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Improving agricultural environmental efficiency (AEE) is critical for sustainable
and green agricultural advancement. However, there is limited research on the
impact of agricultural mechanization on agricultural environmental efficiency.
This study innovatively used micro-level survey data from the national fixed
observation points of China’s Ministry of Agriculture and Rural Affairs to employ a
super-efficiency slacks-basedmeasure (SBM)model with undesirable outputs for
quantifying AEE. Additionally, a Tobit regression model was used to examine the
influence of agricultural mechanization on AEE. Our findings revealed a “U-
shaped” relationship between agricultural mechanization and AEE. Specifically,
when the extent of mechanization fell below a particular threshold, any further
increase adversely affected the AEE. Conversely, surpassing this threshold
enhanced the AEE. This “U-shaped” effect was mediated by agricultural
carbon emissions. Furthermore, our analysis indicated that relative to other
village categories, the benefits of mechanization in elevating AEE are more
pronounced in plain, agriculturally focused, and affluent villages. To promote
the improvement of agricultural environmental efficiency, it is advisable to
advance agricultural mechanization, reduce agricultural carbon emissions, and
develop agricultural mechanization tailored to local conditions.
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1 Introduction

Enhancing environmental efficiency in agriculture is pivotal for safeguarding food
security and fostering sustainable eco-friendly growth within the sector. Since its reform in
1978, China’s agricultural industry has garnered global attention owing to significant
advancements in agricultural development in emerging economies. Nonetheless, the
country’s reliance on extensive farming practices has led to a range of environmental
issues, including pollution, compromised crop quality, and land degradation. The
agricultural and food production sector is facing immense pressure from other global
challenges, such as water resource scarcity and the need to bolster energy security. This calls
for the implementation of greener and more sustainable agricultural practices
(Hamidinasab et al., 2023). As the ecological conditions within the agricultural
landscape continue to deteriorate, exacerbated by the escalating use of agrochemicals,
environmental pollution affecting soil, water, and air has emerged as a critical impediment
to the sector’s sustainability (Koul et al., 2022). The relationship between the economic
outcomes of agricultural input production units and their environmental impacts is crucial
for achieving sustainability (Hatim et al., 2023). In this context, increasing environmental
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efficiency in agriculture is an innovative strategy for mitigating both
ecological pressures and resource scarcity, constituting a key
pathway towards sustainable and green agricultural development
(Rockström et al., 2017). Such improvements not only facilitate the
optimal allocation of agricultural resources, thereby maximizing
output and profitability with finite inputs, but also encourage the
adoption of eco-conscious farming practices, which in turn reduce
carbon emissions and enhance the resilience of agricultural
ecosystems.

The mechanization of agriculture serves as a potent catalyst for
enhancing environmental efficiency within the agricultural sector
(Zhu et al., 2022a). By elevating the productivity of agricultural
operations and mitigating adverse environmental repercussions,
agricultural mechanization provides indispensable support for the
sustainable development of agriculture. The advent of advanced
agricultural machinery is progressively supplanting manual labor,
thereby augmenting labor productivity (Jiang et al., 2020), fine-
tuning the allocation of agricultural resources (Zhu et al., 2022a),
and diminishing undesirable agricultural byproducts (Li and Guan,
2023). This culminates in a marked improvement in agricultural
environmental efficiency (Zhou and Ma, 2022). Data from China’s
Ministry of Agriculture and Rural Affairs revealed that the
comprehensive mechanization rate for crop cultivation increased
from 52.3% in 2010 to 72.0% in 2021. The cultivation rates of wheat,
corn, and rice were 97.3%, 90.0%, and 85.6%, respectively. In the
period between 2010 and 2021, China had a substantial
improvement in its environmental metrics. The area affected by
soil erosion decreased from 356.92 million square kilometers in
2010 to 269.27 million square kilometers in 2021. Additionally, the
proportion of surface water meeting Class I to III quality standards
increased from 51.9% in 2010 to 84.9% in 2021. These trends suggest
that agricultural mechanization in China likely contributes to
enhanced environmental efficiency through resource
conservation, pollution abatement, and ecological preservation.

Within the framework of this discourse, the present study aimed
to investigate the driving forces behind the enhancement of
environmental efficiency in agriculture through agricultural
mechanization. Specifically, the study sought to address two
pivotal questions: (1) To what extent, and in what manner, does
agricultural mechanization influence environmental efficiency in the
agricultural sector? (2) Are there regional disparities in the impact of
agricultural mechanization on environmental efficiency within the
agricultural landscape? By rigorously examining these questions,
this study aimed to provide both theoretical insights and empirical
evidence that may serve as valuable references for developing
nations striving to accelerate agricultural mechanization and
elevate environmental efficiency in their agricultural practices.

2 Literature review

A plethora of researchers, both within and outside national
boundaries, have undertaken comprehensive investigations into
agricultural environmental efficiency. These contributions serve
as both theoretical foundations and empirical benchmarks for the
research presented in this study. Extant literature predominantly
bifurcates its focus into two key dimensions. First is the
quantification of agricultural environmental efficiency.

Researchers frequently employ micro-level data garnered through
meticulous surveys to conduct efficiency assessments within
localized geographical scopes. Noteworthy examples include
studies that have used data from70 Saffron farms in Iran (Saeidi
et al., 2022), rice farms in Korea (Nguyen et al., 2012), greenhouse
tomato cultivation in Turkey (Turkten and Ceyhan, 2023), irrigated
chickpea production in Iran (Nabavi-Pelesaraei et al., 2023) and
shrimp aquaculture in Vietnam (Trang et al., 2023). Second, a subset
of researchers have studied this topic from the macroscopic
perspective, using datasets spanning nine East Asian nations (Le
et al., 2019) or focusing on a provincial scale within China (Guo
et al., 2022; Zhang et al., 2022). These studies not only quantified
agricultural environmental efficiency but also delved into its
spatiotemporal variations. In terms of methodological
approaches, Some scholars have employed the methods of life
cycle cost (LCC), life cycle assessment (LCA), and
exergoeconomic analysis to analyze environmental and economic
energy consumption (Hatim et al., 2023), researchers commonly use
inventory analysis and the principles of material balance to account
for agricultural pollutants. Subsequently, data envelopment analysis
(DEA) is employed to quantify agricultural environmental efficiency
(Hoang and Coelli, 2011). Data Envelopment Analysis (DEA) is the
most widely used method in recent years for environmental
optimization and assessment, as considered by many researchers
(Nabavi-Pelesaraei et al., 2023). Undesired outputs, often termed
‘non-beneficial outputs,’ are assessed primarily through carbon
emissions and agricultural nonpoint source pollution (Chen
et al., 2021). In addition, some scholars have utilized machine
learning models to assess agricultural environmental efficiency
(Nabavi-Pelesaraei et al., 2023). Finally, the literature identified a
range of factors that influence agricultural environmental efficiency.
These include, but are not limited to, the scale of input factors (Zhu
et al., 2022a), specific characteristics of agricultural households (Li
et al., 2021), and utilization patterns of arable land (Chen and
Xie, 2019).

