specific problems (Murcia and Aronson, 2014; Perring et al., 2015).

One way to enhance the success of a site-specific intervention is to ground specific
restoration practices in a more general theoretical understanding of community ecology.
Over the 20th century, advances in restoration technique emerged from the study of
community assembly, the process by which species with the capacity to inhabit a
particular region (i.e., members of the ‘regional species pool’) surmount environmental
filters to become part of the local species pool (Keddy, 1992). To successfully establish at a
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site, a particular species must arrive (overcome dispersal limitation),
be able to tolerate microenvironmental conditions (pass the abiotic
filter), and coexist with the other species resident in the local
community (pass the biotic filter) (Kraft et al., 2015). Each of
these filters may be targeted by restoration ecologists to influence
the composition or diversity of species at a site. For example,
practitioners can introduce seed-containing substrate to
surmount dispersal limitation (Kiehl et al., 2010), enhance
microtopography to maximise variation in the abiotic
environment (Török et al., 2018), or modify species interactions
through removal of invasives. In this way, ecologists have adopted
general theoretical ecological approaches to address site-specific
conditions.

Although the field of restoration ecology has rapidly advanced
alongside our theoretical understanding of ecological communities,
theory-inspired approaches must be upscaled in order to restore
habitat at the speed and spatial extent required. This can invoke
significant practical and logistical challenges. For example, while
transferring litter or soils from a ‘donor’ to a ‘recipient’ site can
propel ecosystem regeneration (Buckley et al., 2017; Contos et al.,
2023), how can these practices be extended to large areas of degraded
lands without damaging the donor sites? Can labour-intensive
restoration practices–e.g., intentional application of small-scale
disturbance, manual removal of invasives - practically be applied
at scale? How can restoration outcomes (particularly those related to
ecosystem function or resilience) be monitored over large areas?
Taking a broader lens on restoration also invokes the need to
consider landscape-level ecological processes, assessing
connectivity and permeability among habitat classes (Metzger
et al., 2021).

Scaling up restoration could involve finding compromises
between passive restoration (allowing ecosystems to recover on
their own–which is inexpensive, but sometimes ineffective) and
active restoration (spending time, money, and effort to directly
modify an ecosystem). These intermediate approaches, termed
assisted natural regeneration, might involve planting tree ‘islands’
rather than large-scale plantations in degraded landscapes, a
technique sometimes referred to as applied nucleation (Holl
et al., 2011; Wilson et al., 2021). Strategic plantings like this can
improve landscape connectivity, enhance abundance of animal-
dispersed plant species, and accelerate habitat recovery at
minimal cost (Holl et al., 2011; De La Peña-Domene et al., 2016;
Werden et al., 2022). However, there are still large knowledge gaps
surrounding the suitability of individual sites or landscapes for
passive vs assisted vs active restoration (Holl and Aide, 2011;
Crouzeilles et al., 2017; Reid et al., 2018); we must learn to
rapidly ‘triage’ ecosystems to best allocate time and effort.

Another way to scale restoration is to operationalise our
understanding of plant-animal and plant-microbe interactions.
Re-introduction of keystone species, especially predators which
exert top-down control (i.e., ‘trophic rewilding’), might be
another way to restore ecosystem integrity with minimal direct
intervention (Perino et al., 2019). One study found that re-
introduction or re-colonization by only twenty species could
dramatically increase the intactness of large mammal assemblages
worldwide (Vynne et al., 2022), but research on the ecological
consequences of such re-introductions is far from complete.
Conversely, restoration efforts might employ ‘bottom-up’

approaches that focus on the soil microbes which release and
transport plant-available nutrients, secrete growth-promoting
hormones, and mediate plant community succession through
plant-soil feedbacks. Until recently, most restoration efforts failed
to consider whether and how to re-introduce beneficial microbes to
a site–and without intervention, recovery of the soil microbiome in
revegetated sites is often incomplete (Watson et al., 2022). Although
inoculation with specific, beneficial plant symbionts
(i.e., mycorrhizal fungi) is a relatively well-established practice
(Neuenkamp et al., 2019); more recent work explores the
possibility of plant inoculation with whole-soil or phyllosphere
microbiomes to accelerate ecosystem recovery (Wubs et al., 2016;
Busby et al., 2022). At the frontier of this science are efforts to
actually re-engineer microbial communities to re-establish specific
ecosystem processes (Silverstein et al., 2023)–this is a promising
approach that is nonetheless still in its infancy.

Tackling the challenge of upscaling restoration will involve
technological advances, as well as theoretical and operational
ones. Such developments might include the invention of new
equipment/infrastructure to help native species to spread and re-
establish (Temmink et al., 2020); the deployment of sensors and
satellites for monitoring restoration projects at scale; and the data
infrastructure necessary to share, analyse, and synthesise
information about restoration outcomes (Perring et al., 2015).
Much of this technology is still in the early stages of its
development. Yet there is an urgent knowledge gap surrounding
the effectiveness of restoration projects, which can only be addressed
by fusing large-scale monitoring and local, site-specific expertise.
For example, although just 5% of tropical reforestation organisations
monitor survival rates of the trees they plant (Martin et al., 2021),
emerging syntheses suggest that these projects exhibit relatively high
rates of failure (Coleman et al., 2021), with mortality rates
approaching 50% in the first few years (Banin et al., 2023). Yet it
is very challenging to understand the factors that limit project
success, as many landscape restoration efforts do not solicit
sufficient involvement of local stakeholders in planning, data
collection or monitoring (Evans et al., 2023).

