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Prediction of bond return is a classic problem in financial area, providing an
important basis for portfolio construction and risk management. The sustainable
investment attribute of green bonds has been favored by investors, so that green
bonds have become an important component for major asset allocation.
However, due to the specific investment focus of green bonds, investors’
return expectations are influenced not only by traditional corporate bond
factors, but also by related factors such as climate change and energy
transition. Against the backdrop of increasingly severe climate risks and the
global energy crisis, this paper analyses the volatility characteristics of China’s
green bonds at multiple time scales, and introduces exogenous variables such as
returns of the alternative financial assets, climate risks and returns of energy
markets for prediction. Based on the LSTMmodel, the volatility of green bond yield
at different time scales is separately predicted using optimal exogenous variable
before integration. It is found that the new integrated prediction model can
significantly improve the forecasting performance compared to traditional
single LSTM models and simple decomposition-integrated models. Further,
both climate risks and energy markets variables have a significant improvement
effect on predicting green bond in low-frequency item, while energy markets
variables also have a better predictive effect on trend items. Building on the use of
only LSTM model, it could be further enhanced by integrating more algorithms to
select the best single model for each component, further improve the prediction
accuracy and provide a more effective quantitative tool for investment decision-
making and risk management in related fields.
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1 Introduction

With the development of human economy and society, especially the rapid rise of the
secondary industry after the Industrial Revolution, the global environmental pollution
problem is becoming increasingly serious. The 1992 United Nations Framework Convention
on Climate Change (UNFCCC) proposed a goal of reducing 50% global greenhouse gas
emissions by the mid-21st century. However, there is a huge funding gap for global climate
change mitigation related projects, and relying solely on government subsidies is insufficient
to meet the demand. Social capital is urgently needed to provide stable financial support. In
this context, green financial markets and related green financial innovation products have
emerged in recent years. Green financial products represented by green credit and green
bonds can effectively promote the market funds to support green projects and brown
transformation projects, which can form stable financial support for climate change and the
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environmental improvement related projects. Green bonds, as fixed
income securities that raise necessary funds for promoting low-
carbon economy and adapting to the climate change projects, have
developed rapidly over the world in recent years. According to
Climate Bonds Initiative (CBI), the global issuance scale of green
bonds exceeded 500 billion US dollars in 2021, an increase of over
70% compared to 2020.

The strategic framework for developing China’s green financial
system was initially delineated in “General Plan for Ecological
Civilization System Reform” in 2015. This general plan advocated
for the evolution of green finance instruments, including green
credit, green bonds, green development funds and green
insurance, which can support China’s ecological civilization
construction. In recent years, China’s green bond market has
developed rapidly. In 2021, the issuance scale of China’s green
bonds surged to $68.2 billion, propelling China from its fourth-
place global position in 2020 to the world’s second-largest green
bond market, trailing only the United States. As of the end of 2021,
China’s cumulative green bond issuance reached $199.2 billion, also
second only to the United States figure of $305.5 billion.
Consequently, green bonds have become a critical tool for
investment and financing in China’s sustainable development
area. Simultaneously, the analysis and prediction of green bond
return has emerged as urgent issues in financial asset portfolio
allocation and risk management.

As a sub-class of fixed income securities, green bond return is
affected by factors similar to conventional bonds, such as the
market supply and demand, risk-free interest rate, and returns of
other primary asset classes (Dieci et al., 2018; Albagli et al., 2019;
Bessembinder et al., 2022; Duong et al., 2023). At the same time,
green bonds serve as a critical climate investment and financing
instrument, as well as an essential policy tool for China in
pursuing its “dual carbon” goals (Peng and Xiong, 2022).
Consequently, the green bond return is also influenced by
unique factors compared to traditional credit bonds. As most
of the investment direction of green bonds is closely related to
energy transition and environmental protection, elements related
to low-carbon transition and climate change, such as energy
prices and carbon emissions, can shape market investors’
expectations and thus cause price fluctuations of green bonds
(Tian et al., 2022; Rehman et al., 2023). In particular, the
increasing frequency of extreme climate events and the
intensification of global political conflicts leading to energy
crises have increased the volatility of green bonds in recent
years (Bouri et al., 2023). However, existing research explicitly
predicting green bond return still needs to be expanded, as the
few relevant studies still focus primarily on improving the
forecasting algorithm without selecting suitable influencing
variables based on the intrinsic characteristics of green bonds.