In the field of agricultural environmental research, a subset of
researchers has posited that the mechanization of agriculture plays a
pivotal role in influencing the sector’s environmental efficiency.
From a theoretical standpoint, the advent of agricultural
mechanization serves multiple purposes: it augments farmers’
incomes (Qian et al., 2022), increases the efficiency of
agricultural production (Jiang et al., 2020), revolutionizes
traditional agricultural practices (Li and Guan, 2023), and
enhances the ecological sustainability of the agricultural
landscape (Zhou and Ma, 2022). Furthermore, interdisciplinary
studies have delved into the multifaceted impact of agricultural
mechanization by examining variables such as subsidy policies for
machinery acquisition (Tian et al., 2021), migration patterns of
agricultural labor (Shao et al., 2021), and carbon footprint of
agricultural activities (Chen et al., 2021). While the prevailing
academic consensus leans towards the positive environmental
implications of agricultural mechanization, a segment of the
academic community has unearthed evidence to the contrary.
Specifically, they argued that escalated levels of mechanization
correlate with a surge in energy consumption within the
agricultural sector, thereby exacerbating carbon dioxide emissions
and other forms of agricultural pollution (Daum and Birner, 2020).
Concurrently, research conducted by Jiang et al. (2020).
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Corroborates this notion by revealing a significant negative impact
of agricultural mechanization on environmental energy
performance, particularly in regions where mechanization is
extensively adopted.

While recent studies offer foundational insights for this study, it
notably lacks a comprehensive examination of the influence of
agricultural mechanization on environmental efficiency within
the agricultural sector. Three critical gaps warrant further
investigation: (1) The current body of literature failed to integrate
agricultural mechanization into discussions surrounding
agricultural environmental efficiency. Despite the ubiquity of
mechanized practices in modern agriculture, their specific
ramifications and potential contributions to environmental
efficiency remain underexplored. This gap underscores the need
for additional empirical studies using robust datasets. (2) Existing
research has predominantly investigated these topics through a
macroscopic lens, relying chiefly on aggregate data to explore the
correlation between agricultural mechanization and environmental
efficiency. Although this approach provides a broad overview, it
inadvertently neglects the idiosyncratic attributes of individual
farming households, thereby limiting the granularity of the
analysis. (3) Most studies operate under the assumption of a
linear relationship between agricultural mechanization and
environmental efficiency, thereby overlooking potential non-
linear dynamics. Thus, the present study aimed to extend the
analytical framework by incorporating a non-linear perspective to
elucidate the intricate interplay between agricultural mechanization
and environmental efficiency.

3 Theoretical analysis and research
hypotheses

3.1 Agricultural mechanization and
agricultural environmental efficiency

The efficiency of agricultural environmental management
depends on the inputs and outputs associated with agricultural
activities. Enhancements in agricultural environmental efficiency
are primarily attributed to the optimization of resource utilization,
amplification of output yields, and mitigation of environmental
pollution (Zhu et al., 2022b). The introduction of mechanization
in agriculture accelerates the integration of innovative technologies
and equipment, thus facilitating the ongoing evolution of
agricultural practices. Mechanized systems improve agricultural
standardization, increase yield, and enhance the efficiency of
environmental resource utilization in the agricultural sector.
Advanced automated machinery and intelligent technology
enable the precise collection of agricultural data and predictive
analytics, thereby ensuring efficient resource allocation. This
optimization minimizes waste and reduces losses in agricultural
production (Zhu et al., 2022b). However, it is imperative to
acknowledge the potential drawbacks of agricultural
mechanization on environmental efficiency. The operation of
mechanized equipment requires substantial fuel and energy
consumption, which exacerbates greenhouse gas emissions.
Moreover, the use of such machinery can increase soil
compaction and diminish agricultural productivity. In the early

stages of low agricultural mechanization, the investment in
agricultural machinery can increase the cost of agricultural
production. Due to the relatively low initial returns generated by
the investment in agricultural machinery, it may not be sufficient to
cover the initial costs. The role of economies of scale brought about
by the development of agricultural mechanization is relatively weak.
Additionally, low levels of agricultural mechanization may lead to
resource wastage, including water resources and fertilizers.
Inaccurate irrigation and fertilization methods can lead to the
wastage of water resources and an increased risk of water
pollution. Therefore, lower levels of agricultural mechanization
may have a negative impact on agricultural environmental
efficiency. However, as agricultural mechanization levels increase,
the use of modern agricultural machinery can enable precise
resource management, high yields, and environmentally friendly
agricultural practices, thereby having a positive impact on
agricultural environmental efficiency. It is evident that the
relationship between agricultural mechanization and agricultural
environmental efficiency is not a simple linear one. Agricultural
mechanization at different stages of development may exhibit
different directions of impact on agricultural environmental
efficiency. Based on the above perspectives, we believe that the
impact of agricultural mechanization on agricultural environmental
efficiency may exhibit a “U-shaped” relationship, characterized by
an initial negative effect followed by a positive effect. From this, we
propose the first theoretical hypothesis:

Hypothesis 1: The impact of agricultural mechanization on
agricultural environmental efficiency shows a nonlinear “U-
shaped” relationship. That is, when the level of agricultural
mechanization is low, it inhibits the improvement of agricultural
environmental efficiency, but when the level of agricultural
mechanization is high, it promotes the improvement of
agricultural environmental efficiency.

3.2 The mediating role of agricultural
carbon emissions

Agricultural carbon emissions are significant contributors to
greenhouse gas emissions and their impact on the agricultural
environment cannot be disregarded. Existing research indicates a
close relationship between agricultural mechanization and carbon
emissions. These emissions are undesirable by-products of
agricultural production, and their reduction is crucial for
enhancing agricultural environmental efficiency (Moghaddasi and
Pour, 2016). Most researchers believe that agricultural
mechanization has the potential to mitigate agricultural carbon
emissions, thereby enhancing agricultural environmental
efficiency. However, some researchers have observed that
agricultural mechanization may lead to a moderate increase in
carbon emissions (Jiang et al., 2020). First, the use of agricultural
machinery consumes substantial energy and contributes to elevated
carbon emissions. Additionally, it results in an excessive input of
production factors such as fertilizers and pesticides (Tian et al.,
2021). Nevertheless, eliminating outdated agricultural machinery
and reducing fuel consumption can effectively reduce carbon
emissions. Second, despite its associated carbon footprint,
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agricultural mechanization plays a pivotal role in improving the
overall environmental efficiency of agricultural practices. On the one
hand, employing advanced machinery and equipment enhances
operational efficiency while significantly reducing energy
consumption during farming practices, particularly when
transitioning from traditional energy sources to cleaner
alternatives, which aids in lowering carbon emission levels and
subsequently elevating agricultural environmental efficiency. On
the other hand, the operational mode and management approach
adopted for implementing agricultural mechanization exert a
considerable influence on carbon emissions; modernized
machinery and equipment enable effective control over the
pesticide and fertilizer quantities used. Employing appropriate
tillage depths, irrigation levels, and scientifically sound
fertilization methods can diminish the adverse impacts on soil
quality and water resources caused by excessive inputs during
farming activities, thus mitigating environmental pollution as
well as agriculturally induced carbon emissions and ultimately
increasing the overall agricultural environmental efficiency.

