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Lake Surface Water Temperature (LSWT) is essential for understanding and
regulating various processes in lake ecosystems. Remote sensing for large-
scale aquatic monitoring offers valuable insights, but its limitations call for a
dynamic LSWT monitoring model. This study developed multiple machine
learning models for LSWT retrieval of four representative freshwater lakes in
the Yangtze River Basin using Himawari-8 (H8) remote sensing imagery and
in-situ data. Based on the in situ monitoring dataset in Lake Chaohu, the
dynamic LSWT retrieval models were effectively configured and validated to
perform H8-based remote sensing inversion. The test results showed that six
models provided satisfactory LSWT retrievals, with the Back Propagation (BP)
neural networkmodel achieving the highest accuracy with an R-squared (R2) value
of 0.907, a Root Mean Square Error (RMSE) of 2.52°C, and a Mean Absolute Error
(MAE) of 1.68°C. Furthermore, this model exhibited universality, performing well in
other lakes within the Yangtze River Basin, including Taihu, Datonghu and
Dongtinghu. The ability to derive robust LSWT estimates confirms the feasibility
of real-time LSWT retrieval using synchronous satellites, offering a more efficient
and accurate approach for LSWT monitoring in the Yangtze River Basin. Thus, this
proposed model would serve as a valuable tool to support the implementation of
more informed policies for aquatic environmental conservation and sustainable
water resource management, addressing challenges such as climate change,
water pollution, and ecosystem restoration.
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1 Introduction

Lake Surface Water Temperature (LSWT) refers to the temperature of the water
surface within 0–1 m of a lake, and it is one of the key parameters for characterizing lake
water temperature. LSWT plays a pivotal role in regulating physical, chemical, and
biological processes, and is of paramount importance for the overall health of lake
ecosystems (Sharma et al., 2015; Shi et al., 2021). The variation in LSWT is influenced by
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various factors, primarily by meteorological factors such as air
temperature. In addition to significantly positive correlation with
air temperature, LSWT was also found to be impacted by relative
humidity, wind speed, and other factors, with higher humidity
and stronger winds typically resulting in higher water
temperatures (Sun et al., 2022). Furthermore, changes in
LSWT have implications for various water quality parameters
in lakes. In recent years, global warming has led to rising water
temperatures, exacerbating lake eutrophication. As algal
densities increase, intense photosynthesis processes deplete a
significant amount of dissolved oxygen in the water, lowering
carbon dioxide levels and increasing water pH. This, in turn,
enhances the release of oxygen, elevating dissolved oxygen levels
in the water (Yang et al., 2018).

In the context of global climate change, the elevated LSWT of
lakes has become an imperative issue for sustainable development.
According to satellite observations, warm season water temperatures
in lakes have increased at a rate of 0.24°C ± 0.01°C per decade
between 1995 and 2021 (Blunden, 2022). This trend is not only a
potential threat to lake ecosystems, but also has implications for
sustainability in several areas. First, lake ecosystems are directly
impacted by rising water temperatures, and the elevated LSWT may
lead to loss of habitat for aquatic organisms, potentially triggering
ecological disasters (Till et al., 2019). Second, lakes are an important
source of drinking water supply, especially in China, occupying
40.6% of the drinking water supply (Zhang et al., 2022). Elevated
water temperatures in lakes may affect water quality, increase water
treatment costs, and pose a threat to drinking water safety.
Therefore, safeguarding the water quality and ecological health of
lakes is crucial. Thus, an in-depth study of LSWT trends and future
predictions are essential for the sustainable development of lake
ecosystems.

The traditional methods for monitoring water temperature
primarily involve in-situ observations, which can provide the
most authentic reflection of the lake’s condition. However, this
method can only obtain data at specific points within the lake and
requires significant human and material resources for installing
temperature sensors at various locations. With continuous
advancements in satellite thermal infrared sensors in terms of
spatial resolution and radiometric precision, thermal infrared
remote sensing technology has been increasingly employed to
obtain spatially continuous water temperature data, and it has
been used for the retrieval of water temperatures in large bodies
of water such as oceans and lakes. Compared to traditional
monitoring methods, thermal infrared remote sensing technology
offers significant advantages in acquiring water temperature data.
Firstly, it is a non-contact method, which avoids interference with
the distribution of water temperature. Secondly, thermal infrared
remote sensing provides high spatial and temporal resolution data,
making it suitable for widespread aquatic environment monitoring,
including large lakes, rivers, and oceans. Thirdly, various remote
sensing platforms such as satellites and unmanned aerial vehicles
can offer extensive coverage, including remote areas (Torgersen
et al., 2001).

