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To systematically explore land use/cover change (LUCC) trends and driving
mechanisms at the large watershed scale under the background of climate
change and rapid urbanization. Taking the lower reaches of the Yangtze River
(LRYR) as the research object, based on the land use remote sensing monitoring
data from 1980 to 2020, the spatial and temporal evolution characteristics of LUCC in
LRYR were analyzed by adopting the methods of land use dynamics degree (LUDD)
and hotspot analysis and used geospatial detectors to quantitatively assess the
intensity of the role of the land use change drivers in the LRYR. The results show
that: 1) The land-use types in LRYR were dominated by arable land and woodland,
accounting for more than 70% of the total area. During the study period, the
construction land area increased by 11,835 km2, and became the third largest
land-use type in LRYR after 2010 and formed a typical urban contiguous zone
along the route from Nanjing to Shanghai. 2) The land use degree comprehensive
index (LUDCI) in LRYR at each stage is 270.91, 270.88, 272.22, 272.72, 274.00, 275.57,
276.93 and 280.37, respectively. LUCC in LRYR has becomemore dramatic, and there
is significant spatial heterogeneity. Shanghai has always been a hot area of LUCC and
Huangshan and Chizhou are cold spots of LUCC. 3) The driving mechanism of LUCC
in LRYR can be divided into three stages. In these three stages, secondary industry
output value, precipitation, and elevation are always important factors affecting LUCC.
The interaction between driving factors is significant. The strongest interaction is the
output value of the secondary industry ∩ precipitation, the interaction reaches above
0.6. The research results are of great significance for promoting the sustainable
development of land use in this region.
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1 Introduction

Land is the carrier on which humans rely for survival (Tezcan et al., 2020) and plays a key
role in the relationship between the development of humans and the natural environment
(O’Driscoll et al., 2023). LUCC alters ecosystem patterns, processes, and functions (Yuan
et al., 2019), and also influences global and regional climate change (Froese and Schilling,
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2019). In recent years, with the rapid increase in urbanization level
and rapid social and economic development, land use patterns have
undergone dramatic changes (Ustaoglu and Aydınoglu, 2019), with
significant changes in spatial structure, and more frequent and
complex inter-annual changes in land use (He et al., 2022b).
Therefore, among the studies of LUCC at different scales, LUCC
caused by urbanization has attracted extensive attention from
scholars in various fields (Duraisamy et al., 2018; Niu et al.,
2021; Te Wierik et al., 2021). Strengthening the research on
regional LUCC and driving mechanisms can provide a scientific
basis for understanding the current status of regional land use and
further rationally planning the use of land resources to achieve
sustainable and high-quality development of regional ecological and
economic systems.

Currently, scholars both domestically and internationally have
conducted extensive research on LUCC. Those studies focused on
the construction of a global-scale land use database (De Rosa et al.,
2017; Brown et al., 2022), the analysis of land use hotspots at large
scales (Kuemmerle et al., 2016), the administrative district and
watershed scale LUCC process (Luo et al., 2022; Wu et al., 2023),
the environmental effects of land-use change and ecosystem service
value of land use (Wang et al., 2023; Zhao et al., 2023), and
simulation of land use pattern (Wu et al., 2018). Under the
background of climate change, the driving mechanism of LUCC
has gradually become a research focus (Li et al., 2007). The methods
adopted are mostly based on principal component analysis (Zhang
et al., 2022) logistic regression modeling (Chang et al., 2020), genetic
algorithm (Wei et al., 2008), spatial metric regression analysis
method (Zong et al., 2023), etc. Such empirical-based statistical
analysis models are instructive in qualitatively explaining that
socioeconomic and natural factors are the main driving factors of
LUCC, but further research is needed in the quantitative evaluation
of the drivers.

