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The research and optimization of hydrological forecasting models are among the
most crucial components in the scope of water management and flood protection.
Optimizing the calibrationof hydrological forecastingmodels is crucial for forecasting
performance. A rapid adaptive Shuffled Complex Evolution (SCE) method called Fast
Adaptive SCE (FASCE) is proposed for calibratingmodel parameters. It builds upon the
previously established SCE-UA, known for its effectiveness and robustness in the
same calibration context. The robustness of the original SCE-UA is expanded upon,
introducing a revised adaptive simplex search to bolster efficiency. Additionally, a new
strategy for setting up the initial population base enhances explorative capacities.
FASCE’s performance has been assessed alongside numerous methods from prior
studies, demonstrating its effectiveness. Initial tests were conducted on a set of
functions to assess FASCE’s efficacy. Findings revealed that FASCE could curtail the
failure rate by a minimum of 80%, whereas the requirement for function evaluations
fell between 30%and60%. Twohydrologicalmodels - Support VectorMachine (SVM)
and Xinanjiang rainfall-runoff model were employed to estimate the new algorithm’s
performance. No failures were reported, and there was a reduction of at least 30% in
function evaluations using FASCE. The outcomes from these studies affirm that
FASCE can considerably reduce both the number of failures and the count of function
evaluations required to reach the globalmaximum.Hence, FASCEemerges as a viable
substitute for model parameter calibration.
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1 Introduction

The research and optimization of hydrological forecasting models are among the most
crucial components in the scope of water management and flood protection. In hydrological
forecasting research, a key component involves calibrating parameters of streamflow
forecasting models. Accurate forecasts of streamflow are crucial as they furnish vital
information for supporting reservoirs’ optimal operation and ensuring control over flood
processes (Qin et al., 2010; Chen et al., 2013; 2016; Ouyang et al., 2013; Tsai et al., 2014; Yazdi
et al., 2014; Li and Ouyang, 2015; Zhou et al., 2015).

Over the past several decades, scientists in the field have crafted numerous algorithms for
calibration. One standout amidst these is Duan et al. (1992) Shuffled Complex Evolution
Algorithm (SCE-UA). Known for its robustness and efficiency, through myriad successful
applications, it has established itself as a reliable global optimization method for calibrating
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model parameters (Duan et al., 1992; Yapo et al., 1996; Santos et al.,
2003; Ajami et al., 2004; He et al., 2007; Mcmillan et al., 2010; Liu
et al., 2015; Uniyal et al., 2015; Her and Heatwole, 2016; Yang J. et al.,
2017a; Gopala et al., 2019; Hallabia et al., 2021; Brunetti et al., 2022;
Guo et al., 2023). Notably, SCE-UA and related derivatives also
target multi-objective optimization problems, extending
applications to groundwater and reservoir models (Muttil and
Jayawardena, 2008; Chu et al., 2014; Yang et al., 2015; Yang T.
et al., 2017b).

Past studies indicate that population diversity greatly impacts
the search performance of algorithms (Bremermann et al., 1966;
Galar, 1985; Fogel et al., 1998; Muttil and Liong, 2004). Yet, SCE-UA
creates populations in a purely random manner. Under certain
circumstances, this may inhibit SCE-UA’s convergence to the global
optimum. Further constraining SCE-UA’s efficiency, it only spawns
new individuals based on the poorest individual and the centroid of
the remaining individuals, failing to fully harness previously
obtained optimal results data.

Addressing these shortcomings, this research introduces the Fast
Adaptive Shuffled Complex Evolution (FASCE), an algorithm based
on SCE-UA that heightens the search efficiency through an adaptive
simplex search, replacing SCE-UA’s original simplex search. The
initial population’s placement strategy, as proposed by Muttil and
Jayawardena (2008), is also merged to boost the algorithm’s
exploratory capabilities.

FASCE’s effectiveness was validated through various benchmark
functions and two daily streamflow forecasting models grounded on
Support Vector Machine (SVM) and Xinanjiang model. Due to its
excellent performance, SVM is extensively utilized and have been
successfully implemented in the field of hydrology (Lin et al., 2006;
Tripathi et al., 2006; Mohsen et al., 2009; Yoon et al., 2010; Kisi and
Cimen, 2011; Yan et al., 2022; Xu et al., 2023). And the Xinanjiang
model has been employed for streamflow forecasting during the last
decades (Zhao, 1992; Zhao et al., 1995; Li et al., 2009; Song et al.,
2012; Mao et al., 2013; Deng et al., 2015; Rahman and Lu, 2015; Jiang
et al., 2023). FASCE’s performance was compared with both the
original SCE-UA and the enhanced SCE-UA algorithm (SCE-MJ),
as proposed by Muttil and Jayawardena (2008). Results showed
FASCE outperforming both and, as such, it stands as a promising
alternative for model parameter calibration.