In previous studies, polar-orbiting remote sensing satellites were
commonly used, but they had lower revisit frequencies at the same
location. For example, MODIS had a revisit period of 1 day (Liu
et al., 2015), while Landsat-8 had a revisit period of up to 16 days

(Shi et al., 2022). Note that it generally required several years of data
accumulation to establish effective retrieval models. In contrast, the
synchronous satellite Sunflower-8 (Himawari-8, H8), with a
temporal resolution of 10 min/time and a spatial resolution of
2 km, is one of the most advanced meteorological satellites to the
authors’ knowledge. Kurihara et al. (2016) developed a quasi-
physical algorithm to calculate the sea surface temperature (SST)
by using the H8 data, and the root-mean-square (RMS) difference
compared with the measured data was about 0.59 K, and the
deviation was about 0.16 K. Yamamoto and Ishikawa (2018)
developed a nonlinear three-band algorithm (NTB) to estimate
land surface temperature (LST) using H8 data, and the algorithm
was evaluated using in-situ data from the Tibetan Plateau,
confirming its effectiveness. Therefore, the estimation of LSWT
using H8 data would be potential alternative for near real-time
retrieval.

At present, the mainstream thermal infrared remote sensing
techniques for water temperature retrieval include single-
channel universal algorithms, radiative transfer modeling,
single-window algorithms, and machine learning methods, etc.
Using HJ-1B/IRS thermal infrared data, Gong et al. (2016)
compared the accuracy of single-channel universal algorithms,
radiative transfer modeling, and single-window algorithms in
retrieving water temperature in the Lake Taihu. Their results
showed that the single-channel universal algorithm tended to
overestimate water temperature, while radiative transfer
modeling and single-window algorithms would make
underestimations. Based on Landsat series satellite data, Shi
et al. (2021) developed atmospheric radiative transfer models
to retrieve water surface temperatures at two characteristic
stations, Ku Shoumiao and Ku Wei Cuntan in the Three
Gorges Reservoir. They verified that using rectangular boxes
resulted in lower errors compared to single-pixel methods.

As well known, traditional approaches require extensive prior
knowledge and complex physical models when dealing with
complex water temperature retrieval problems. In contrast,
machine learning methods can automatically learn and extract
features from data, reducing the reliance on complex physical
models. Furthermore, machine learning methods can handle
large-scale data, improving the efficiency and accuracy of
retrieval. Jiang (2018) utilized MODIS remote sensing imagery
data and buoy measurements to establish a deep learning
retrieval model for sea surface temperature and achieved high
accuracy, with the majority of results having retrieval errors of
less than 1°C. Yang et al. (2018) constructed a hybrid water
temperature prediction model using Support Vector Regression
(SVR), Principal Component Analysis (PCA), and Back
Propagation Artificial Neural Networks (BPANN), and found
that LSWT is the fundamental factor affecting the occurrence of
cyanobacteria.

Taking the potential of machine learning techniques and
H8 satellite imagery to achieve near real time LSWT retrieval,
thus, this study aims at developing robust learning models for
high-frequency LSWT inversion to realize the wide-range
continuous dynamic monitoring of LSWT, to improve the
efficiency of water environment monitoring, to reduce the
waste of resources, and to promote environmental protection
and sustainable water resources management.
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2 Materials and methods