Due to the large differences in natural base and socioeconomic
development conditions between different regions, research on
LUCC at different scales and regions has always been the focus
of domestic and foreign scholars (Dadashpoor et al., 2019;
Chowdhury et al., 2020). There are abundant research results on
LUCC at the administrative district scale, but there are few studies
on LUCC based on natural boundaries such as watersheds (Loukika
et al., 2023; Zhang et al., 2023). At present, relevant research at the
natural boundary scale mainly focuses on exploring the interactive
relationship between LUCC and natural ecological environmental
effects (Li et al., 2020; He et al., 2022a; Liu et al., 2022). There are few
studies involving long-sequence land use structure change
characteristics and driving mechanisms. In addition, since
socioeconomic development data are collected in administrative
units, current research mainly focuses on the small watershed/
regional scale based on administrative district boundary statistics
(Mwangi et al., 2017; Zhou et al., 2023). At the same time, due to the
difficulty of data collection and sorting, there is still a lack of certain
scientific quantitative research results on long series of LUCC and
driving mechanisms at the large watershed scale. Therefore, research
on the land use change characteristics and driving mechanisms of
long-sequence large watershed areas still need to be further
strengthened.

LRYR is one of the highly urbanized regions in China, with a
special geographic environment and obvious spatial heterogeneity in

resources, economy, and industrial structure (Lin et al., 2019). With
the continuous advancement of urbanization, the contradiction
between people and land has become increasingly prominent (Jia
et al., 2020). Therefore, in the context of rapid urbanization
development, it is necessary to conduct in-depth research on
the characteristics and driving mechanisms of LUCC in LRYR.
Based on land use remote sensing monitoring data and indicators
of natural and socio-economic factors, this study investigates the
spatial and temporal evolution characteristics of land use in LRYR
and reveals the driving mechanisms of natural and socio-
economic changes in land use. Selecting typical research areas
to systematically analyze the spatiotemporal development
characteristics and driving mechanisms of their land use
patterns will be beneficial to extending the characteristic data
of the land use development process in typical areas. Finally, the
research results will provide information for the optimization of
land use structure and policy formulation in the lower reaches of
the Yangtze River. For reference, it provides certain theoretical
support for promoting the healthy and sustainable development
of LRYR.

2 Materials and methods

2.1 Study area

LRYR refers to the Yangtze River basin below Hukou County,
Jiujiang, Jiangxi Province (Figure 1), with an administrative scope
involving five provinces and one city, Jiangxi, Hubei, Anhui,
Jiangsu, Zhejiang, and Shanghai, with an area of about
120,000 km2, accounting for 1.25% of China’s land area, and a
GDP of about 25% and a population of about 15% of China in
2020. LRYR is a subtropical humid area with a subtropical
monsoon climate. The average annual temperature is 15°C–18°C
and the annual precipitation is about 1,300 mm, which is
concentrated in the plum rain period at the turn of spring and
summer and the typhoon period at the turn of summer and
autumn. In addition, under the influence of subtropical
monsoons and typhoons, LRYR is one of the regions with the
highest rainstorm intensity in China, and also the areas with the
most serious threat of floods.

Since China’s reform and opening up, the urbanization process
in LRYR has been particularly rapid. LRYR has gradually developed
into one of the most economically developed, densely populated,
and industrially concentrated areas in China. There is a national-
level city cluster, the Yangtze River Delta City Cluster, within the
domain (Zhu et al., 2022). In recent years, with the transformation of
development models, the characteristics of regional land use changes
have undergone significant changes, making the study of the
spatiotemporal distribution of land use in LRYR of great
practical value.

2.2 Data source and processing

The land-use remote sensing monitoring data and China’s
nighttime light annual data used in the article are both from the
Resource and Environment Science Data Center of the Chinese
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Academy of Sciences (http://www.resdc.cn), with a spatial resolution
of 1 km. The land-use data spanned the period from 1980 to 2020,
including 8 periods of land-use data for 1980, 1990, 1995, 2000,
2005, 2010, 2015 and 2020. The five main land use types involved in
this study are arable land, woodland, construction land, waterbody,
and grassland. The period of the night lighting data is 1995–2020.
DEM data is obtained from a Geospatial Data Cloud with a spatial
resolution of 30 m (https://www.gscloud.cn). To ensure that the data
coordinate system is consistent, the ArcGIS platform is used to unify
the land use data, night light data, and DEM data into the
Krasovsky_1940_Albers coordinate system, and resample the data
spatial resolution to 1 km. The population density, GDP, secondary
industry output value, and precipitation are extracted from the
China Urban Statistical Yearbook, Shanghai Statistical Yearbook,
Jiangsu Statistical Yearbook, Zhejiang Statistical Yearbook, Anhui
Statistical Yearbook, andHydrological Yearbook of the Yangtze River
Basin, and the length of the data series is 1995–2020. A panel dataset
was constructed to explore the drivers of LUCC in LRYR by
integrating land use data and driver factors for 24 cities from
1995 to 2020.