The innovation of this paper is reflected in three aspects.
First, it builds upon traditional bond-influencing factors by
incorporating elements such as major energy market prices,
the uncertainty of climate policy, and climate risk awareness,
to closely examine their predictive effects on green bond return.
Second, considering the varying impact durations of different
external factors on green bonds, the CREEMDAN
decomposition is employed to analyze the characteristics
across multiple time scales. Then, by selecting different

external factors at each time scale, the prediction model is
optimized, reflecting the diverse influences of these factors as
time progresses. Thirdly, an integrated method for forecasting is
put forward, prioritizing external factors, which demonstrates
higher predictive accuracy both in-sample and out-of-sample
compared to conventional models and those without factor
optimization.

The structure of this paper is as follows. Section 2 provides a
literature review; Section 3 introduces the data and methodology;
Section 4 compares the prediction results; and the Section 5 presents
the conclusions.

2 Literature review

The study of bond return prediction has gone through two
phases, from theoretical constructs to empirical analysis.
Pioneering work by Fama and French in 1993 identified five
integral factors influencing bond return: overarching market
elements, firm size, book-to-market ratio, time to maturity,
and default risk (Fama and French, 1993). This viewpoint was
later confirmed by the research of Gebhardt and Hvidkjaer, 2005,
concluded that the bond return has the highest correlation with
the probability of default after controlling for bond duration,
credit rating, and maturity. Scholars then progressively turned
their attention to the impact of the characteristics of the bonds
themselves and macroeconomic trends on their returns. Pham
and Huynh (2020) found that investor attention can influence
green bond yields and volatility, and however, the relationship is
time-varying and stronger in the short run. Baker et al. (2003)
found that macroeconomic variables—such as inflation rates,
actual short-term interest rates, and the term structure—could
be used to predict corporate bond returns. Cochrane and
Piazzesi, 2005 found that the inclusion of macro-forecasting
factors does not significantly improve the predictive capability
of bond returns. Bali et al. (2021) employed economic
uncertainty as a state variable, delving into the pricing of
bond risk and found that economic uncertainty and policy
uncertainty strongly correlated with corporate bond returns.
In addition to the macroeconomic indicators mentioned
above, geopolitical risks and economic policy uncertainty are
emerging as significant factors affecting green claims in these
turbulent times (Broadstock and Cheng, 2019), Kang et al.
(2014), Marques et al. (2018) and Reboredo and Ugolini
(2020) reported that net price volatility in the European and
United States green bond markets is primarily due to uncertainty
in the equity and oil markets and that uncertainty contributes to a
large extent to net price volatility shocks in the green bond
markets in Europe and the United States. Tian et al.’s study in
2022 also suggests that, in addition to equity market volatility and
oil volatility, climate policy uncertainty and geopolitical risks
have all contributed to the heterogeneous behavior of green bond
markets in the United States, Europe and China. However, no
conclusive evidence exists that the green bond market is robust
regarding the bond issuance.