2.1 Data

2.1.1 H8 data
Launched and placed in orbit on 7 October 2014, the

H8 satellite’s primary mission is to monitor and provide
meteorological information in the Pacific region, including
weather, climate and natural disaster monitoring. The H8 satellite
is in a geosynchronous orbit, usually at an altitude of approximately
35,786 km above the equator. This position allows the satellite to
continuously monitor the same area at a fixed angle synchronized
with the speed of the Earth’s rotation, primarily covering the western
Pacific region, including East Asia, Oceania and Australia.
Himawari-8 takes pictures at a rate of every 10 min and updates
regional pictures at a rate of every 2.5 min, indicating that the
satellite provides real-time meteorological data at a high spatial and
temporal resolution. Hence, the H8 would help to monitor rapid
changes in the weather phenomena (Han et al., 2023). The channels
of H8 are shown in Supplementary Table S1. In this paper, channels
from 7 to 16 are used mainly for water temperature retrieval (Shi
et al., 2023b).

Atmospheric corrections was employed for the H8 satellite using
the Py6s model (Niu et al., 2019). Based on the findings of Chen et al.
(2022), atmospheric correction is applied to the Remote Sensing
Reflectance (Rrs) data for Solar Zenith Angles (SOZ) less than 60°,
assuming them as valid data. According to Ge et al. (2018), all the
image elements within the window are determined to be cloud image
elements and considered as invalid data when Rrst’ ≥ 0.25 (Eq. 1),
and otherwise, they are valid data.

R′
rsi �

Rrsi

cos α × 1 − 1.3 × sin 0.05 ×α( )( )( ) (1)

In which, Rrsi
′ is the corrected reflectance of channel i, Rrsi is the

Rrs of channel i, and α is the SOZ.

2.1.2 Study area and station monitoring
The measured LSWT data for Lakes Chaohu, Taihu,

Dongtinghu, and Datonghu were obtained from 2019 to 2021.
The water quality station information for the acquired data is
shown in Figure 1 and Supplementary Table S2.

Lake Chaohu, located in the central part of Anhui Province,
China, is the fifth largest freshwater lake in China, with a total area of
about 800 square kilometers and a depth of about 15 m at its deepest

FIGURE 1
Geographical distribution of monitoring sections in various lakes: (A) Chaohu; (B) Taihu; (C) Dongtihu; (D) Datonghu.
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point. It is connected to the Yangtze River in its lower reaches and is
an important part of the Yangtze River Basin. The outlet of Lake
Chaohu is in Wuhu City, which is connected to the Yangtze River
through the Qingyi River, which makes Lake Chaohu one of the
most important lakes in the Yangtze River Basin. Due to long-term
human activities and industrial development, the water quality of
this lake was very poor (Shi et al., 2023b; Gao et al., 2023).

Lake Taihu is the third-largest freshwater lake in China, situated
in the southern part of Jiangsu Province, at the heart of the Yangtze
River Delta economic core area. It provides irrigation, domestic
water supply, transportation, and other daily water needs for the
surrounding population. Lake Taihu has an area of 2,427.8 km2, a
water area of 2,338.11 km2, a total shoreline length of 393.2 km, an
average depth of 1.9 m, and a maximum depth of 2.6 m. During the
last decades, the region around Lake Tai has experienced serious
pollution from urban and rural sources, frequent algal blooms, and
is consistently in a state of mild eutrophication (Lyu et al., 2015; Shi
et al., 2023a).

Lake Dongtinghu is the largest inland freshwater lake in Hunan
Province, covering an area of 82.67 km2. It has an average depth of
2.5 m and a triangular shape, with dimensions of 15.75 km from east to
west and 13.7 km from north to south. The lake boasts rich biological
resources, and agriculture and fishing are relatively well-developed.
However, since 2016, the water quality of Lake Dongtinghu has been
classified as Grade V (the lowest class), characterized by mild
eutrophication, serious deterioration of water quality, a fragile
aquatic ecosystem, and a significant impact on the living
environment of surrounding residents (Dai et al., 2022).

Lake Datonghu is the second-largest freshwater lake in China,
covering an area of 2,579.2 km2. It has a total capacity of 22 billion
m³ and receives water from the Yangtze River’s three inflows, the
Songzi, Taiping, and Ouchi rivers in the north, and the Xiangjiang,
Zijiang, Yuanjiang, and Lishui rivers in the south. It serves as an
important flood storage and retention area and freshwater resource
reservoir in the Yangtze River Basin. It has multiple functions,
including biodiversity conservation and ensuring the water
ecological security of the Yangtze River Basin (Zhu et al., 2023;
Zhu et al., 2023).