2.3 Methods

2.3.1 Framework of the research
LUCC is the result of the joint action of multiple factors, of

which the natural environment and human conditions are the two
most important factors. Changes in the natural environment will
directly affect the natural endowment of regional land resources and

the spatial distribution of land use (Potschin, 2009; Zhou et al.,
2019). However, with the development of the social economy,
human activities have gradually become another important factor
in changing the spatial distribution and pattern of regional land use
(Zhou et al., 2020a). Urbanization, population policy, land policy,
and so on indirectly affect the land use pattern (Zhou et al., 2020b).
Therefore, this research uses the land use dynamic model, the hot
and cold spot analysis model, and the transfer matrix to analyze the
spatiotemporal evolution characteristics of land use in the lower
reaches of the Yangtze River, and refers to the research of relevant
scholars (Deng et al., 2022; Wu et al., 2022), comprehensively
considers natural and socio-economic factors to select the driving
factors of LUCC (Table 1). In this study, the terrain was
characterized by altitude, slope, and aspect, and precipitation was
selected as the climate feature, population density, GDP, secondary
industry output value, and nighttime lighting are used as socio-
economic indicators. The intensity of the effects of natural and
socio-economic drivers on LUCC in LRYR was quantitatively
analyzed using the geographic detection method. The structure of
the article is shown in Figure 2.

2.3.2 Land-use dynamic degree
LUDD (Zhu and Li, 2003) can objectively reflect the type

changes, degree changes, and regional differences in regional land
use. The land use dynamic model describes the annual rate and
dynamic trend of a certain type or multiple types of land use area
changes in the study area during the study period by constructing
LUDD. According to the number of land use types analyzed, the
LUDD is divided into a single land use dynamic model (SLUDD)

FIGURE 1
Location and topographic distribution of LRYR.
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and a comprehensive land use dynamic model (CLUDD), and the
calculation formula is as follows Eqs 1, 2:

Single land use dynamic degree (SLUDD):

Si � Le − Ls

Ls
×
1
T
× 100% (1)

where Si denotes the dynamic degree of the land-use type i; Ua and Ub

represent the area of land-use type i at the beginning and the end of the
study period, respectively. T presents the length of the study period.

Comprehensive land use dynamic degree (CLUDD):

LC � ∑n
i�1ΔLUi−j

2*∑n
i�1LUi

×
1
T
× 100% (2)

where LC denotes the comprehensive land use dynamic degree; n is
the number of land use types; Δ LUi-j is the absolute value of the total
area of land from one land type i to other land types j during the T
period; LUi is the area of the initial land type i; T presents the length
of the research period.

2.3.3 Exploratory spatial data analysis
To explore the hotspot areas of land use in LTYR and dissect the

spatial variability of the degree of LUCC. Based on calculating the land
use degree comprehensive index (LUDCI) in various administrative
regions of LRYR (Zhu and Li, 2003), this study combined the cold-
hotspot model to identify the cold and hot spot areas with the spatial
distribution of LUCC in LRYR since 1980.

TABLE 1 Meaning of driving factors.

Type of system Type of element Factors Description

Natural factors Topographic characteristics X1: Elevation The average elevation in an area

X2: Slope The average slope in an area

X3: Aspect The average aspect in an area

Climatic characteristics X4: Precipitation The average annual precipitation in an area

Socio-economic factors Population distribution X5: Population density The ratio of total regional population to regional area

Economic level X6: GDP The value added of GDP each year

X7: Secondary industry output value The value added of industrial output per year

X8: Nighttime light brightness Distribution of nighttime light brightness in an area

FIGURE 2
Research flow chart.