Hypothesis 2: Agricultural mechanization can affect agricultural
environmental efficiency through carbon emission.

3.3 Influence of regional developmental
status and environmental conditions

Agriculture is significantly influenced by the natural
environment (Trang et al., 2023). Given the substantial
variations in natural resource endowments and agricultural
economic development across different regions of China, as
well as the diverse levels of agricultural mechanization within
these regions, regional disparities in agricultural environmental

efficiency have emerged. The utilization of large-scale agricultural
machinery and the magnitude of agricultural operations
necessitate favorable terrain conditions. Flat and expansive land
is more conducive to the deployment of agricultural machinery.
Conversely, mountainous regions exhibit uneven topography and
fragmented land, hampering the widespread adoption and
implementation of mechanized agriculture. Consequently, while
mechanization can enhance the environmental efficiency in
agriculture, the potential to improve mechanization levels in
mountainous areas remains limited, thereby constraining the
role of agricultural machinery in enhancing environmental
efficiency within these regions. The impact of agricultural
mechanization on agricultural environmental efficiency is also
influenced by the level of economic development. In suburban
villages, attention is paid to the cultivation of cash crops such as
vegetables and flowers; however, the mechanization level for these
crops remains low. Therefore, the enhancement of agricultural
mechanization has a more significant effect on improving the
environmental efficiency of food crops in suburban areas.
Impoverished villages, owing to local financial constraints and
farmers’ limited income levels, lack sufficient funds to upgrade
their agricultural machinery even if they were willing to purchase
it. Only when the economic conditions reach a certain level will
there be improvements in purchasing agricultural machinery and
embracing concepts related to agricultural environmental
protection. Consequently, the positive impact of agricultural
mechanization on enhancing agricultural environmental
efficiency has become more pronounced. Based on the
aforementioned analysis, we propose the following hypothesis:

Hypothesis 3: Agricultural mechanization has a significant
disequilibrium effect on agricultural environmental efficiency,
particularly in plains and hilly regions, as well as in agricultural
villages and affluent communities.

4 Data and methodology

4.1 Data sources

The data used in this study are micro survey data from fixed
observation points in rural areas of China. The survey data included
more than 2,000 survey indicators of farmers, individuals, and cities,
covering more than 300 administrative villages and 20,000 farmers
in 31 provinces across the country (Yan et al., 2014). The survey data
were rich and reliable, providing important support for this study to
investigate the impact of agricultural mechanization on agricultural
environmental efficiency. To mitigate the impact of factors like
inflation, we adjusted relevant indicators using the Consumer Price
Index for household consumption.

Data from fixed observation points in rural areas nationwide
present challenges such as a significant time span and fluctuations
in indicators. This study adopted the following methods to process
data: First, the farmer-level data were matched with those of their
family members and village-level data, while sample data lacking
province and village codes were removed. Second, outlier
treatments were conducted. Analysis of the data revealed that
certain indicators exhibited abnormal values; for instance, gender

TABLE 1 Average agricultural environmental efficiency at the provincial
level.

Province Average Province Average

Zhejiang 0.3558 Shandong 0.0670

Guangdong 0.1852 Sichuan 0.0623

Jiangsu 0.1384 Anhui 0.0581

Liaoning 0.1211 Guangxi 0.0577

Hubei 0.1210 Guizhou 0.0564

Fujian 0.1096 Jiangxi 0.0556

Hebei 0.1055 Henan 0.0540

Tianjin 0.1039 Heilongjiang 0.0511

Hunan 0.0912 Gansu 0.0438

Jilin 0.0784 Chongqing 0.0341

Shanxi 0.0744 Beijing 0.0260

Neimenggu 0.0723 Shanxi 0.0215

Yunnan 0.0687 Xinjiang 0.0020

overall average 0.0852
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data did not equal 0 or 1 and age exceeded 100 years. After
addressing these issues, an unbalanced panel dataset comprising
19,146 samples was obtained.

4.2 Methods

4.2.1 Super efficiency slacks-based measure (SBM)
model and variable selection

Compared to the traditional Data Envelopment Analysis
(DEA) model, the SBM model can effectively address the
estimation issue of slack variables in input-output variables
(Tone, 2001). However, there will still be multiple valid
measures of 1, which cannot be effectively differentiated and
ranked (Xiao et al., 2023). The Super-SBM model, with an
optimal efficiency value exceeding 1, represents a significant
improvement over the conventional SBM model. Based on the
method of Tone (2002), the Super-SBM model was used to
calculate the AEE, which serves as an explained variable. The
formulation of the proposed model is as follows:

min ρ �
1
m ∑m

i�1
sx−/xik( )

1
d+u ∑d

s�1
sy+/yd

sk + ∑u
q�1

su−/yu
qk( )

(1)

s.t.sx− ≥ ∑n
j�1,j ≠ k

xijλj, i � 1,/, m

sy+ ≤ ∑n
j�1,j ≠ k

yd
sjλj, s � 1,/, d

su− ≥ ∑n
j�1,j ≠ k

yu
qjλj, q � 1,/, u

λj ≥ 0; j � 1,/n; j ≠ k
sx− ≥xi; s

y+ ≤yd
s ; s

u− ≥yu
q

(2)

In Eq. 1 and 2, sx-, sy+, and su- represent the relaxation variables of
the factor input, expected output, and non-expected output,
respectively. The nonzero values of these variables correspond to
excessive factor input, insufficient expected output, and excessive
non-expected output. For the decision units, 0 < ρ < 1 indicates that
the unit is inefficient. Values of ρ ≥ 1 and sx- = sy+ = su- = 0 signify that
the decision-making unit is technically efficient.