2.2 Model development and evaluation
indices

2.2.1 Inversion dataset
Firstly, a spatiotemporal fusion of H8-corrected data and

observed LSWT data from various section locations was
conducted. The spatiotemporal monitoring frequency for remote
sensing data is 10 min per observation, while water quality data is
obtained every hour. To achieve spatiotemporal fusion of water
quality and remote sensing data, the same latitude and longitude
coordinates were used to merge the observed LSWT data at
monitoring stations and the information from H8-derived
channels and spectral indices. In terms of time, the image
acquisition time of H8 was synchronized with the time of
observed LSWT data, based on the lower-frequency monitoring
rate of water quality data (1 h per observation), to ensure consistent
temporal scales. To develop an LSWT inversion model suitable for
the entire Yangtze River Basin, the study combined data from seven

effective monitoring stations in Lake Chaohu. Given the abundance
of Lake Chaohu data and its good data quality, Lake Chaohu was
chosen as the training dataset, resulting in a total of 117, 779 valid
data points (N = 117, 779). Stations data from Lakes Taihu,
Dongtinghu, and Datonghu were used for validation, resulting in
a total of 95, 349 valid data points (N = 95, 349). Due to the influence
of H8 satellite spatial resolution and the location of water quality
measurement stations, only these three lakes were selected for model
validation. LSWT serves as the output data for the model, and to
maximize the use of remote sensing data, this study used infrared
bands 7–16 as the model’s input data. In machine learning, the
proper division of a dataset can enhance training efficiency.
Therefore, the Lake Chaohu water quality inversion dataset was
divided, with 80% of the data randomly assigned for model training
and 20% of the data used for model test. The training dataset was
normalized before being used in the model.

2.2.2 Model building
In this study, a Back Propagation (BP) Neural Network model

was configured and developed, and also, the other five machine
learning algorithms were introduced for model comparisons,
including the Multiple Linear Regression (MLR) (Hu et al.,
2023), SVR (Wang et al., 2022), Random Forest (RF) (Liu et al.,
2021), eXtreme Gradient Boosting tree (XGBoost) (Dai et al., 2022),
and LightGBM. The same dataset splitting method was applied for
all the algorithms, and the relative optimal hyperparameters for each
model were selected using grid search (GridSearchCV).

BP neural network is an artificial neural network model used to
solve various machine learning tasks. It consists of multiple neurons
distributed across different layers, typically including input, hidden,
and output layers. Neural networks compute the propagation of
input data through the network using forward propagation. Each
neuron receives inputs from the previous layer, performs a weighted
summation, and then processes the result through an activation
function, passing it to the next layer. Back Propagation is a crucial
step in BP neural networks, as it uses gradient descent to adjust the
weights and biases in the network to minimize the loss function. In
summary, the BP neural network is a powerful machine learning
model capable of learning complex nonlinear relationships.
However, it also requires a substantial amount of training data
and appropriate hyperparameter settings to achieve optimal
performance. The BP neural network developed in this study has
the following structure. The input layer consists of 10 neurons,
corresponding to the 10 feature dimensions of the input data. Both
the first and second hidden layers are composed of a linear layer
(nn.Linear) with 128 and 64 neurons, respectively. Each hidden layer
is followed by a Rectified Linear Unit (ReLU) activation function,
which introduces nonlinearity to enable the network to learn
complex data representations. The output layer contains a single
neuron representing LSWT. For model optimization, Mean
Squared Error Loss (MSELoss) was used as the optimization
parameter (Eq. 2), and the Adaptive Moment Estimation (Adam)
optimizer was employed for gradient descent.