Frontiers in Environmental Science frontiersin.org04

Shang et al. 10.3389/fenvs.2023.1335624

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1335624


Cold-hotspot analysis is one of the global aggregation testing
methods (Eqs 3, 4) (Kondo, 2016). It explores spatial autocorrelation
by calculating the local autocorrelation index of dataset elements G*

i

and utilizing local indicators. The calculation formula is as follows:

G*
i �

∑n
j�1wi,jxj − �X∑n

j�1wi,j

S

��������������
n∑n

j�1w
2
i,j− ∑n

j�1wi,j( )2

n−1

√ (3)

�X � 1
n
∑n
j�1
xj, S �

����������
1
n
∑n
j�1
x2
j − �X

2

√√
(4)

where: G*
i is the local autocorrelation index of area i; n is the

number of administrative districts; xj is LUDCI of area j; and wi,j

is the spatial weight between administrative districts i and j.
When G*

i is greater than 0, it means that the area is a hotspot of
aggregation; when G*

i is less than 0, it means that the area is a
hotspot of negative aggregation; and when G*

i is 0, it means that
the result is randomly generated and does not have statistical
significance.

2.3.4 Geographical detector
LUCC is affected by multiple factors and does not have a linear

relationship with strict statistical criteria. It is challenging to explore
the effects of multiple factors on LUCC. The geographical detector
(Eqs 5, 6) (Wang and Xu, 2017) is a statistical analysis method to
detect spatial heterogeneity and reveal the driving force behind it,
which can be used for quantitative data as well as qualitative data.
This paper utilizes this method to analyze the characteristics of
spatial heterogeneity of land use and its drivers in LRYR, which
mainly consists of factor detection and interaction detection.

(i) Factor detection is used to reveal the spatial heterogeneity of the
dependent variable LUCC (Y) and to detect the degree of
explanation of the spatial heterogeneity of LUCC by each
driving factor (X). The expression is:

q � 1−∑L
h�1Nhσ2h
Nσ2

� 1− SSW

SST
(5)

SSW � ∑L
h�1

Nhσ
2
h, SST � Nσ2 (6)

where q is the degree of explanation of spatial heterogeneity of land
use by driver X, with a range of [0,1], the larger the value of q, the
greater the degree of explanation of LUCC by driver X; h is the
number of divisions or classifications of driver X; L is the number of
drivers; Nh and N are the number of samples of the h th class of
driver X and the total number of regional samples, respectively; σh
and σ are the variance of the h th class of driver X and the total
regional variance, respectively.

(ii) Interaction detection is used to identify the difference in
explanatory power when two drivers Xi and Xj act together
relative to when they act as a single factor, mainly by
comparing the explanatory power of Y [q(Xi), q(Xj)] when
drivers Xi and Xj act independently to the explanatory power of
Y [q(Xi ∩ Xj)] when factors Xi and Xj interact. The relationships
between the factors can be categorized as follows (Table 2) (Wang
and Xu, 2017).

3 Results

3.1 Spatio-temporal pattern of land use and
transfer characteristics in LRYR

3.1.1 Spatial and temporal patterns of land-use
From 1980 to 2020, arable land was the dominant land use type

in LRYR, followed by woodland and then waterbody. Spatial
distribution of arable land is mainly distributed in the plains on
both sides of the Yangtze River; woodland is mainly concentrated in
the Dabie Mountain Range and the Huangshan Mountain Range;
waterbody is mainly distributed in the Yangtze River, Chaohu Lake,
Taihu Lake, and other major rivers and lakes water surface
(Figure 3).