4.2.2 Base model
Given that the agricultural environmental efficiency value, as

measured by the super-efficiency SBM model, is non-negative
truncated data and a restricted dependent variable, it is more
appropriate to employ the Tobit model for maximum likelihood
estimation. Accordingly, in this study, we constructed a panel Tobit
model based on random effects. The basic form of the model is
as follows:

Yit � Yit
* Yit

* > 0
0 Yit

* ≤ 0{ (3)

Using the Tobit model in Eq. 3, we can find the expression for
the effects of agricultural mechanization on agricultural
environmental efficiency:

AEEit � α0 + α1AMit + βcontrolit + εit (4)
In Eq. 4, AEEit represents the explained variable of agricultural

environmental efficiency, AMit denotes the core explanatory
variable of agricultural mechanization, controlit is the control
variable, εit signifies random error, i represents individual units,
and t represents the time period. Natural logarithms were applied to
the main variables of the model to address heteroscedasticity.
Considering the possibility of a non-linear relationship between
agricultural mechanization and agricultural environmental
efficiency based on Tian et al. (2021), we introduced the
quadratic term AMit

2 for agricultural mechanization into our
model, resulting in Eq. 5:

AEEit � α0 + α1AMit + α2AM
2
it + βcontrolit + εit (5)

4.2.3 Intermediate effect model
According to the results of the theoretical analysis, agricultural

mechanization was expected to affect agricultural environmental
efficiency through its influence on agricultural carbon emissions. To
examine this mediation effect, we established the following empirical
model, with reference to the methodology of Wen and Ye (2014).
Considering the potential nonlinearity of the relationship between
agricultural mechanization and carbon emissions, we incorporated a
quadratic term for agricultural mechanization into Eq. 6. Here,
carbon_emissions in Eq. 7 and Eq. 8 represent the mediating
variables of agricultural carbon emissions.

AEEit � α0 + α1AMit + α2AM
2
it + βcontrolit + εit (6)

carbon emissionit � α3 + α4AMit + α5AM
2
it + β1controlit + εit (7)

AEEit � α6 + α7AMit + α8AM
2
it + α9carbon emissionit + β2controlit

+ εit

(8)

4.3Measurement and analysis of agricultural
environmental efficiency

In this study, six inputs (land, labor, capital, fertilizer, pesticide,
and agricultural film) were selected as input indicators, agricultural
income as the expected output, and agricultural carbon emissions as
the non-expected output. Land was measured as the total sown area
of each farmer’s crop; labor force was measured by the number of
people in the labor force in rural households; capital was measured
as the original value of productive fixed assets owned by farmers at
the end of the year; and chemical fertilizers, pesticides, and
agricultural films were measured based on their amounts
purchased by farmers in the current year. In this study,
agricultural carbon emissions mainly included fertilizers,
pesticides, agricultural films, diesel oil, plowing, and irrigation,
with carbon emission coefficients of 0.8956 (kg/kg), 4.9341
(kg/kg), 5.18 (kg/kg), 0.5927 (kg/kg), 312.6 (kg/km2), and 25 (kg/
hm2), respectively. In this paper, the calculation method of
Intergovernmental Panel on Climate Change (IPCC) was used
for reference, and the emission coefficient was multiplied by the
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amount of use or area to calculate the total agricultural
carbon emission.

The agricultural environmental efficiency of the studied
provinces was measured using the Maxdea software. The results
revealed that 90% of the farmers’ data had an agricultural
environmental efficiency below 0.23, with an average value of
0.09. These findings were in accordance with those of previous
studies that utilized microsurvey data to measure agricultural
environmental efficiency (Chang, 2020), suggesting a generally
low level of agricultural environmental efficiency. As shown on
Table 1, the top three provinces in agricultural environmental
efficiency are Zhejiang, Guangdong, and Jiangsu, respectively.
Among the bottom ten, all except Beijing are provinces in the
central and western regions of China. It can be observed that
there is a pattern where eastern provinces have higher
agricultural environmental efficiency, while central and western
provinces have lower efficiency. Therefore, it is necessary to
discuss the impact of agricultural mechanization on agricultural
environmental efficiency in different regions in future research.

4.4 Variable description

(1) Dependent variable: The primary explanatory variable in this
study was agricultural environmental efficiency (AEE),
measured using a super-efficient SBM model incorporating
non-expected output.

(2) Independent variable: Agricultural mechanization (AM).
Following the approach of Sun et al. (2022), this study
measured agricultural mechanization by considering the
number of power machines used in agriculture, forestry,
husbandry, and fishery activities.

(3) Mediating variable: Agricultural carbon emissions. In this
study, agricultural carbon emissions were selected as the
mediating variable.

(4) Control variables: Drawing from existing literature and
available data, this study included several control variables:
age, represented by the age of household members engaged in
farming; gender, indicated by male = 1 and female = 0 for
farmers’ family members; years of schooling (edu), denoted
by educational attainment of household members; internet
access (internet), expressed as whether or not the household
has internet connectivity, with 1 indicating access and
0 indicating no access; and household income (income),

represented by natural logarithm transformation of annual
net income (in yuan). Table 2 provides the detailed
descriptions and descriptive statistics for these variables.

5 Results and discussion

5.1 Baseline regression analysis

First, to mitigate the potential impact of multicollinearity on the
regression results, we assessed the presence of multicollinearity. The
test results revealed that all the correlation coefficients among the
variables were below 0.5, suggesting a preliminary absence of
multicollinearity in the model. Second, using variance inflation
factor (VIF) analysis as an additional measure, we found that
each variable exhibited a VIF value lower than 10, with a mean
VIF of 2.1, further confirming the absence of multicollinearity in the
model. Table 3 presents the estimated effects of agricultural
mechanization on agricultural environmental efficiency.

The insignificant LR value suggested that a mixed Tobit model is
more appropriate for assessing the impact of agricultural
mechanization on agricultural environmental efficiency. In
Table 3, Models (1)–(3) display the regression outcomes for the
primary term of agricultural mechanization, including both linear
and quadratic terms, as well as the inclusion of control variables.
Model (1) examines the relationship between agricultural
mechanization and agricultural environmental efficiency, whereas
Model (2) investigates the non-linear effect by incorporating a
quadratic term for agricultural mechanization based on Model
(1). Finally, Model (3) incorporates all the control variables into
Model (2). Our analysis of how agricultural mechanization affects
agricultural environmental efficiency is outlined below.

First, the impact of agricultural mechanization on agricultural
environmental efficiency was evident. As shown in Table 3, the
estimated coefficient for the primary term of agricultural
mechanization was negative, whereas the estimated coefficient for
the quadratic term was positive. Both coefficients passed the
significance level test at the 1% level, indicating a clear non-
linear relationship between agricultural mechanization and
agricultural environmental efficiency. Specifically, agricultural
environmental efficiency initially declined and then increased
with continuous development of agricultural mechanization. The
estimates in Table 3 show that the inflection point value of the
impact of agricultural mechanization on agricultural environmental

TABLE 2 Description of variables and descriptive statistics.