Although research specifically focusing on the prediction of
green bond yield remains relatively scarce, a series of studies have
already identified correlations between green bond and other

Frontiers in Environmental Science frontiersin.org02

Nie et al. 10.3389/fenvs.2023.1336867

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1336867


market, and related external factors (Abakah et al., 2023; Ejaz et al.,
2022; Su et al., 2023; Naeem et al., 2021). Wei et al. (2023) observed
positive effects of both supply-driven and demand-driven oil
shocks on the green bond market. Rehman et al. (2023) found
that oil shocks are reliable predictors for green bond indices, but
the predictive power of oil shocks declined during the crisis period.
Kocaarslan and Soytas (2023) found that compared to the impact
of the conventional bond market, the stock and energy commodity
markets have a more significant impact on the United States
municipal green bonds. Tian et al. (2022) showed that the
green bond markets in the United States, Europe and China
exhibit heterogeneity facing uncertainties including climate
policy uncertainty. Bouri et al. (2023) examined the directional
predictability from two climate risk measures, transition risk and
physical risk, to the return of global green bonds, and found that
the predictability results are more pronounced for transition risk
than physical risk. On account of that, some researches also studied
how uncertainty indexes affect green bond yields (e.g., Le et al.,
2021; Piñeiro-Chousa et al., 2021; Hussain et al., 2022; Pham and
Nguyen, 2022). For example, Pham and Nguyen (2022) used a
time-varying and state-dependent approach to analyse the
relationship between stock market uncertainty, oil price
uncertainty and green bonds, finding that the degree of
connectedness between uncertainties and green bonds increases
during the high uncertainty periods.

On the basis of existing research, this paper takes full
account of the characteristics of green bond when forecasting
the return. In addition to the return of Treasury bond and stock
market, which are commonly used in traditional bond
forecasting, this paper also takes the factors of crude oil
market and natural gas market, as well as climate risk
concerns and climate policy uncertainty as prediction
variables. At the same time, in terms of prediction
algorithms, this paper not only adopts the decomposition
integrated prediction methodology that has been proven to
have good prediction performance, but also adds the step of
selecting the best component prediction model based on
traditional method, further improving the prediction
performance of the methodology.

3 Data and methodology

3.1 Data

The ChinaBond Green Bond Full Price Index (CGBI) is
chosen to represent Chinese green bond market, utilizing
daily trading data from 3 January 2017, to 30 June 2023,
comprising 1,625 daily data samples. The data are sourced
from the ChinaBond database. Figure 1 illustrates the trend
of China’s Green Bond Index and its logarithmic returns within
the sample period, revealing a general upward trajectory since
2017, punctuated by brief declines in November 2017 June 2020,
and November 2022. On 17 November 2017, the introduction of
new asset management regulations led to significant market
volatility due to divergent interpretations of the policy,
impacting the bond market and causing a dip in the green
bond price index. In June 2020, expectations of new
monetary policy tools replacing traditional ones and an
intensified fiscal policy led to an adjustment phase in the
bond market, with the green bond price index trending
downwards alongside the general market. On 14 November
2022, the Central Clearing Company issued the “Corporate
Standard of Green Bond Environmental Benefit Information
Disclosure Indicator System,” which standardized the disclosure
of information related to green bonds. However, it also raised
certain questions about the existing “greenwashing” or “light
green” practices in the market, leading to a downturn in the
overall trend of the green bond index. Historical fluctuations in
the logarithmic returns indicate a gradual narrowing of
volatility, with certain clustering phenomena evident.

China’s green bond return has strong autocorrelation.
Therefore, it is essential to include its own historical data for
prediction. In addition, it is evident that the return may also
display significant periodicity and trend, while the disturbance
term often experiences substantial jumps. These characteristics
may be caused by exogenous policy changes or other influencing
factors. Therefore, based on the analysis of the influencing
factors of general bond and green bond returns, as well as
considering the frequency and availability of data, external

FIGURE 1
Trend of China’s green bond market.

Frontiers in Environmental Science frontiersin.org03

Nie et al. 10.3389/fenvs.2023.1336867

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1336867


variables for predicting green bond return are selected as shown
in Table 1. Among them, the 10-year Treasury bond return
represented by Treasury to some extent reflects the overall risk-
free interest rate level of the money market. Stock represents the
return of important alternative assets OIL and GAS represent the
price fluctuations of traditional energy sources. Given that a
large amount of green bond raised funds are invested in the new
energy sector, the price fluctuations of traditional energy sources
can transmit to the new energy sector, thereby influencing the
return of green bond.