Our study aims to present a new and expedient adaptive shuffled
complex evolution (SCE) algorithm for the calibration of streamflow
forecasting models based on SVM and Xinanjiang rainfall-runoff
model. Multiple search strategies that build upon the original SCE-
UA algorithm have been introduced in this research. These
innovative strategies enhance the algorithm’s exploration
capability and significantly improve its convergence speed. Our
approach provides a fast and efficient solution for accurate
calibration and forecasting in streamflow analysis.

2 Materials and methods

2.1 Description of the SCE-UA and
SCE-MJ algorithm

The Shuffled Complex Evolution-University of Arizona (SCE-
UA) algorithm is a powerful optimization method commonly used

in hydrological and environmental modeling. It’s based on the idea
of simulating the complex behavior of nature’s evolutionary process.

By imitating the natural evolution, SCE-UA algorithm efficiently
explores a wide range of solution space to find the optimal solution
for complex problems such as parameter calibration, uncertainty
analysis, and sensitivity analysis. It has been applied in various fields
like water resources management, climate modeling, and
ecosystem analysis.

And the algorithm proposed by Muttil and Jayawardena (2008),
called SCE-MJ model calibrating algorithm, aims to enhance
robustness and efficiency in hydrological processes. It utilizes a
shuffled complex approach, which involves multiple complexes,
each with a set of parameters.

The SCE-MJ algorithm dynamically shuffles the parameter sets
between complexes to explore the search space more effectively. This
helps in finding the optimal parameter values for calibrating
hydrological models. By introducing a crossover process and
parameter adaptation, the algorithm improves the efficiency of
the optimization process.

2.2 Design of FASCE based on SCE-UA and
SCE-MJ

The FASCE process is a refined advancement over its
predecessor, the SCE-UA method. Detailed comprehension of the
SCE-UA model can be acquired through references such as Duan
et al., 1992, Duan and Gupta, 1993; Li et al., 2013.

A strategic method offered byMuttil and Jayawardena in 2008 is
adopted for determining the initial population in our research. This
is geared towards ensuring the SCE-UA algorithm does not become
trapped in the local optimality within feasible spatial dimensions.
The said strategy is imperative in preserving diversity within the
population group. Interested parties can gain more knowledge on
this strategy by referring to Muttil and Jayawardena 2008.

Moreover, to elevate the potency of the algorithm’s search
capabilities, an innovative, adaptive simplex search mechanism is
introduced within this study. This operator is utilized during the
reflection or contraction phases to instigate the inception of a new
point and shift adaptively towards the optimal point amidst
the simplex.

This adaptive procedure is a significant enhancement against the
standard SCE-UA method. Benefits include the ability to employ
both the optimal point’s data and the information derived during the
process of generation. The advent of novel points, courtesy of this
adaptive simplex search operator, is dictated by Eqs 1–4.

Xnew � θXb + 1 − θ( )Xref (1)
Xnew � θXb + 1 − θ( )Xcon (2)

S � 1
�y

�����������
1
n
∑n
i�1

yi − �y( )2√
(3)

θ �
1���
2π

√ e−
S2
2 , S> 0.05

S, S≤ 0.05

⎧⎪⎪⎨⎪⎪⎩ (4)

Where Xnew denotes the new point, Xref denotes the reflected
point, Xcon denotes the contracted point, Xb is the best point of the
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simplex, θ is the adaptive shift coefficient, n is the number of current
population excluding the worst point, yi is the objective function
value of the ith point, �y is the mean objective function value of the
current population excluding the worst point, S denotes the
fluctuation degree of the current population excluding the
worst point.

Besides, the FASCE also uses two stopping criteria:
Parameters distribution and Maximum number of function
evaluation, which are the same with SCE-UA. This means that
the algorithm can early stop when the parameters distribution is
too narrow to search.