Variable Variable declaration Obs Mean SD Min Median Max

AEE Calculated data 19146 0.093 0.162 0.000 0.035 1.160

AM Number of power machines for agriculture, forestry, animal husbandry, and fishery 19146 0.585 0.497 0.000 0.693 4.159

internet Internet access = 1, no = 0 19146 1.838 0.369 0 1 1

gender Male = 1, female = 0 19146 1.457 0.498 1 1 2

age Specific age (years) 19146 37.442 19.253 0 38 80

edu Years of schooling (years) 19146 6.926 3.442 0 8 20

income Logarithm of a family’s annual net income in yuan 19146 10.572 0.770 0.000 10.583 13.626
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efficiency was 1.4582. Specifically, when the level of agricultural
mechanization is below 1.4582, it exerts a negative influence on
agricultural environmental efficiency, whereas when it exceeds 1.4582,
it has a positive effect on improving this efficiency. This suggests that
initial investments in agricultural mechanization do not contribute to
enhancing agricultural environmental efficiency; however, once a certain
threshold is reached, further improvements in its level will lead to
enhanced environmental performance within agricultural practices.
The first plausible explanation for this phenomenon is that the
development of agricultural mechanization needs to be a gradual
process to effectively promote and enhance overall agricultural
environmental efficiency. During stages characterized by relatively low
levels of mechanization, increased input of machinery may escalate the
production costs and potentially hinder improvements in environmental
performance associated with agricultural modernization efforts. The
second possible explanation is that compared to stages marked by
high levels of mechanization, stages marked by lower levels of
mechanization are often accompanied by reduced production
efficiencies, resulting in energy waste and pollution within the
farming sector, which is detrimental to advancing overall ecological
sustainability within agriculture.

Second, the impact of agricultural mechanization on agricultural
environmental efficiency varied across the models. As shown in Table 3,
in Models (1) to (3), when only the primary term of agricultural

mechanization is included in the model, it has a significant negative
effect on agricultural environmental efficiency at the 1% significance
level. However, when both the primary and secondary terms are
considered, the relationship between agricultural mechanization and
agricultural environmental efficiency is ‘U-shaped’, which is also
significant at the 1% significance level. This suggests that examining
solely the linear relationship between these two variables is insufficient
because of the complex non-linear relationship that can be better
captured by adding the quadratic term of agricultural mechanization
to Model (2). Additionally, after controlling for other factors in Model
(3), we found that the estimated coefficient and significance remained
stable, indicating that this relationship is relatively robust.

Third, the influence of the controlling variables on agricultural
environmental efficiency is noteworthy. As evident from the estimated
results in Table 3, the impact of internet access on agricultural
environmental efficiency was significantly positive at the 1%
significance level. This implied that rural households’ connectivity to
the internet can effectively enhance agricultural environmental efficiency.
One plausible explanation for this phenomenon lies in the “internet +
agriculture” environment, where internet usage facilitates a profound
integration between green agricultural technology and rural households.
Moreover, age exhibited a significant positive effect on agricultural
environmental efficiency at the 1% significance level, indicating that
older household heads are more likely to promote improvements in

TABLE 3 Results of baseline regression.

(1)
AEE

(2)
AEE

(3)
AEE

AM −0.0539*** −0.1026*** −0.1117***

(−21.9359) (−20.2467) (−21.2045)

AM2 0.0335*** 0.0383***

(14.1809) (15.2164)

internet 0.0170***

(5.4292)

gender 0.0076***

(3.2722)

age 0.0002***

(2.7161)

edu 0.0034***

(10.2990)

income −0.0151***

(−6.4971)

_cons 0.1242*** 0.1329*** 0.2229***

(55.6152) (52.0794) (8.3712)

var(e.AEE) 0.0255*** 0.0253*** 0.0250***

(32.9829) (32.9697) (32.6275)

N 19146 19146 19146

Pseudo R2 −0.0345 −0.0425 −0.0588

Note: ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively, with the t-statistics in parentheses.
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this aspect. This could be attributed to their accumulated experience
in managing agricultural production, which is advantageous for
enhancing agricultural environmental efficiency. Gender also
exerted a positive and significant influence on agricultural
environmental efficiency at the 1% significance level. This
suggested that male-peasant households contribute more towards
improving this efficiency. A possible rationale behind this finding
is rooted inmen’s predominant role as laborers in agriculture, coupled
with their greater land rights and resource control capabilities, which
enable them to leverage their physical strength and decision-making
advantages towards enhancing both output and overall effectiveness
within an agrarian context. The influence of educational level on
agricultural environmental efficiency was positive and significant at
the 1% significance level, indicating that a higher educational level
among rural household heads can enhance agricultural environmental
efficiency. One plausible explanation for this phenomenon is that the

educational attainment of household heads affects their acceptance
and application of green agricultural knowledge and skills, thereby
improving agricultural environmental efficiency. Additionally, highly
educated household heads are more inclined to engage in business
activities outside their households, leading to greater utilization of
agricultural machinery in production processes and consequently
enhancing agricultural environmental efficiency. Furthermore, the
influence of household income on agricultural environmental
efficiency was found to be negative and significant at the 1%
significance level, suggesting that higher household income has a
detrimental effect on improving agricultural environmental efficiency.
This could be attributed to the fact that, as household income
increases, the tendency to prioritize cash crop cultivation over food
crops increases as well. This intensifies the demand for pesticides,
fertilizers, and water resources without ultimately contributing to the
improvement in the overall agricultural environmental efficiency.

TABLE 4 Robustness test results.

(1)
Alternate explanatory variable

(2)
Alternate estimation method

(3)
Excluding the town government

value −0.0161***

(−10.3392)

value2 0.0009***

(5.3301)

internet 0.0203*** 0.0170*** 0.0194***

(6.4238) (5.4282) (5.5016)

gender 0.0075*** 0.0076*** 0.0087***

(3.2077) (3.2716) (3.4192)

age 0.0001** 0.0002*** 0.0001

(2.3188) (2.7157) (1.0591)

edu 0.0034*** 0.0034*** 0.0026***

(10.0489) (10.2971) (7.2145)

income −0.0148*** −0.0151*** −0.0030

(−6.2808) (−6.4959) (−1.1551)

AM −0.1117*** −0.1059***

(−21.2007) (−18.0876)

AM2 0.0383*** 0.0339***

(15.2136) (12.8043)

_cons 0.2221*** 0.2229*** 0.1014***

(8.2022) (8.3697) (3.3395)

var(e.AEE) 0.0258*** 0.0251***

(30.9674) (28.0235)

N 19146 19146 16115

Pseudo R2 −0.0708 −0.0557

Adj. R2 0.0458

Note: ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively, with the t-statistics in parentheses.
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5.2 Robustness test

Based on the aforementioned analysis, it is evident that
enhancing the level of agricultural mechanization can effectively
enhance agricultural environmental efficiency. To further validate
the empirical findings of this study, robustness tests were conducted
using the methods outlined in Table 4.

First, explanatory variables should be modified. In this section,
the values of agriculture, forestry, animal husbandry, and fishery
machinery can serve as substitute variables for agricultural
mechanization. The total value of agriculture, forestry, animal
husbandry, and fishery machinery can be used to quantify the
scale and level of agricultural mechanization. A higher total value
of machinery typically indicates increased usage in agricultural
production and suggests a higher level of agricultural
mechanization for farmers. Variable settings and measurement
model selection were consistently aligned with the benchmark
model. As is evident from the estimation results in column (1) of
Table 4, the impact of agricultural mechanization on agricultural
environmental efficiency was characterized by a “U-shaped”
relationship, without any significant change observed in the
estimated coefficient for agricultural mechanization. This finding
underscores the robustness of our conclusions.