MSELoss � 1
n
∑

n

i�1 yi − ŷi( )2 (2)

Where yi and ŷi represent the observed and estimated LSWT, and n
denotes the number of samples.
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2.2.3 Model evaluation
To comprehensively assess the model performance, this study

employs three evaluation metrics: the coefficient of determination
(R2), root mean square error (RMSE), and mean absolute error
(MAE). R2 measures the degree of agreement between simulated
values and observed values in a multivariable context. RMSE
quantifies the deviation between model predictions and
measurements, providing a direct measure of the dispersion between
predicted and observed values. MAE indirectly assesses the model’s
accuracy, with lower values indicating higher model accuracy. The
formulas for calculating these evaluation metrics, their respective value
ranges, and optimal values are shown in Supplementary Table S3.

In this study, six machine learning techniques were initially
employed to construct retrieval models for Lake Chaohu using
training data. Subsequently, we compared the model performance
criteria on the test dataset to identify the most suitable model. The
selected model was then applied to conduct LSWT retrieval for other
lakes. By assessing the model’s performance through evaluation
metrics, we analyzed and discussed its applicability for near real-
time LSWT retrieval in the Yangtze River Basin.

3 Results

3.1 Statistical analysis of observed LSWT data

The monthly average LSWT values presents an apparent seasonal
change for the period from 2019 to 2021 (Supplementary Figure S1).
Especially in the summer, the LSWT values are relatively higher than
other seasons (Supplementary Figure S2). In addition, it is evident that
the LSWT in the four lakes exhibits distinct temporal variations
(Table 1). Regarding the four seasons in a year, we generated time
series data from observations made during different seasons spanning
the yeas 2019 to 2021, and subsequently, the Mann-Kendall (MK) test
was applied to identify trend change. Based on the test results, the
LSWT shows a significant decreasing trend (p < 0.01) in spring
(March to May) and an increasing trend (p < 0.01) in autumn
(September to November). Besides, LSWT is generally higher in
summer (June to August) than in winter (December to February),
with varying trends between different years, resulting in significant
seasonal differences. The standard deviation of LSWT is higher in
autumn, indicating larger variations, and lower in summer, suggesting
less variability.

In terms of spatial variations, as shown in Table 1, Lake
Datonghu demonstrates a higher 3-year average LSWT value at
19.25°C, whereas Lake Chaohu records a slightly lower value at

18.49 °C. Specially, Lake Datonghu mainly exhibits elevated LSWT
during the summer season (29.07°C ± 2.20°C), while Lake Chaohu
primarily shows lower LSWT values in winter (7.06°C ± 2.42°C)
(Supplementary Figures S1 and S2). However, the overall differences
in LSWT among the four regions are not significant, with seasonal
differences lower than 2°C.

3.2 Pearson correlation analysis

Table 2 presents the Pearson correlation coefficients between
each remotely sensed feature and the LSWT measurements. Note
that ten bands from tbb_07 to tbb_16 were employed, and they
correspond to the brightness temperature data from the 7th to 16th
bands of Himawari-8 satellite data, respectively. From the table, it
can be observed that tbb_07 and tbb_10–16 bands are significantly
positively correlated with LSWT (p < 0.01), while tbb_08 and tbb_
09 bands are significantly negatively correlated with LSWT (p <
0.01). The highest correlation with LSWT is found in tbb_07,
followed by tbb_12 and tbb_13. Tbb_7 band refers to the seventh
channel of the infrared radiance sensor on H8, typically used for
measuring surface temperatures. Infrared radiance sensors can
measure the infrared radiation emitted by objects, which are
directly proportional to the temperature of the objects. Objects
with higher temperatures emit more infrared radiation.
Therefore, using the data from the infrared bands is feasible for
LSWT inversion.

TABLE 1 Mean and standard deviation of LSWT for each geographic region and season.

Region Spring Summer Autumn Winter

Mean (°C) Std (°C) Mean Std Mean Std Mean Std

Lake Chaohu 17.76 4.89 28.31 1.92 21.11 5.33 7.06 2.42

Lake Taihu 18.06 4.42 28.39 2.26 21.31 5.30 8.27 2.26

Lake Datonghu 18.34 4.86 29.07 2.20 20.36 5.62 8.61 3.16

Lake Dongtinghu 16.43 4.64 27.83 2.34 21.89 4.85 9.49 2.71

TABLE 2 Correlation between various remote sensing features and LSWT.