2.3 The differences between FASCE and
SCE-MJ

In the SCE-MJ algorithm, the shift coefficient must be preset in
advance. And this coefficient is always determined by artificial
experience. Generally, for some relatively simple test functions
(such as Goldstein-Price function, Six-hump function, Griewank
function, and so on), the number of local optima is small, and the
shift coefficient is set bigger, the shuffle operator can make the
generated new point move fast to the global optimum, and the
convergence speed is enhanced significantly; and for some
complicated test functions (such as Restrigin function, Rastrigin
(10D) function, Rosenbrock (10D) function, and so on), the number
of local optima is relatively large, and the shift coefficient is set
smaller. Thus, to avoid missing the global optimum, the shuffle
operator can make the generated new point move slowly to the
global optimum, and then the convergence speed improvement
becomes small relatively.

However, the complexity of practical problems in engineering
usually is not known. Therefore, it is very difficult to set reasonable
shift coefficient. Besides, it is not reasonable to set a constant shift
coefficient during the whole evolutionary computation process of
the algorithm.

To overcome these shortcomings, we propose a novel algorithm
FASCE with an adaptive shift operator. And this adaptive shift
operator has no parameter needed predefined beforehand and can
set adaptive shift coefficient according to the evolutionary
computation process. There are three stage in the algorithm
evolution as follows:

(1) At the initial stage of evolution, the fluctuation degree of the
population is usually big. Then, the adaptive shift operator
adopts small shift coefficient to avoid the algorithm missing
global optimum.

(2) Meanwhile, with the evolution of algorithms, the fluctuation
degree of the population is getting smaller and smaller, this
indicates that the algorithm may be getting close to the final
global optimum. At this situation, the adaptive shift operator
gets big shift coefficient to make the algorithm converge fast to
the global optimum.

(3) At the end of the algorithm evolution, the fluctuation degree of
the population is getting very small. At this situation, the
adaptive shift operator sets small shift coefficient to improve
the search accuracy of algorithm.

The differences between these three algorithms are shown
in Figure 1.

3 Benchmark functions testing results

In this study, eight widely recognized benchmark functions,
denoted as Eqs 5–12, are utilized to evaluate the efficacy of the
FASCE algorithm. These benchmark functions serve as valuable
tools in gauging the performance and capabilities of the algorithm.
By employing these benchmarks, we can comprehensively assess the
algorithm’s effectiveness and ascertain its potential for various
applications.

(1) Restrigin function (dimension N = 2)

f x1, x2( ) � ∑2
i�1

x2
i − 10 cos 2πxi( ) + 10[ ], x1, x2 ∈ −5.12, 5.12[ ]

min f x1, x2( )( ) � f 0, 0( ) � 0

(5)

(2) Goldstein-Price function (dimension N = 2)

f x1, x2( ) � −2 + x1 + x2 + 1( )2 19 − 14x1 + 3x2
1 − 14x2 + 6x1x

2
2 + 3x2

2( )[ ]
× 30 + 2x1 − 3x2( )2 18 − 32x1 + 12x2

2 + 48x2 − 36x1x2 + 27x2
2( )[ ],

x1, x2 ∈ −2, 2[ ]
min f x1, x2( )( ) � f 0,−1( ) � 0

(6)

(3) Rosenbrock function (dimension N = 2)

f x1, x2( ) � 100 x2 − x2
1( ) + 1 − x2

1( )2, x1 ∈ −5, 5[ ], x1 ∈[−2, 8)
min f x1, x2( )( ) � f 1, 1( ) � 0

(7)

(4) Griewank function (dimension N = 2)

f x1, x2( ) � ∑2
i�1

x2
i

d
−∏2

i�1
cos

xi�
i

√( ) + 1, x1, x2 ∈ −600, 600[ ], d � 600

min f x1, x2( )( ) � f 0, 0( ) � 0

(8)

(5) Six-Hump function

f x1, x2( ) � 1.0316285 + 4x2
1 − 2.1x4

1 +
1
3
x6
1 + x1x2 − 4x2

2 + 4x4
2,

x1 ∈ −2, 2[ ], x2 ∈ −1, 1[ ]
min f x1, x2( )( ) � f 0.08983,−0.7126( ) � f −0.08983, 0.7126( ) � 0

(9)