Furthermore, we implemented a changed estimation method. In
this section, we employed an Ordinary Least Squares (OLS) model for
the re-estimation to ensure consistency with the benchmark model in
terms of variable setting and measurement model selection. The
estimation results presented in column (2) of Table 4 confirm that
agricultural mechanization continues to exhibit a “U-shaped”
relationship with agricultural environmental efficiency. Notably, the
estimated coefficient of agricultural mechanization remained
unchanged and statistically insignificant, confirming the robustness
of our findings.

Third, the samples located in the town government were
excluded from robustness tests to ensure the robustness and
universality of the study, as their location reflects the economic
and geographical conditions of the farmers’ residences. The variable
settings and measurement model selection were consistent with
those of the benchmark model. As is evident from the estimation
results in column (3) of Table 4, agricultural mechanization still
exhibited a “U-shaped” relationship with agricultural environmental
efficiency and there was no significant change in the estimated
coefficient of agricultural mechanization. This again indicated that
the findings of the study are robust.

5.3 Mechanism analysis

According to theoretical analysis, agricultural carbon emissions
play a crucial intermediary role influencing agricultural environmental
efficiency during the process of agricultural mechanization. However,
empirical verification is required to determine whether agricultural
mechanization affects agricultural environmental efficiency through its
impact on agricultural carbon emissions. Table 5 presents the estimated
results of the intermediary effect model.

As shown in the estimation results presented in column (2) of
Table 5, the primary term coefficient of agricultural mechanization
was negative, whereas the secondary term coefficient was positive,

both passing a significance level of 1%. This indicated that agricultural
mechanization had a significant impact on agricultural carbon
emissions, and there was an obvious non-linear relationship
between them. Specifically, as agricultural mechanization increased
continuously, agricultural carbon emissions first decreased and then
increased. After adding agricultural carbon emissions to column (3) of
Table 5, the estimated coefficients for both the primary and secondary
terms remained negative and positive, respectively, at a significance
level of 1%, consistent with the baseline regression. These findings
suggested that agricultural carbon emissions play an intermediary role
in the process by which agricultural mechanization affects
environmental efficiency within agriculture, and the “U-shaped”
impact caused by such emissions explains why environmental
efficiency varies with the levels of mechanization. A possible
explanation for this phenomenon lies in two factors. First, when
mechanization levels are low, small-tomedium-sizedmachinery tends
to be used more frequently, resulting in higher energy consumption
per unit area, which leads to increased carbon emissions, thereby
reducing environmental efficiency. Second, when mechanization
levels are high, large-scale production can be carried out,
improving energy utilization rates and leading to reduced carbon
emissions, thus enhancing environmental efficiency.

6 Expansive analysis

Because of China’s vast territory, diverse topography, and
varying economic structures across different regions, the country
exhibits significant regional disparities in its economic structure. To
further investigate the heterogeneity of the impact of agricultural
mechanization on agricultural environmental efficiency, this section
explores the influence of agricultural machinery on this efficiency
from a disequilibrium perspective.

6.1 Regional heterogeneity

China covers an extensive territory characterized by significant
heterogeneity in natural resource endowment and agricultural
economic development across its eastern, central, and western
regions. Considering the substantial diversity of China’s
agricultural regions, there are notable regional disparities in the
level of agricultural mechanization. Therefore, this study partitioned
the sample data into subsamples based on the eastern, central, and
western regions to investigate variations in the impact of agricultural
mechanization on agricultural environmental efficiency.

As can be seen from Table 6, the impact of agricultural
mechanization on agricultural environmental efficiency in the
eastern and central regions was consistent with the whole
sample, presented a “U-shaped” relationship, and was significant
at the 1% significance level; however, the impact on agricultural
environmental efficiency in western China did not pass the
significance test. This showed that agricultural mechanization can
improve agricultural environmental efficiency in the eastern and
central regions, but its effect on the agricultural environmental
efficiency in the western region is not as pronounced. One
possible explanation for this is that the terrains in the eastern
and central regions are more suitable for implementing
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agricultural mechanization for agricultural production. The eastern
region is relatively flat, with more plains and concentrated land,
making it easier to implement agricultural mechanization. On the
other hand, the terrain in the western region is complex, and many
traditional agricultural machines cannot be used in these terrain
conditions, making it difficult to promote agricultural machinery in
this region. Second, agricultural mechanization depends on
irrigation facilities and an adequate supply of water resources; the
western region generally faces water shortages, which also limits the
promotion and application of agricultural mechanization in
this region.

6.2 Topographic heterogeneity

The efficiency of agricultural environmental management is not
solely influenced by external production tools but is also constrained

by terrain conditions. Large-scale agricultural machinery and
operations necessitate favorable terrain, particularly flat and
expansive lands that facilitate mechanization. Thus, this study
categorized the sample data into plains, hills, and mountains
based on terrain conditions to investigate the variations in the
impact of agricultural mechanization on environmental efficiency
across different landscapes. The regression results are presented
in Table 7.

As depicted in Table 7, agricultural mechanization significantly
impacts agricultural environmental efficiency in both plain and hilly
areas at a significance level of 1%, exhibiting a “U-shaped”
relationship that aligns with the estimated results of baseline
regression. However, the impact of agricultural mechanization in
mountainous areas failed to meet the significance limit, indicating
that enhancing the level of agricultural mechanization in such
regions does not substantially enhance local agricultural
environmental efficiency. One possible explanation is that plains

TABLE 5 Mediation effect test results.

(1)
AEE

(2)
carbon_emission

(3)
AEE

AM −0.1117*** 11.1877*** −0.0853***

(−21.2045) (8.5994) (−15.8247)

AM2 0.0383*** −3.6187*** 0.0291***

(15.2164) (−5.3731) (11.7290)

internet 0.0170*** 7.0481*** 0.0276***

(5.4292) (9.3096) (9.3131)

sex 0.0076*** 1.0184** 0.0081***

(3.2722) (2.3277) (3.5147)

age 0.0002*** 0.0180 0.0001**

(2.7161) (1.4742) (2.4821)

edu 0.0034*** 0.0982 0.0035***

(10.2990) (1.4954) (10.7585)

income −0.0151*** −3.7720*** −0.0130***

(−6.4971) (−6.3096) (−5.7088)

carbon_emission −0.0135***

(−11.2070)

_cons 0.2229*** 44.5446*** 0.2588***

(8.3712) (6.2321) (9.6729)

var(e.AEE) 0.0250*** 0.0246***

(32.6275) (33.1050)

var(e.zhongjie) 133.6043***

(5.7291)

N 19146 19146 19146

Pseudo R2 −0.0588 0.1456 −0.0802

Note: ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively, with the t-statistics in parentheses.
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and hilly areas are relatively flat with minimal elevation differences,
making them more suitable for the efficient implementation of
agricultural mechanization practices. Second, mountainous
terrain, characterized by fragmentation and uneven distribution
of cultivated land, lacks the conditions conducive to large-scale
machinery farming. Consequently, improving the level of
agricultural mechanization has become comparatively challenging
in these regions, resulting in a relatively minor impact on their
overall agricultural environmental efficiency.