Features Pearson

tbb_07 0.409**

tbb_08 −0.071**

tbb_09 −0.042**

tbb_10 0.040**

tbb_11 0.295**

tbb_12 0.374**

tbb_13 0.293**

tbb_14 0.266**

tbb_15 0.231**

tbb_16 0.227**
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3.3 Model performance

The models’ performance was assessed using the test set within
the Lake Chaohu region. The input variables consisted of the remote
sensing features listed in Table 3, and the output variable was the
ground-truth data for LSWT. Table 3 presents a summary of the

results for the six models, and Figure 2 provides a visual
representation of these results. Note that all the models were run
on the platform of Python 3.7, and model configurations as well as
hyperparameters are given in Supplementary Table S5. Among these
models, the BP model demonstrated the most exceptional
performance in LSWT inversion, boasting an impressive R2 value
of 0.907, along with notably low RMSE and MAE values of 2.522 °C
and 1.682°C, respectively. These results underscore the BP model’s
capability to accurately predict LSWT. The RF model with an R2 of
0.861, RMSE of 3.090°C, MAE of 1.972°C, along with XGBoost
model, which achieved an R2 of 0.840, RMSE of 3.312°C, MAE of
2.289°C, also delivered commendable performance. Meanwhile, the
LightGBM model exhibited moderate accuracy, achieving an R2

score of 0.835, coupled with relatively lower RMSE and MAE
values. In contrast, the MLR and SVR models exhibited the least
favorable predictive performance, as evidenced by their relatively
low R2 scores of only 0.553 and 0.646, and higher RMSE and MAE
values. Notably, the BP model outperformed all other models,
showcasing a remarkable 21% increase in the average R2, a

TABLE 3 Performance metrics for different algorithm models for Lake Chaohu.

Model R2 RMSE (°C) MAE (°C)

MLR 0.553 5.539 4.477

SVR 0.646 4.930 3.472

RF 0.861 3.090 1.972

XGBoost 0.840 3.312 2.289

LightGBM 0.835 3.370 2.331

BP 0.907 2.522 1.682

FIGURE 2
Model performance of six machine learning algorithms for Lake Chaohu.
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substantial 37% reduction in RMSE, and an impressive 42%
reduction in MAE. These results highlight the superior
performance of the BP model in the context of LSWT inversion.

To develop an LSWTmodel suitable for the Yangtze River Basin,
the well-trained BP neural model was further applied to Lakes Taihu,
Datonghu, and Dongtinghu. The model results are shown in
Figure 3, Figure 4 and Figure 5. As for Lake Taihu, the
performance of the BP neural network model for the four sites
combined had an R2 of 0.918, RMSE of 2.369°C, and MAE of

1.586°C. For Lake Datonghu, one site had an R2 of 0.858, RMSE
of 3.079°C, and MAE of 2.096°C, and for Lake Dongtinghu, one site
had an R2 of 0.864, RMSE of 2.937°C, and MAE of 2.189°C. The BP
neural network model performed better in the Lake Taihu compared
to the other two regions. This might be attributed to the consistent
data quality as the Lake Taihu is closer to Chaohu. Lakes Datonghu
and Dongtinghu have a relatively long distance from the Chaohu,
resulting in a slightly lower model performance. However, all the
three regions had R2 values above 0.85, indicating that this model is
applicable to the entire Yangtze River Basin.

To evaluate the practical application of the model, this study
employed H8 satellite image data captured on 16 May 2022. These
images, along with the pre-trained BP neural network model, were
utilized to conduct hourly retrievals of LSWT for the four designated
study areas. Results for 9:00, 11:00, and 13:00 are presented in
Figure 6, Figure 7, Figure 8, Figure 9. The model exhibited good
performance, with LSWT increasing as time progressed in all four
regions, and the temperature range remained between 10°C and
25°C. Furthermore, it can be observed from the figures that the
model predicted relatively higher LSWT values in the coastal areas
compared to the interior of the lakes. This phenomenon may be
attributed to the fact that the lake’s coastal areas are more exposed to
direct solar radiation, especially during daytime. This suggests that
the water surfaces in coastal regions receive more solar energy
absorption and, therefore, have higher temperatures. When
sunlight penetrates the water surface, it is absorbed and scattered,
leading to an increase in LSWT. Additionally, the shallow water
areas near the lake’s coast are more susceptible to solar heat
influence, as the same amount of solar energy is dispersed over a
smaller water body, causing an increase in LSWT. In summary, the
model demonstrated favorable performance in the Yangtze
River Basin and is suitable for LSWT retrieval in lakes across the
region.