LUCC mainly shows the trend of increasing construction land
and decreasing arable land, with smaller changes in grassland,
woodland, and waterbody. In 1980, the area of arable land,
construction land, woodland, grassland, and waterbody in LRYR
was 72,081, 7,883, 27,063, 5,082, and 11,778 km2, accounting for
58.18%, 6.36%, 21.84%, 4.10% and 9.21% of the total area,
respectively. In 2020, the area of arable land, construction land,
woodland, grassland, and waterbody in LRYR is 60,041, 19,718,
26,592, 5,278, and 12,138 km2, accounting for 48.51%, 15.93%,
21.48%, 4.26% and 9.81% of the total area, respectively. After
2000, the rate of expansion of construction land in LRYR was
remarkable. From 1980 to 2000, the proportion of construction
land increased from 6.36% to 8.50%, totaling an increase of
2,694 km2, while cultivated land decreased from 58.18% to
55.73%, totaling a decrease of 2,723 km2. From 2000 to 2020, the
share of construction land increased from 8.50% to 15.93%, totaling
an increase of 9,141 km2, while cultivated land decreased from
55.73% to 48.51%, totaling a decrease of 9,317 km2. The spatial
change of construction land shows the characteristic of expanding to
the outer circle with large andmedium-sized cities such as Shanghai,
Suzhou, Wuxi, Changzhou, Hangzhou, Jiaxing, Nanjing, Hefei, and
other cities as the core, and formed urban agglomerations along the
lines from Nanjing to Shanghai and Hangzhou to Shanghai
(Figures 3, 4).

3.1.2 Changes in land-use dynamics
In 1980–2020, the CLUDD of the seven time periods in LRYR

was 0.05%, 0.29%, 0.15%, 0.32%, 0.31%, 0.29%, 0.66%, respectively,
and CLUDD generally showed a fluctuating upward trend of change.
From 1980 to 2000, China was in the early stage of urbanization, and
land use changes in LRYR were relatively slow. From 2000 to 2020,
the rate of land-use change increased considerably compared with

TABLE 2 Detection of interactions between drivers.

Basis for judgment Interaction

q(Xi ∩ Xj) < min [q(Xi), q(Xj)] Non-linear weakening

min (q(Xi), q(Xj)) < q(Xi ∩ Xj) < max [q(Xi), q(Xj)] Univariate weakening

q(Xi ∩ Xj) > max [q(Xi), q(Xj)] Bivariate enhancement

q(Xi ∩ Xj) = q(Xi) + q(Xj) Indepndent

q(Xi ∩ Xj) > q(Xi) + q(Xj) Non-linear enhancement
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the previous period, especially from 2015 to 2020, the LUCC in
LRYR was the most drastic, and the CLUDD reached 0.66%
(Figure 5).

From 1980 to 2020, the dynamic degree of arable land was
always negative, and the dynamic degree of construction land was
always positive, indicating that arable land was continuously
declining and construction land was continuously increasing. The
dynamic attitude of other land use types had positive and negative
fluctuations, but the magnitude of the change was not large. The two
fastest growth rates of construction land were in 1990–1995 and
2015–2020, respectively. During these two phases, the construction
land mobilization rate was 4.39% and 5.13%, respectively.

3.1.3 Evolution of land-use levels
Taking one municipality and 23 prefectural-level cities in LRYR

as the research units, the impact of human activities on land use was
quantified by measuring the LUDCI of each city (Figure 6). On this

basis, the cold-hot spot analysis model was used to dissect the land
use hot and cold spot areas in LRYR (Figure 7).

From 1980 to 2020, the LUDCI of each city in LRYR showed an
increasing trend year by year, and the high-value areas of LUDCI
were mainly concentrated in Shanghai, Jiangsu cities, and Jiaxing of
Zhejiang Province. The low-value areas are mainly concentrated in
Anhui cities, Jiujiang in Jiangxi Province, Huanggang in Hubei
Province, and Huzhou and Hangzhou in Zhejiang Province.
Among them, the small LUDCI in Hangzhou is related to the
fact that the area involving LRYR in this city is mainly forested.
The LUDCI in LRYR at each stage is 270.91, 270.88, 272.22, 272.72,
274.00, 275.57, 276.93 and 280.37, respectively. Over the past
41 years, the LUDCI has shown an overall upward trend, with a
total increase of 9.46, indicating that the impact of human activities
on land use in LRYR has been increasing.