6.3 Village heterogeneity

To investigate the differential impact of agricultural
mechanization on agricultural environmental efficiency between
suburban and rural villages, this study categorized villages into
suburban and rural based on their location at the urban-rural
interface and further examined the disparities in the effects of
agricultural mechanization on agricultural environmental
efficiency in these areas. The estimation results from Subsamples
(4) and (5) in Table 7 revealed that agricultural mechanization had a
significant “U-shaped” effect on improving agricultural
environmental efficiency in rural villages at the 1% significance

level. Conversely, although the direction of impact was consistent for
suburban villages, it failed to reach statistical significance. These
findings suggested that agricultural mechanization can enhance the
environmental efficiency of rural agriculture to a greater extent than
that of suburban villages. One possible explanation for this is that the
labor force tends to concentrate in rural areas, where heavy farming
tasks can be replaced by machinery, optimizing resource allocation
and consequently improving environmental efficiency. Additionally,
as important suppliers of urban agricultural products, rural areas
face diverse demands for refined crops, necessitating complex
planting structures. This complexity not only facilitates
advancements in agricultural mechanization but also contributes
to improved environmental efficiency.

6.4 Economic development level
heterogeneity

The impact of agricultural mechanization on agricultural
environmental efficiency is influenced by the degree of village
economy development (Chen et al., 2022). To analyze this
relationship under different economic levels, the sample data
were categorized into five grades based on the economic

TABLE 6 Regional regression results.

(2)
Eastern

(3)
Central

(4)
Western

AM −0.1192*** −0.0400*** −0.0070

(−12.7919) (−5.5366) (−0.6887)

AM2 0.0375*** 0.0186*** −0.0061

(6.8687) (5.8929) (−1.3250)

internet 0.0222*** 0.0119*** 0.0378***

(4.1178) (3.2708) (9.3318)

gender 0.0127*** 0.0020 −0.0002

(2.8736) (0.7114) (−0.0688)

age 0.0004*** −0.0001 −0.0002**

(3.3865) (−0.8005) (−2.5542)

edu 0.0050*** 0.0012*** −0.0006

(8.8694) (2.6379) (−1.1038)

income −0.0172*** −0.0111*** −0.0109***

(−4.5522) (−3.0973) (−4.6464)

_cons 0.2352*** 0.1701*** 0.1309***

(5.4438) (4.0886) (4.5523)

var(e.AEE) 0.0376*** 0.0168*** 0.0063***

(27.6098) (16.1848) (15.1080)

N 8214 8537 2395

Pseudo R2 −0.1451 −0.0072 −0.0140

Note: ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively, with the t-statistics in parentheses.
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development level and living standards of farmers: high, upper-
middle, middle, lower-middle, and low.

As is evident from the estimated findings presented in Table 8,
significant variations were observed in the impact of agricultural
mechanization on agricultural environmental efficiency across
regions with varying degrees of economic development. Notably,
the influence of agricultural mechanization on agricultural
environmental efficiency was relatively limited in impoverished
villages, whereas it had a pronounced effect in affluent villages.
One plausible explanation for this disparity is that prosperous
villages possess greater financial and resource capabilities,
facilitating the adoption and promotion of agricultural
mechanization. Additionally, these villages often benefit from a
well-established infrastructure, which further facilitates the
implementation of mechanized farming practices. Conversely,
when economic development levels are relatively low, farmers’
income constraints hinder their ability to invest adequately in
upgrading agricultural mechanization despite recognizing its
potential benefits for improving environmental conditions,
resulting in a comparatively smaller impact on agricultural
environmental efficiency within poor villages.

In addition, this paper also has the following limitations, which
point to future research directions:

(1) This study investigates the impact of agricultural
mechanization on agricultural environmental efficiency
from the perspective of micro-level farmers in China. In
the future, research can be conducted from the perspective
of specific regions in China or other countries.

(2) The micro-level survey data from fixed observation points in
rural China used in this paper are limited by the data’s
constraints. The research dataset is concentrated in certain
fixed years and provinces, and it is an unbalanced panel
dataset. In the future, further exploration and
improvement of the research can be achieved by using
more appropriate datasets.

(3) Agricultural environmental efficiency is influenced by various
factors related to farm characteristics. However, due to
limitations in the dataset collected in this study, the factors
considered are relatively limited. Future research can explore
a broader range of influencing factors.

7 Conclusions and policy implications

Promoting agricultural mechanization is a crucial approach to
enhancing agricultural environmental efficiency; however, no

TABLE 7 Regression results by terrain and village type.

(1)
Plains

(2)
Hills

(3)
Mountains

(4)
Suburban villages

(5)
Rural villages

AM −0.0258*** −0.0474*** −0.1587*** −0.0177 −0.1110***

(−2.8909) (−5.5807) (−15.4644) (−0.6665) (−20.2594)

AM2 0.0012 0.0247*** 0.0414*** 0.0152 0.0370***

(0.2853) (7.1458) (6.4311) (1.2353) (14.1344)

internet 0.0112*** 0.0176*** −0.0050 −0.0050 0.0185***

(3.0582) (3.4297) (−0.4610) (−0.4056) (5.5512)

sex 0.0017 0.0018 0.0165*** 0.0021 0.0080***

(0.6082) (0.4152) (3.2013) (0.4945) (3.0440)

age −0.0000 0.0001 0.0005*** −0.0003*** 0.0002***

(−0.5643) (1.0809) (4.0499) (−2.6139) (3.1186)

edu 0.0009* 0.0030*** 0.0046*** −0.0016* 0.0039***

(1.8294) (4.9234) (7.1533) (−1.8335) (10.7593)

income 0.0014 −0.0087* −0.0254*** −0.0285*** −0.0144***

(0.5589) (−1.7671) (−5.6840) (−7.1288) (−5.7562)

_cons 0.0526* 0.1274** 0.3748*** 0.4065*** 0.2089***

(1.8089) (2.2363) (7.0773) (7.6932) (7.3026)

var(e.AEE) 0.0153*** 0.0226*** 0.0373*** 0.0110*** 0.0280***

(15.5470) (15.2395) (24.4906) (8.0779) (29.8788)