FIGURE 3
Comparison of estimated water temperature with observations
in Lake Taihu.

FIGURE 4
Comparison of estimated water temperature with observations
in Lake Datonghu.

FIGURE 5
Comparison of estimated water temperature with observations
in Lake Dongtinghu.
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4 Discussion

4.1 Model limitations

The results of this paper verified the operability of near real-time
inversion of LSWT using synchronous satellites, which might

provide a more efficient means of near real-time monitoring of
LSWT in the Yangtze River Basin, and have a certain practical
application potential for improving the efficiency and accuracy of
water environment monitoring. However, the output results of the
model developed in this paper have certain uncertainties associated
with the actual values, which might be due to multiple reasons. On

FIGURE 6
LSWT retrieval results for Lake Taihu.

FIGURE 7
LSWT retrieval results for Lake Chaohu.

FIGURE 8
LSWT retrieval results for Lake Datonghu.
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the one hand, the water quality parameters were collected from
automatic monitoring stations, with relatively low spatial resolution
of H8 satellite data (2 km). Also, there existed other interfering
factors within the same remote sensing image, so it would be difficult
to achieve the state of complete matching. On the other hand, the
LSWT outputs from the LSWT inversion model were the average
temperature values within the remotely sensed image element,
which cannot accurately correspond to the temperature level
measured at the automatic monitoring sites. The closer to the
lakeshore area, the worse the inversion was under the influence
of land proximity effect. Besides, automated monitoring sites might
be affected by unforeseen events such as changes in the sensor
environment, network failures, or the passage of fish from boats
when making real water quality measurements. Last but not the
least, remote sensing satellites are unable to monitor the vertical
profile of the waters and there are large individual differences in the
optical properties of different water bodies. All these factors would
generate some deviations in water quality inversion and prediction.

The model exhibited a specific geographic applicability range.
When applied to the Qinghai Lake area in Northwest China, as
depicted in Figure 10, the performance (R2 < 0.6) is notably lower
compared to its performance in the Yangtze River Basin. This
discrepancy suggests that there would be variations in the
accuracy when applying the model to regions with substantial
differences in latitude and longitude.

4.2 Advantages and disadvantages of the
research method

Traditional models for estimating LSWT primarily rely on
regression and numerical models (Torgersen et al., 2001). In
contrast, this study introduced a novel LSWT estimation model
based onmachine learning algorithms, and the results demonstrated
its high accuracy, minimal error, and superior performance.
Another noteworthy aspect of this study would be the use of
data from all the bright temperature bands of the H8 satellite,
which allows for the comprehensive utilization of remote sensing
bands, surpassing the capabilities of single-channel pervasive
algorithms, radiative transfer modeling methods, and single-
window algorithms. While the model’s accuracy may be slightly

lower, it presents a valuable trade-off in terms of data utilization.
Furthermore, the choice of the H8 satellite in this study, a
synchronous satellite, provided a higher temporal resolution, with
the ability to capture data at intervals as short as 10 min per survey.
However, it is worth noting that the resulting outcomes were at the
expense of lower spatial resolution, limiting its suitability for LSWT
inversion in the context of larger lakes (Shi et al., 2022).

4.3 Model data comparison

The model developed in this study was initially trained using
retrieval data from Lake Chaohu area and subsequently tested on
Lakes Taihu, Dongtinghu, and Datonghu. Given the potential
presence of some degree of randomness in the model, an
assessment of its generalization ability was conducted. To achieve
this, data from all these lakes—Chaohu, Taihu, Dongtinghu, and

FIGURE 9
LSWT retrieval results for Lake Dongtinghu.