CCPU and Climate are two variables that indirectly reflect
climate risk. CCPU represents the uncertainty of China’s climate
policy, derived from daily news text data obtained from the
WiseNews database, including “People’s Daily,” “Guangming
Daily,” “Economic Daily,” and “Xinhua Daily Telegraph.” The
term sets for “climate,” “policy,” “uncertainty” are created and
the frequency time series of climate policy uncertainty news are
calculated by dividing the number of climate policy news articles by
the total number of published articles, yielding the climate policy
uncertainty index (Ma et al., 2023). Climate represents investors’
attention to climate risks, measured using the Baidu search index
with keywords including “climate change,” “climate risk” and so on
(Guo et al., 2023).

Based on the availability range of the exogenous variables
listed in Table 1 (some data are only processed up to the end of
2022), data from 3 January 2017, to 31 November 2022, was
selected as the training set for modeling, while the remaining
data was utilized for out-of-sample testing. The trends of each
indicator, as shown in Figure 2, reveal that compared to the
logarithmic returns of green bonds, the volatility of crude oil
prices (OIL) and climate risk attention (Climate) is more
pronounced and significantly greater than the other
exogenous indicators.

CCPU and Climate are two variables that indirectly reflect
climate risk. CCPU represents the uncertainty of China’s climate
policy, derived from daily news text data obtained from the
WiseNews database, including “People’s Daily,” “Guangming
Daily,” “Economic Daily,” and “Xinhua Daily Telegraph.” The
term sets for “climate,” “policy,” “uncertainty” are created and
the frequency time series of climate policy uncertainty news are
calculated by dividing the number of climate policy news articles by
the total number of published articles, yielding the climate policy
uncertainty index (Ma et al., 2023). Climate represents investors’
attention to climate risks, measured using the Baidu search index
with keywords including “climate change,” “climate risk” and so on
(Guo et al., 2023).

Descriptive statistics results shown in Table 2 indicate that
within the sample period, the average daily return of green bonds
is positive at 0.0159%, second only to the daily return rate of natural
gas prices at 0.0709%, and higher than the average daily returns of
other asset prices such as the 10-year Treasury, Shanghai Stock
Exchange Index, and crude oil prices. From the perspective of
volatility, the Climate index exhibits the most significant
fluctuations, followed by the return of oil. Among all variables,

TABLE 2 Descriptive statistics.

Variables Mean Median Maximum Minimum Standard deviation Observations

Green_bond 0.000159 0.000181 0.005898 −0.004404 0.000509 1,451

Treasury −0.000056 0.000000 0.043400 −0.062300 0.007079 1,451

Stock 0.000060 0.000400 0.057100 −0.077200 0.010735 1,451

Oil −0.002107 0.002300 0.376600 −3.059700 0.092476 1,451

Gas 0.000709 0.000300 0.218900 −0.165300 0.036274 1,451

CCPU 0.016585 0.013575 0.118421 0.000000 0.012461 1,451

Climate −0.015834 −0.017077 1.040816 −0.775064 0.116518 1,451

TABLE 1 Selection of exogenous variables.

Variable Variable declaration Data sourses

Treasury China 10-year Treasury bond return Investing.com

Stock China Shanghai Composite Index return Investing.com

Oil International crude oil future return Investing.com

Gas International natural gas future return Investing.com

CCPU China climate policy uncertainty index Self-compiled

Climate China Climate Risk Concern Index Self-compiled

FIGURE 2
Trend of variables.
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the standard deviation of green bond returns is the smallest at
0.000509, which is not only lower than oil, natural gas, and the
stock market but also significantly lower than the volatility of the
10-year Treasury. This is also why many recent studies consider
green bonds as an important new type of hedge asset (Guo and
Zhou, 2021).