(6) Restrigin function (dimension N = 10)

f x1, x2,/, x10( ) � ∑10
i�1

x2
i − 10 cos 2πxi( ) + 10[ ], xi ∈ −5.12, 5.12[ ]

min f x1, x2,/, x10( )( ) � f 0, 0,/, 0( ) � 0

(10)

(7) Rosenbrock function (dimension N = 10)
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f x1, x2,/, x10( ) � ∑9
i�1

100 xi+1 − x2
i( )2 + 1 − xi( )2[ ], xi| |≤ 30

min f x1, x2/, x10( )( ) � f 1, 1,/, 1( ) � 0

(11)

(8) Griewank function (dimension N = 10)

f x1, x2,/, x10( ) � ∑10
i�1

x2
i

4000
−∏10

i�1
cos

xi�
i

√( ) + 1, xi ∈ −600, 600[ ],

min f x1, x2,/, x10( )( ) � f 0, 0,/, 0( ) � 0

(12)
In order to assess the algorithm’s performance, we utilize two

indices: (a) the number of failures (NF) out of 100 trials and (b)
the average number of function evaluations (NFE) for successful
trials. Smaller values for NF and NFE indicate better
performance. For this analysis, the maximum number of
function evaluations is set to 25,000. A trial is deemed
successful if the algorithm discovers a function value below

10–3 or is considered a failure if it reaches the maximum
number of function evaluations.

Table 1 provides an overview of the outcomes from the FASCE
algorithm. Additionally, to facilitate comparison, the results from
both the original SCE-UA algorithm and the SCE-MJ algorithm are
also presented in Table 1. And the evolving processes of each
algorithm on different test functions are shown in Figure 2.

The results presented in Table 1; Figure 2 align closely with
previous studies conducted by Duan et al., in 1993 and Muttil and
Jayawardena in 2008. It is worth noting that the FASCE algorithm
demonstrates a remarkable ability to minimize failures and the
number of function evaluations, particularly for the Rastrigin and
Goldstein-Price functions, when compared to the original SCE-UA
and SCE-MJ methods. Besides, the results show that the
performance of FASCE is better than SCE-UA and SCE-MJ on
two out of three 10-D functions. Although all the three algorithms
cannot reach the global optimum on the 10-D Rosenbrock Function,
the algorithm FASCE and SCE-MJ can significantly reduce the
number functions estimations with the same search accuracy.

FIGURE 1
The flowchart of FASCE algorithm.
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This indicates that the FASCE gets better performance than SCE-MJ
and SCE-UA.

4 Hydrological model parameter
calibration results based on FASCE

4.1 Parameter calibration of the hydrological
model based on SVM

In this paper, we conducted a study on the Changjiang (Yangtze)
River basin. To calibrate and validate our model, we used the
observed streamflow data from Yichang Station between
1 January 2005, and 31 December 2007. The data is divided into
two sets: the first 730 streamflow data points were used for model
calibration, and the remaining data points were used for model
validation.

Before we could begin calibrating our model, it was crucial to
select an appropriate model structure. In this study, the SVM is
chosen for one-day-ahead streamflow forecasting. This means that
our model focuses on predicting future streamflow. We used the
streamflow data from the past few days as inputs for the model,
which is a common approach in similar studies (Aqil et al., 2007;
Kisi, 2009; Wang et al., 2009). To determine which previous flow
values to include as inputs, we utilized autocorrelation function
(ACF) and partial autocorrelation function (PACF) analyses. You
can find the ACF and PACF plots of the streamflow data in Figure 3.

Examining the results shown in Figure 3, it can be noted that:

1) The ACF exhibited a correlation coefficient higher than
0.8 at lag 5.

2) Additionally, the PACF showed significant correlation within a
95% confidence level interval for flow lags of up to 5 days.

Based on these findings, we concluded that the 5 antecedent flow
values serve as suitable inputs for our daily streamflow
forecasting model.

Here, the SVM algorithm is employed for streamflow
forecasting. The primary objective (as Eq. 13) of using SVM is to

discover a function that can accurately predict streamflow. SVM
works by identifying a mathematical function that maps the input
variables to the output variable, in this case, the streamflow.