FIGURE 10
Model performance for Lake Qinghaihu.
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Datonghu—were merged and combined. The dataset was then
divided into a new training set (80%) and a testing set (20%).
With consistent model parameters, the BP neural network model
was retrained, and the results, as shown in Figure 11, reveal an R2

value of 0.902, a RMSE of 2.637°C, and a MAE of 1.761°C. These
results indicate that the model trained with Chaohu data for
validation is comparable to the model trained using the merged
data, with the Chaohu-trained model exhibiting slightly better
performance. Thus, this would suggest that the model trained
with Chaohu data possesses a reasonable level of generality
within the Yangtze River basin.

4.4 Model structure comparison

To evaluate the stability of the model structure, this study
further conducted comparative experiments to assess the
influence of different model configurations on the model
performance. Three sets of comparative experiments were carried
out, wherein the number of hidden layers in the BP neural network
model was adjusted to 1 layer, 2 layers, and 3 layers while keeping
other parameters constant. The impact on the model performance
was analyzed through these comparative experiments. The
parameters for the comparative experiments are detailed in Table 4.

The results, as presented in Supplementary Table S4, offer
valuable insights. When the model was configured with only

1 hidden layer, it was relatively simple with fewer parameters. It
tended to converge quickly during training but may encounter a
performance bottleneck. This can lead to underfitting issues on the
test set, making it challenging to capture intricate data features and
ultimately resulting in lower accuracy. Conversely, when the model
employed 3 hidden layers, it gained a higher level of model
complexity and thus possesses a potent representation capability.
This configuration has the potential to learn highly complex features
during training. However, it is more prone to overfitting on the test
set and requires additional data and regularization techniques to
ensure stable training. It is worth mentioning that training deep
neural networks with multiple hidden layers should demand more
time and computational resources.

When the model had 2 hidden layers, it would achieve a balance
between performance and complexity. It had relatively stronger
representation capability compared to shallow neural networks and
could better capture data features. It exhibited good performance on
both the training and test sets. Therefore, this study chose the model
structure with 2 hidden layers as it captured a balance between
complexity and performance.

5 Conclusion

This study adopted a substantial historical dataset of LSWT
measurements, integrated it with H8 satellite remote sensing data,
and utilized a BP neural network model to achieve enhanced and
more frequent monitoring of LSWT. This method conferred several
advantages, including extensive coverage and swift monitoring,
thereby offering an effective approach to enhance water
environment monitoring capabilities. This is of particular
significance in the context of safeguarding lake water quality. The
principal conclusions derived from this study are outlined as follows.

(1) Based on H8 data and in-situ LSWT measurements, a machine
learning approach was used to build an LSWT retrieval model
suitable for the Yangtze River Basin. The results showed that all
six models performed well in LSWT retrieval for the Yangtze
River Basin. Among them, the BP neural network model
outperformed other baseline models with an average
performance increase of 21% in R2, a 37% reduction in
RMSE, and a 42% decrease in MAE.

(2) The applicability of the BP neural network model in other areas
of the Yangtze River Basin was verified. In Lake Taihu, the
combined results from four sites yielded an impressive R2 of
0.918, a RMSE of 2.369°C, and a MAE of 1.586 °C when
employing the BP neural network model. For a single site in
Lake Datonghu, the model achieved an R2 of 0.858, a RMSE of
3.079°C, and a MAE of 2.096 °C. In the case of a single site in

FIGURE 11
Combined fitting results for four lakes.

TABLE 4 Comparative experiment parameters.

Hidden layers The number of neurons The learning rate The batch size Epochs

1 128 0.001 64 1,000

2 (128,64) 0.001 64 1,000

3 (128,64,32) 0.001 64 1,000
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Lake Dongtinghu, themodel exhibited a performance with an R2

of 0.864, a RMSE of 2.937°C, and a MAE of 2.189°C. These
results strongly indicated that the trained BP neural network
model would be also applicable and effective in other areas
within the Yangtze River Basin.
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