The results of the correlation analysis are presented in
Table 3. It can be observed that the correlation between green
bond and 10-year Treasury bond is the highest, and significant at
the 1% level, with a correlation coefficient of −0.457. When the
risk-free interest rate rises, the discount rate also increases,
leading to a decrease in bond prices. Additionally, the
correlation coefficient between green bonds and the stock
market is also significant at the 5% level, at −0.057, reflecting
the substitution effect as discussed earlier. The returns of crude
oil, natural gas prices, and climate policy uncertainty are not
significantly correlated with the green bond return. Climate risk
concern exhibits a positive correlation with the green bond
return at the 10% significance level, with a correlation
coefficient of 0.043. This implies that an increase in market
concern regarding climate risk will to some extent enhance
investors’ sustainable investment ideals and strengthen the
expected returns of climate investment and financing
products in some degree.

Before time series modeling, all data are guaranteed to be stable.
Therefore, the ADF test is performed on all the above variables. The
results are shown in Table 4, and all the time series are stable.

3.2 Methodology

3.2.1 Basic LSTM model

LSTM (Long-Short-Term Memory) is a special recurrent neural
network model, first proposed by Hochreiter and Schmidhuber
(1997), which can overcome the gradient problems and gradient
explosion problems in simple RNN, but also has high operational
efficiency. It is widely used in the prediction research of financial
market (Huang et al., 2021). As a special RNN, the mathematical
principle of LSTM is similar. During the forward traversal of the
LSTM, a memory block is calculated as follows:

The Yin, Yout and Yφ are used to represent the activation
functions of the input, output, and forgetting gates, respectively:

Yinj t( ) � finj netinj t( )( ), netinj t( ) � ∑
m
WinjmY

m t−1( ) (1)
Youtj t( ) � foutj netoutj t( ) ,) t( ) ,) netoutj netoutj∑m

WoutjmY
m t−1( )

(2)
Yφj t( ) � fφj netφj t( ) ,) t( ) ,) netφj netφj∑m

WφjmY
m t−1( ) (3)

TABLE 3 Correlation analysis.

CCPU Climate GAS Green_bond OIL Stock Treasury

CCPU 1.000

Climate −0.039 1.000

(−0.137)

Gas 0.018 −0.014 1.000

(0.494) (0.595)

Green_bond 0.015 0.043 −0.016 1.000

(0.562) (0.099) (0.553)

Oil 0.014 −0.011 −0.013 −0.014 1.000

(0.600) (0.681) (0.612) (0.602)

Stock 0.000 −0.030 0.043 −0.057 0.046 1.000

(0.986) (0.254) (0.099) (0.029) (0.077)

Treasury −0.063 −0.049 0.013 −0.457 −0.017 0.204 1.000

(0.016) (0.064) (0.616) (0.000) (0.517) (0.000)

Note: The table shows the correlation coefficient between the pairwise variables, where the values in parentheses are the p-Value for the significance test.

TABLE 4 ADF stationarity test.

Green_bond Treasury Stock OIL GAS CCPU Climate

T-statistic −11.8145 −32.4210 −37.9720 −28.1449 −40.3261 −13.2445 −16.8660

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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where j represents the serial number; Wjm represents the weight of
the connection between cells. For input gate, output gate and
forgetting gate, f is a Logistic function with [0,1] value domain.
It is calculated as follows:

f x( ) � 1
1 + e−x

(4)

Input Xc for the memory cells:

Xcvj
t( ) � ∑

m
Wcvjm

Ym t−1( ) (5)

where v is the serial number of the memory cell, for example, cvj
represents the j th memory unit in the v th storage block. Normalize g
to the range of [-2,2]:

g x( ) � 4
1 + e−x

−2 (6)

Memory cell state Sc update equation:

Scvj 0( )� 0 (7)

Scvj t( ) � Yφj t( )Scvj t−1( ) + Yinj t( )g Xcvj
t( )( ), t> 0 (8)

Output Yc of the memory unit:

Ycvj t( ) � Youtj t( )h Scvj t( )( ) (9)

where the Logistic function h is [-1,1]:

h x( ) � 2
1 + e−x

−1 (10)