N 7820 5111 6215 2439 16707

Pseudo R2 −0.0059 −0.0148 −0.2880 −0.0142 −0.0804

Note: ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively, with the t-statistics in parentheses.
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relevant literature has directly investigated the relationship between
agricultural mechanization and agricultural environmental
efficiency. In this study, we incorporated agricultural
mechanization into the measurement framework of agricultural
environmental efficiency using fixed observation point data from
rural areas. We used the super-efficiency SBM model to re-evaluate
agricultural environmental efficiency and analyze how it is affected
by agricultural mechanization. Our findings revealed a significant
“U-shaped” relationship between agricultural mechanization and
agricultural environmental efficiency, this somewhat extends the
findings of Vortia et al. (2021) and Xu Qh (2022), among others, that
agricultural mechanization can boost agricultural production. The
lowest level of agricultural environmental efficiency was recorded
when the level of mechanization reached 1.4582. However, beyond
this critical value, further increases in mechanization lead to
improvements in the environmental performance of agricultural
practices. This “U-shaped” effect can be attributed to agricultural
mechanization’s influence on reducing carbon emissions from
agriculture. Moreover, our findings indicated that the impact of
agricultural mechanization on improving agricultural
environmental performance was more pronounced in plains and
hilly areas as well as in agriculturally focused villages with higher
economic development levels. The findings also support the studies

of Zou and Wu (2017) and Jena and Tanti et al. (2023) on the
existence of differences in the impact of agricultural mechanization
on agricultural production in different topographic areas. Based on
these conclusions, we describe the implications and measures that
should be implemented in developing countries that aim to promote
agricultural mechanization and improve their overall ecological
sustainability.

First, agricultural mechanization should be promoted and
agricultural environmental efficiency should be enhanced. The
government should establish a dedicated fund to support the
research, development, and production of agricultural
mechanization equipment. Collaborative efforts among
production units, universities, and research institutions should be
facilitated while encouraging the widespread participation of
production units, universities, research organizations, and
agricultural machinery service providers in technology
dissemination. Intelligent and sustainable upgrading of
agricultural machinery should be expedited by the development
of energy-efficient and eco-friendly products that reduce carbon
emissions from the machinery itself to advance the improvements in
agricultural environmental efficiency. Preferential policies should be
implemented to increase the financial support for agricultural
mechanization while facilitating cross-regional machinery

TABLE 8 Regression by economic level.

(1)
High

(2)
Upper-middle

(3)
Middle

(4)
Lower-middle

(5)
Low

AM −0.2734*** −0.1036*** −0.0953*** −0.1853*** 0.1062***

(−12.1339) (−8.9633) (−15.0597) (−10.2743) (3.8864)

AM2 0.0823*** 0.0330*** 0.0318*** 0.0814*** −0.0462***

(4.5448) (6.5071) (10.6859) (8.1496) (-3.8434)

internet 0.0458* −0.0150** 0.0372*** −0.0066 0.0276**

(1.8539) (−2.4060) (9.2813) (−0.6459) (2.0851)

sex −0.0090 0.0001 0.0098*** 0.0053 0.0050

(−0.2660) (0.0267) (3.3189) (0.5493) (0.3163)

age −0.0008 −0.0002* 0.0001 0.0009*** 0.0001

(−0.8582) (−1.8585) (1.4538) (3.1280) (0.5247)

edu −0.0045* 0.0021*** 0.0029*** 0.0050*** 0.0022

(−1.9240) (2.8902) (7.4791) (3.3046) (1.1393)

income 0.0600 −0.0171*** 0.0074** −0.0770*** −0.0059

(1.3910) (−4.4828) (2.3363) (−10.2281) (−0.6778)

_cons −0.4020 0.3382*** −0.0587* 0.9022*** 0.0359

(−0.8122) (7.0405) (−1.6864) (9.9205) (0.2939)

var(e.AEE) 0.0268* 0.0215*** 0.0244*** 0.0421*** 0.0133**

(1.9131) (13.9321) (24.3362) (12.8070) (2.2261)

N 102 5195 11797 1818 234

Pseudo R2 −0.2040 −0.0422 −0.0557 −14.3370 −0.0628

Note: ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively, with the t-statistics in parentheses.
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operation to ensure policy backing for its development. Technical
training programs should be strengthened for farmers to enhance
their operational proficiency and maintenance skills while
addressing the challenges encountered during the use of
agricultural machinery, thereby fostering the active engagement
of farmers in promoting mechanization. Energy conservation and
emission reduction measures should be promoted within the realm
of agriculture by advocating low-carbon farming practices and
ecological agricultural models to elevate overall agricultural
environmental efficiency.

Second, agricultural mechanization should be promoted and
agricultural carbon emissions mitigated. The utilization of
agricultural waste resources should be actively encouraged, the
development of rural renewable energy sources fostered,
conservation farming practices advocated, high-standard
farmland construction strengthened, and the carbon
sequestration capacity of farmland soils enhanced. Furthermore,
farmers should be incentivized to adopt energy-efficient and
environmentally friendly agricultural machinery and equipment
while reducing excessive water resource usage and fertilizer
application in agriculture to minimize agricultural carbon
emissions. To achieve this goal, we propose establishing a
subsidy mechanism that rewards farmers based on their level of
agricultural mechanization and the amount of carbon emission
reduction achieved. This approach aims to encourage farmers to
adopt clean energy equipment options while optimizing the
allocation and management of agricultural machinery resources
for efficient resource utilization and reduced agriculture-related
carbon emissions. Additionally, we aim to vigorously promote
green and energy-saving technologies in agriculture by providing
cost-effective and high-quality services related to agricultural
machinery. By supporting innovation in new energy-based
agricultural machinery products through appropriate policies,
the introduction of advanced equipment into practice can
effectively lower carbon emissions during various stages of crop
cultivation, thus paving the way toward low-carbon development
in agriculture.

Third, agricultural mechanization should be promoted
according to local conditions. Tailored agricultural mechanization
policies should be implemented based on specific agricultural
characteristics and environmental conditions in different regions.
Farmland improvement in hilly and mountainous areas should be
enhanced, land fragmentation reduced, the transformation of
farmland into machine-friendly terrain in these regions
facilitated, the operational capacity for large- and medium-sized
agricultural machinery expanded, innovation in agricultural
machinery and equipment expedited, and widespread adoption of
mechanization technology in hilly and mountainous areas
encourage. This will enhance the adaptability and efficiency of
agricultural machinery and equipment as well as advance the
modernization of agricultural production. Strengthening
infrastructure development for agricultural mechanization is
crucial in economically underdeveloped areas and should be
done by focusing on investments toward rural mechanized roads
and electromechanical irrigation stations to improve the

fundamental conditions for agricultural production. Furthermore,
the agricultural mechanization technology should be popularized to
assist farmers in enhancing their operational skills regarding the use
of farming machinery while promoting its widespread adoption.
Given that suburban areas have a more complex planting structure,
it is essential to prioritize the development of mechanisms for
processing, preserving, storing, and transporting both primary
crops and efficient cash crop production.
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