By incorporating SVM into our approach, we can better forecast
future streamflow levels, providing valuable insights for water
resource management and planning.

max ∑l
i�1

αi
+ − αi

−( )yi − ε∑l
i�1

αi
+ + αi

−( ) − 1
2
∑
i,j

αi
+ − αi

−( ) αj
+ − αj

−( )K Xi,Xj( )⎡⎢⎢⎣ ⎤⎥⎥⎦
(13)

Subject to:

0≤ α+i ≤C, 0≤ α−i ≤C

∑l
i�1

α+i − α−i( ) � 0

i � 1, 2, . . . , l

Where the K(Xi,Xj) is the Kernel Trick, e.g., if the kernel function
is Radial Basis Kernel, then K(Xi, Xj) � exp(−‖Xi−Xj‖2

2σ2 ). C is the
penalty factor. ε is the tolerance coefficient. σ is the kernel parameter.
α+ and α− are Lagrange coefficients.

The utilized equations clearly demonstrate that within the SVM-
based model for daily streamflow prediction, there exist three
specific parameters: the penalty factor C, tolerance level ε, and
the kernel parameter σ. It’s crucial that these parameters are
accurately calibrated. Illustrating the varying ranges of
parameters, Table 2 reflects the same parameter values as
stipulated in the study by Gill et al., in 2006.

Furthermore, the model’s training objective is primarily based
on the Root Mean Square Error (RMSE), a statistically significant
metric devised to quantify prediction error. The mathematical
expression defining RMSE is demonstrated in the equation
presented as Eq. 14.

RMSE �
�����������������
1
n
∑n
i�1

Qi
fore − Qi

meas( )2√
(14)

Where n denotes the length of streamflow; Qi
fore denotes the ith

forecasting streamflow value; Qi
meas denotes the ith measured

streamflow value.

TABLE 1 Performance comparison of the three algorithms on eight benchmark test functions.

Problems Number of complexes Population size SCE-UA SCE-MJ FASCE

NF NFE θ NF NFE NF NFE

Rastrigin 2 10 78 413 0.4 8 177 4 132

Goldstein-Price 2 10 0 162 0.5 0 81 0 65

Rosenbrock 2 10 9 335 0.2 3 262 1 211

Six-hump 2 10 8 178 0.5 0 76 0 75

Griewank 2 10 99 342 0.5 8 151 4 127

Rastrigin(10D) 10 200 4 10,085 0.4 1 3,017 1 2,162

Rosenbrock(10D) 10 200 100 10,248 0.2 100 2,889 100 2,177

Griewank(10D) 10 200 0 10,153 0.5 0 2,553 0 1,285

Note: The NF, denotes the number of failures out of 100 trials. The NFE, denotes the the number of function evaluations of the successful trials.
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A series of test trials are executed prior to initiating the actual
training phase, with the primary goal of identifying the optimal
success threshold. The model has undergone several iterations of
preliminary testing, leading to the observation that the optimal

RMSE value achieved via the FASCE algorithm is approximately
3,270 m3/s. Hence, this specific value is assigned as the success
threshold determinant. In essence, a trial is considered successful if
the best function value yielded by the algorithm is less than

FIGURE 2
The evolving processes of each algorithm on different test functions.
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3,270 m3/s. On the contrary, a trial is deemed a failure if it hits the
maximum limit of function evaluations. To moderate the potential
impact of any inherent random element within the previously
discussed three algorithms, each one is operated independently
20 times. The experimental outcomes are consolidated and
presented in Tables 3, 4.

Within the context of this paper, two key metrics have been
selected as the estimate indices for forecasting results: the Root
Mean Square Error (RMSE) and Mean Error (ME). ME can be
calculated by Eq. 15. The mathematical interpretation of ME is
explained in the subsequent equation. Lower RMSE and ME
values are indicative of superior performance.

ME � 1
n
∑n
i�1

Qi
fore − Qi

meas

∣∣∣∣∣ ∣∣∣∣∣ (15)

Where n denotes the length of streamflow; Qi
fore denotes the ith

forecasting streamflow value; Qi
meas denotes the ith measured

streamflow value.
Based on the analysis shown in Table 3, it is evident that three

algorithms exhibit nearly identical RMSE values, thereby indicating
the suitability of the threshold value of 3,270 m3/s. To further

evaluate the efficiency of these algorithms, Table 4 provides a
summary of their performance. Clearly, the FASCE algorithm
outperforms the other two algorithms in terms of achieving the
same level of performance. Not only does FASCE demonstrate
significantly faster speed compared to SCE-UA and SCE-MJ, but
it also exhibits similar search accuracy when compared to SCE-MJ.
One possible reason for this could be that the FASCE algorithm
primarily focuses on enhancing the search speed of SCE-MJ, without
modifying its local searching operator.