The k th output unit is:

Xk t( ) � ∑
m

WkmY
m t−1( ) (11)

Yk t( ) � fk Xk t( )( ) (12)
The calculation formula for the Logistic function fk is as

follows:

fk x( ) � 1
1 + e−x

(13)

In order to test the predictive performance of different influencing
factors, in terms of model setting, for the logarithmic return of green
bonds. Initially, a prediction model is trained without the inclusion of
exogenous variables (Model 1). Subsequently, various types of
exogenous variables are individually integrated, which affect the
green bond return to examine whether the in-sample fitting and
out-of-sample prediction performance are improved. The model
input variables are as follows:

Model 1: Return of green bond itself in the first 5 days (no
exogenous variables);

Model 2: Return of green bond itself, Treasury, Stock in the first
5 days;

Model 3: Return of green bonds themselves, OIL, GAS in the first
5 days;

Model 4: Return of green bond itself, CCPU, Climate in the first
5 days;

Model 5: Return of green bond itself, Treasury, Stock, OIL, GAS,
CCPU, Climate in the first 5 day.

3.2.2 Optimal decomposition integrated model

In addition to directly modeling the original green bond return
for prediction, the components obtained from the CEEMDAN
decomposition reconstruction are utilized, namely, the trend
term, low-frequency component, and high-frequency component
(Cao et al., 2019).

For the sequence decomposition method, Empirical Mode
Decomposition (EMD) method can decompose time series data
into intrinsic mode functions (IMFs). Further, the ensemble
EMD (EEMD) method enhances the decomposition accuracy by
introducing white noise, and the complete EEMD (CEEMD)
further reduces the computational complexity and alleviates
mode mixing effects through the addition of specific Gaussian
white noise. The CEEMDAN algorithm then enhances
convergence and provides precise and efficient data
decomposition for various applications in signal processing
and finance. It overcomes the limitations of the EMD
method, enabling better capture of data’s fluctuation
characteristics and revelation of the original data’s dynamic
behavior at different time scales (Cao et al., 2019).

For the simple decomposition integrated model, using the
optimal input variable combination from the modeling process of
the original sequence. Prediction models are constructed for each of
the three components, conducting in-sample fitting and out-of-
sample prediction. As the decomposition reconstruction based on
CEEMDAN satisfies additivity, it is possible to combine the fit or
prediction values of the three components.

However, the simple decomposition integrated prediction does
not select the optimal model based on its features for each
component’s prediction. Therefore, this paper proposed an
optimal decomposition integrated methodology, which adds the
process of model selection to the prediction of each component. For

FIGURE 3
CEEMDAN decomposition of China’s green bond returns.
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each component, different combinations of input variables are
attempted to be added, respectively, and the optimal input
variables and model form are determined based on their
prediction effects in and out of the sample. This approach can
not only improve the prediction performance, but also fully explore
the different fluctuation characteristics and key influencing factors
of components at different time scales.

4 Empirical results

4.1 Multi-time scale characteristics of green
bond return

The CEEMDAN decomposition results of the logarithmic return
of the green bond price index are shown in Figure 3. It can be found
that the green bond return fluctuates violently and can be

decomposed into eight IMFs and a residual sequence. The
residual sequence shows that the logarithmic return of green
bond had a downward trend. IMF5 to IMF8 reflects the large
cycle of green bond return, while IMF1 to IMF4 reflect short-
term or high-frequency fluctuations.

In order to clearly examine the characteristics at different time
scales, the decomposed IMF is further reconstructed based on the
frequency similarity. The high-frequency component is obtained by
summing IMF1 to IMF4, and the low-frequency component is
obtained by merging IMF5 to IMF8. The residual term is the
trend term, as shown in Figure 4. It can be found that the trend
item shows a downward trend, but remains in a relatively stable state
after entering 2023. The low-frequency component has certain
periodic fluctuation characteristics, while the high-frequency
component has the largest correlation coefficient with the
original series, showing more frequent fluctuations and
significant volatility aggregation.