Finally, large-scale rehabilitation of degraded lands will also
involve careful attention to the socioeconomic factors that drive land
use change–which itself comprises another major challenge to
twenty-first century restoration.

Integrating restoration into socio-
ecological systems

Many restoration efforts fail because they do not consider the
needs and motivations of local stakeholders who interact most
directly with the land (Brancalion and Holl, 2020; Fleischman
et al., 2020). Just as restoration practitioners must grapple with
the heterogeneous ecological processes that affect ecosystem
regeneration, so must they confront the diverse social, political,
and economic contexts in which restoration takes place. There is an
urgent need to better understand the enabling conditions that
promote successful restoration, and how these conditions might
vary from place to place.

Ecosystems can spontaneously recover in agricultural
landscapes where pressure on land use conversion is low, usually
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due to population migration out of rural areas and into cities, and/or
changing agricultural policies (Chazdon et al., 2020; Crouzeilles
et al., 2021). It is more difficult to incentivise restoration in areas
where there is a high opportunity cost of forgoing land use
conversion, or of abandoning land already in production. To
ensure restored habitat persists on the landscape, landholders
must be compensated for these costs. However, devising
appropriate payment for ecosystem service schemes can be
complicated. Any uncertainties in land tenure or land access
rights can dramatically weaken incentives for restoration, or
displace land degradation into other areas (Ford et al., 2020). For
example, in some jurisdictions, ceasing agricultural land use
terminates a landholder’s rights to that land, and ‘idle’ (naturally
regenerating) habitat can invite land grabs (Holl et al., 2022).
Additionally, although indigenous peoples are frequently the best
custodians of intact ecosystems, their rights to land are often
opposed by regional or national governments (FAO, 2021; Kruid
et al., 2021; Haenssgen et al., 2022). It is very challenging to map
interactions among local, regional, and (inter-)national governance
structures that impact land use, but such a holistic understanding
must be achieved to effectively restore ecosystems with the full
participation of the people who depend on them.

In order for restoration to be successful, projects must be co-
designed with the people with the most to gain (or lose) from their
implementation (Waring et al., 2023). This can happen through ‘top-
down’ approaches, where a centralized, decision-making body (e.g.,
national government) leads restoration efforts, in consultation with
diverse stakeholders; or ‘bottom-up’ processes where local communities
initiate the behavioural change (Reed et al., 2018). Each approach has
pros and cons. For example, the Chinese government initiated the
‘Grain-for-Green’ programme, the world’s largest reforestation effort to
date. In an attempt to control soil erosion, landholders were paid to
plant trees on scrubland (Hua et al., 2016). Although this effort had a
dramatic impact on forest cover in China, much of the planted forest
consists of monocultures that are depauperate in biodiversity (Hua
et al., 2016), and in some areas these forests lost more water to the
atmosphere than native grasslands, contributing to regional water
shortages (Schwärzel et al., 2020). In this example, a top-down
restoration approach achieved speed and scale, but potentially at the
cost of environmental integrity. By contrast, a ‘bottom-up’ approach is
exemplified by the ‘regreening’ that took place in the Sahel region from
the 1980s onward. By building upon traditional knowledge, smallholder
farmers were able to encourage the natural regrowth of trees on their
lands, reducing desertification and improving food security for an
estimated three million people (Magrath, 2020). High-resolution
satellite imagery now shows that 1.8 billion trees are growing in a
region typically thought of as the exemplar of dryland desertification
(Brandt et al., 2020). It is important to note, however, that the restored
lands are still under active agricultural management. This groundswell
movement did not intend - nor did it achieve - the full restoration of
native, unmanaged habitat. Enhancing biodiversity and carbon
sequestration in agricultural landscapes is crucial, but some portion
of the landscape must be fully restored to halt the precipitous decline in
biodiversity.

Over the last 2 decades, the ‘Forest Landscape Restoration’
(FLR) approach has emerged to consider how habitat protection
and restoration can be balanced with agriculture and forestry at the
landscape scale (César et al., 2021). Integral to this approach is

participatory planning–collaboration among governments, NGOs,
landowners, and local communities is vital to assess how multiple
ecosystem services can be maximised simultaneously (Aguiar et al.,
2021). This can open up new frontiers for ecosystem regeneration:
millions of hectares could be restored in landscapes currently
dominated by smallholder agriculture, if the right institutional
supports and market conditions are put in place (Busch et al.,
2019; Shyamsundar et al., 2022). As the FLR approach is a
relatively recent development, we urgently need more
information about when and where such interventions are
successful, and how restored landscapes can be adaptively
managed over time in the face of continuously changing
socioeconomic conditions.

Conclusion

There are no universal solutions in restoration ecology. Each site
reflects the unique confluence of environmental, ecological, sociological,
and historical factors that shape its present-day function. Ignoring any
of these context dependencies can lead to restoration failure–yet to
preserve biodiversity and safeguard ecosystem services, large areas of
degraded land must be restored very quickly. To achieve cost-effective
large-scale restoration without the pitfalls of ‘one-size-fits all,’ site-
agnostic management protocols, practitioners should seek to harness
natural regeneration processes wherever possible. We must also
acknowledge that no restored landscape can persist without the
participation of local stakeholders. Although there are many viable
pathways to connect these stakeholders with regional, national, or
global-scale finance streams and governance frameworks, all must
involve a bidirectional exchange of information, ideas, and resources.
Twenty-first century restoration will require much more collaboration
across disciplines, from economics to anthropology to engineering; as
well as among academics, policymakers, landowners, and conservation
practitioners. These tasks pose an enormous intellectual and practical
challenge–but it is one we must surmount to leave a functional
biosphere for future generations.
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