Figure 4 illustrates the results obtained by the FASCE algorithm
during the calibration and validation period. In this figure, dots
represent the observed streamflow, while lines represent the
predicted streamflow. It is worth noting that the model
accurately captures the characteristics of the streamflow
hydrograph, although some timing errors are present. This
indicates that there may be a need for further improvement in
the model structure.

FIGURE 3
The ACF and PACF plots of the streamflow data.

TABLE 2 The detail of the SVM parameters.

Parameters name Range

Penalty coefficient C 40.25–43.10

Kernel parameter σ 0.001–0.009

Tolerance ε 0.12–0.14

TABLE 3 The mean forecasting performance of 20 trials for each algorithm on
SVM based hydrological model calibration.

Algorithms Calibration Validation

RMSE
(m3/s)

ME
(m3/s)

RMSE
(m3/s)

ME
(m3/s)

SCE-UA 3,874 2,218 4,145 2,368

SCE-MJ 2,993 1,939 3,410 1,983

FASCE 2,774 1860 3,311 1,935
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4.2 Parameter calibration of the Xinanjiang
hydrological model

Xinanjiang model is first proposed by Professor Zhao Renjun in
China. This model is widely used in streamflow prediction in moist
and semi-humid basins. The most widely used framework is the
three source Xinanjiang model. And the parameter descriptions are
shown in Table 5. The basic frame and the description of the model
parameters can be referred to the references (Zhao, 1992; Li et al.,
2009; Song et al., 2012; Rahman and Lu, 2015).

In this research, the streamflow prediction of Zishui watershed is
taken as the second case study. The Zishui watershed area is about
22,640 km2, and this watershed plays an important role in power
generation and flood control in Hunan province. The location of the
Zishui watershed is shown as Figure 5.

The Zishui watershed has 32 rainfall stations, 6 water level
stations. The history of water and rainfall observation data of river
basin is very complete. The observed data from the 32 rainfall

stations and 6 water level stations between 2004-1-1 and 2014-12-
31 is used for model calibration and validation. The observation data
for the first 6 years is used for model calibration, while the rest used
for model validation.

Three algorithms SCE-UA, SCE-UA-MJ and FASCE are
employed for model calibration. Similar with the above case
study, the Root Mean Square Error (RMSE) is selected as the
training objective function. From several forwards testing of the
model, we note that the best RMSE value found by FASCE algorithm
is about 662 m3/s. Therefore, this value 662 m3/s is selected as a
threshold to determine a trial is success or not. To reduce the
influence of the random factor existed in the above mentioned three
algorithms, each algorithm runs 20 times independently. The results
of the experiment are summarized in Tables 6, 7.

The model parameter calibration results of the FASCE are
shown in Table 8.

The results obtained by FASCE algorithm in calibration and
validation period are given in Figure 6, where dots denote the

TABLE 4 The efficient performance of each algorithm on SVM based hydrological model calibration.

Algorithms Min Max Mean <100 NF

SCE-UA 112 576 304 0 4

SCE-MJ 91 912 226 3 0

FASCE 58 475 195 6 0

Note: Min denotes the minimum number of the model evaluations among the 20 independent trials, Max denotes the maximum number of the model evaluations among the 20 independent

trials, Mean denotes the mean number of model evaluations of the 20 independent trials, and <100 denotes the count of trials with number of model evaluations below 100, and NF, denotes the

number of failure trials among the 20 independent trials.

FIGURE 4
Streamflow forecasting results during calibration period and validation period with FASCE algorithm.
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observed streamflow while lines denote the predicted streamflow. It
can also be indicated that the model can fit the characteristics of the
streamflow hydrograph very well.

From the above results, it can be noted that three algorithms can
all get very good performance, and the algorithm FASCE are more
efficient to arrive at the same performance than the other two
algorithms. Same with the above case study, the FASCE mainly
enhances the evolving speed, so the FASCE has faster converge
speed but nearly same search accuracy than SCE-MJ.

5 Conclusion

In this paper, we introduce an exciting new algorithm called
FASCE that aims to enhance model parameter calibration. The
FASCE algorithm builds upon the foundation of the original SCE-
UA algorithm by implementing a modified adaptive simplex search
and incorporating a new strategy for locating the initial population.
The effectiveness of the FASCE algorithm is tested on eight

TABLE 5 The parameters of the Xinanjiang model.