FIGURE 4
Reconstruction of China’s green bond returns.

TABLE 5 Comparison of model prediction results.

Model performance In-sample Out-of-sample

RMSE MAE RMSE MAE

Single LSTM model Model 1 0.000462 0.000288 0.000354 0.000234

Model 2 0.000435 0.000267 0.000340 0.000214

Model 2 0.000458 0.000277 0.000352 0.000221

Model 4 0.000452 0.000275 0.000347 0.000220

Model 5 0.000465 0.000285 0.000370 0.000232

Simple decomposition integrated model Model 2 0.000427 0.000272 0.000336 0.000223

Model 5 0.000422 0.000271 0.000342 0.000227

Optimal decomposition integrated model — 0.000416 0.000270 0.000335 0.000221

The bold values represent the best model performance among several models.
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4.2 Comparison of prediction models

In order to discuss the prediction effects of different models, the
RMSE and MAE of each model are compared. RMSE is the root
mean square error of the model, andMAE is the mean absolute error
of the model. The calculation formulas are as shown in Formula 14
and Formula 15 respectively. The smaller the RMSE and MAE, the
better model performs.

RMSE �
�������������
1
n
∑n

i�1 ŷi − yi( )2√
(14)

MAE � 1
n
∑n

i�1 ŷi − yi

∣∣∣∣ ∣∣∣∣ (15)

The in-sample and out-of-sample results of the single models,
the simple decomposition ensemble models and our optimal
decomposition integrated model are all shown in Table 5. It can
be found that our new optimal decomposition integrated model has
the best comprehensive in-sample and out-of-sample prediction
performance.

Specifically, the in-sample and out-of-sample prediction effects
of the five single LSTM models show that Model 2 has the best
overall performance, that is, the Treasury bond return and the stock
market return, that have an alternative effect on green bond, have a
greater role in improving the prediction effect (compared with
model 1). Followed by Model 3 and Model 4, that is, adding

TABLE 6 Model selection results at different time scales.

Components Preferred model Exogenous
variables

Trend term Model 3 crude oil market return

natural gas market return

Low frequency component Model 5 stock market return

Treasury yield

crude oil market return

natural gas market return

climate policy uncertainty

climate risk concerns

High frequency component Model 2 stock market return

Treasury yield

FIGURE 5
In-sample and out-sample prediction. (A) Trend term, (B) Low frequency component, (C) high frequency component, (D) Original series.

TABLE 7 Model performance for low-frequency component.

Model performance Model 5 Model 5 + carbon

In-sample RMSE 0.000019 0.000008

MAE 0.000018 0.000006

Out-of-sample RMSE 0.000020 0.000022

MAE 0.000019 0.000020
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energy market returns and climate risks factors, respectively, will
also improve the prediction effect, but when all factors are used as
input variables (Model 5), the prediction effect has declined due to
the over-fitting phenomenon.

For the simple decomposition integrated model, input variables
setting of Model 2 and Model 5 are still selected for prediction of
each component at different time scales. It can be found that the out-
of-sample prediction effect has not improved. It is because that
despite considering the green bond return at different time scales,
but the same input variables are still used for each component.

The optimal decomposition integrated model performs model
optimization for each component at different time scales. The
selection of the optimal input for each component is shown in
Table 6. It can be found that for the trend term, the crude oil return
and natural gas return are included. The energy markets will play a
key role in the long-term trend of green bond return. For the low-
frequency component, it can be seen that model 5, which
incorporates all exogenous variables is optimal. That is, for low-
frequency cyclical fluctuations, other asset returns, energy markets,
and climate risks will all have a significant impact. For high-
frequency components, similar to the results of the single models,
Model 2, which incorporates alternative assets has the best
prediction effect. This is also because the high-frequency
component has the highest correlation with the original series.

The prediction effects of the three components and the original
series based on our new optimal decomposition ensemble model are
shown in Figure 5. The in-sample and out-of-sample performance of
the model is relatively good, better than other models. Because it can
not only capture the impact of changes in low-frequency and trend
impact, but also fit the fluctuations of high-frequency items to the
greatest extent, it can better fit changes in green bond return, except
for extreme outliers. Furthermore, the optimal decomposition
integrated model, which considers the influencing factors of
different components, performs differential modeling on the
decomposed components, making the model perform better and
be more robust.

4.3 Further discussion on carbon market

Carbon market is increasingly playing a vital role globally as
economies grapple with the transition to a low-carbon future. The
pricing of green bonds, theoretically, should also be influenced by
the fluctuations in carbon market prices. To empirically test this
relationship, the returns of carbon price in both China’s national
carbon emissions trading market and EU carbon futures market are
used. Given that China’s national carbon market was established on

16 July 2021, we used the value of zero to represent the return before
its inception. The data is sourced from the Wind database.

Incorporating carbonmarkets into our model, it can be observed
an enhancement in the performance of low-frequency predictions.
Table 7 shows that the in-sample RMSE decreased from 0.000019 to
0.000008, and the in-sample MAE reduced from 0.000018 to
0.000006. While there was no significant change in the out-of-
sample model performance. Consequently, returns of carbon price
should be integrated as a variable when constructing the optimal
decomposition integrated model. Table 8 shows that the in-sample
forecast effectiveness improved, with the RMSE decreasing from
0.000427 to 0.000416 and the MAE from 0.000271 to 0.000270. The
lack of improvement out-of-sample could potentially be attributed
to the relatively short existence of the carbon market in China.

5 Conclusion

With the rapid development of green bond over the world, the
scale of investment in green bonds is also increasing. It has
become a new and important asset type for the asset allocation.
Further, it is considered an emerging safe-haven asset that can
maintain low volatility under extreme shocks. Therefore, the
accurate prediction of green bond return has become an
important research issue. However, although bond return
prediction is a classic problem, and many scholars have
analyzed the factors affecting green bond return, few scholars
have built prediction models specifically for green bond return.
Especially in the selection of input variables of the prediction
model, only the factors that affect traditional bond return are
basically chosen, the sustainable investment attribute of green
bond is ignored. Therefore, based on existing research, we
innovatively select alternative asset variables, energy market
variables as well as climate risk variables for green bond
return prediction. By employing a new optimal decomposition
integrated model, it can also examine the prediction effects of
various variables on the overall green bond return as well as
components at different time scales. The results show that for the
overall and high-frequency component of green bonds, the
returns of other financial assets have high predictive ability.
For the trend item, energy market variables have a high
predictive ability. For low-frequency component, climate risk
factors will have the effect of improving prediction accuracy. At
the same time, the new optimal decomposition integrated model
based on input variables selection constructed in this paper can
achieve better prediction results than the single LSTM model and
the simple decomposition integrated model.

TABLE 8 Model performance for overall green bond price.

Model performance Optimal decomposition integrated model Optimal decomposition integrated model + carbon

In-sample RMSE 0.000427 0.000416

MAE 0.000271 0.000270

Out-of-sample RMSE 0.000333 0.000335

MAE 0.000220 0.000221
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The research is of great significance for understanding the
characteristics of green bond return and their influencing factors
at different time scales. At the same time, the optimal decomposition
integrated prediction model proposed in this paper can also further
use other variable selection methods to expand the methodology. In
our further discussion about carbonmarkets, it can be found that the
inclusion of carbon returns can substantially enhance in-sample
forecasting performance. Yet, this enhancement does not translate
to an improved out-of-sample forecast, which may be due to the
relatively recent establishment of carbon market in China. Building
on the use of only LSTM model, it could be further enhanced by
integrating more algorithms to select the best single model for each
component, further improve the prediction accuracy and provide a
more effective quantitative tool for investment decision-making and
risk management in related fields. This also represents a direction for
future research.
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