Parameter Range Physical description

Um(mm) 5–20 mm Upper tension water capacity

Lm(mm) 60–90 mm Lower tension water capacity

Dm(mm) 15–60 mm Deep tension water capacity

B 0.1–0.4 Tension water storage capacity curve factor

Im(%) 0–0.03 Impervious area ratio

K 0.5–1.1 Conversion coefficient of evaporation capacity

C 0.08–0.18 Coefficient of deep evaporation

Sm(mm) 10–50 mm Free water storage capacity

Ex 0.5–2.0 Free water storage capacity curve factor

Kg 0.35–0.45 Outflow coefficient of free water reservoir to groundwater reservoir

Ki 0.25–0.35 Outflow coefficient of free water reservoir to interflow reservoir

Cg 0.99–0.998 Recession coefficient of groundwater reservoir

Ci 0.5–0.9 Recession coefficient of interflow

Cs 0.01–0.5 Recession coefficient of river network water storage capacity

Ke 0.1–1 Parameter of muskingum method

Xe 0–0.5 Parameter of muskingum method

L Empirical value The confluence time of river network

N Empirical value Lengths of flow confluence

FIGURE 5
The location of the Zhexi reservoir watershed.

TABLE 6 The mean forecasting performance of 20 trials for each algorithm on
Xinanjiang hydrological model calibration.

Algorithms Calibration Validation

RMSE(m3/
s)

ME(m3/
s)

RMSE(m3/
s)

ME(m3/
s)

SCE-UA 757 678 818 575

SCE-MJ 534 433 645 527

FASCE 482 305 556 434
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benchmark functions and two daily streamflow forecasting model
based on SVM and Xinanjiang model. The results are then
compared with those achieved using the original SCE-UA
algorithm and SCE-MJ algorithm. Based on our findings, the
following conclusions can be drawn:

1) The FASCE algorithm introduces an adaptive shuffle operator,
which greatly improves the convergence speed of SCE-UA. By
dynamically shifting the newly generated points towards the best

point found so far, a significant enhancement can be noted in
convergence speed across various test functions and two
hydrological forecasting models.

2) Setting a proper shift coefficient in advance for the SCE-MJ
algorithm is a challenging task. Additionally, using a constant
shift coefficient throughout the entire evolutionary computation
process seems impractical. To address these limitations, we
propose the novel FASCE algorithm, which includes an
adaptive shift operator. This operator does not require any

TABLE 7 The efficient performance of each algorithm on Xinanjiang hydrological model calibration.

Algorithms Min Max Mean NF

SCE-UA 481 1,312 655 2

SCE-MJ 325 1,087 563 0

FASCE 218 709 377 0

Note: Min denotes the minimum number of the model evaluations among the 20 independent trials, Max denotes the maximum number of the model evaluations among the 20 independent

trials, Mean denotes the mean number of model evaluations of the 20 independent trials, and NF, denotes the number of failure trials among the 20 independent trials.

TABLE 8 The calibration results of the Xinanjiang model.

Parameter UM LM DM B IM K C SM

Value 46.46 61.45 15.32 0.54 0.001 1.03 0.20 44.81

Parameter EX KI KG CI CG CS KE XE

Value 0.5 0.19 0.25 0.5 0.99 0.81 0.74 0.37

FIGURE 6
Streamflow forecasting results of the Zishui watershed during calibration period and validation period with FASCE algorithm.
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predefined parameters and adjusts the shift coefficient based on
the evolving population characteristics during the computation
process. This innovative design overcomes the shortcomings of
SCE-MJ and significantly improves the algorithm’s convergence
performance.

3) Initial tests were conducted on a set of functions to assess
FASCE’s efficacy. The results showed that FASCE could
curtail the failure rate by a minimum of 80%, whereas the
requirement for function evaluations fell between 30% and
60%. Two hydrological models - SVM and Xinanjiang
rainfall-runoff model were employed to estimate the new
algorithm’s performance. No failures were reported, and there
was a reduction of at least 30% in function evaluations
using FASCE.

4) While the FASCE algorithm demonstrates excellent performance
overall, it may yield suboptimal results in specific problem
scenarios. As a result, we plan to focus our future work on
enhancing the algorithm’s search capability for high-
dimensional problems.
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