From 1980 to 2020, the spatial distribution of hot and cold areas
in LRYR was relatively consistent. Shanghai has always been a hot

FIGURE 3
The land cover pattern of LRYR in different periods, 1980–2020.

FIGURE 4
Structure of land use type changes in LRYR, 1980–2020 (unit: km2).
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spot for land use. Nanjing in Jiangsu Province, Chuzhou, and
Ma’anshan in Anhui Province were transitional areas. Huangshan
and Chizhou City in Anhui Province are cold spots of LUCC. The
remaining cities are sub-cold spot areas. From the cold and hot spot
zoning of land use in LRYR, it can be found that the distribution of
cold and hot spots in this region is closely related to the regional
socioeconomic distribution.

3.1.4 Land-use transfer characteristics
During the study period, the most important manifestation in

LRYR was the mutual conversion of construction land and arable
land. From 1980 to 2000, 3.54% of the arable land was transformed
into construction land, with an area of 2,562 km2. During this
period, 3.21% of the area of construction land was transformed
into woodland, which was closely related to the rapid development
of towns and cities and large-scale afforestation in that period.

The changes in the remaining land categories are not obvious
(Figure 8).

From 2000 to 2020, the changes between different land use types
were more complicated. Combined with Figure 3, it can be found
that the arable land around the city is transformed into construction
land, while with the development of urbanization, the construction
land in small towns far away from urban centers is transforming into
arable land. However, the area of construction land increased by
9,141 km2 and the area of arable land decreased by 9,317 km2 during
this period. 19.47% of the grassland was transformed into arable
land, and 32.26% was transformed into woodland, with the former
related to the transformation of cultivated crops, and the latter
related to the large-scale afforestation of LRYR during that period.
However, on the whole, except for construction land and arable
land, the areas of the other three land types have not yet changed
significantly.

FIGURE 5
Land use dynamics in LRYR, 1980–2020.

FIGURE 6
Land use degree index of municipalities in LRYR.
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3.2 Analysis of land-use drivers

3.2.1 Factor detection analysis
Based on the research scale of 10 km × 10 km grid unit, the

LUDCI in LRYR is used as the dependent variable Y of the

geographical detector, and eight driving factors are used as the
independent variables X. Explore the driving mechanisms of LUCC
in LRYR in different years. The explanatory power q value
and changes of each driving factor are shown in Table 3 and
Figure 9. The impact of various factors on LUCC in LRYR in

FIGURE 7
Spatial cold hotspot of land use dynamics in LRYR.

FIGURE 8
Land use transfer matrix in LRYR.
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different years is inconsistent, but generally, it can be divided into
three stages.

The first stage is from 1995 to 2000. In 1995, the ranking of
the explanatory power (q) of various factors on LUCC in LRYR is
X4 (0.514) > X7 (0.462) > X1 (0.307) > X2 (0.286) > X8 (0.277) >
X5 (0.187) > X6 (0.156) > X3 (0.004). The explanatory power (q)
of each factor in 2000 is ranked as follows: X7 (0.429) > X1
(0.274) > X8 (0.267) > X2 (0.263) > X4 (0.194) > X6 (0.072) > X5
(0.033) > X3 (0.009). The factors with strong explanatory power
in 1995 and 2000 (explanatory power q is greater than 0.1) are X1,
X2, X4, X7, and X8. During this period, the explanatory power of
natural factors was stronger than socioeconomic factors.
Therefore, before 2000, LUCC in LRYR was mainly affected
by natural factors. Comparing the explanatory power of
various factors in 2000 and 1995, it can be found that with
the development of China’s economy, the driving force of
socioeconomic factors has begun to increase.

The second stage is from 2000 to 2010. The first three
driving factors in 2005 and 2010 were X7, X4, and X6.

Among them, the q value of X7 is 0.742, which is much
larger than before 2000. The secondary industry output value
reflects the level of economic development of a region,
indicating that the secondary industry output value has an
important impact on LUCC at this stage. The reason is that
in the 21st century, China’s reform and opening up has
accelerated, and the secondary industry has developed
rapidly, which has promoted the adjustment of industry and
employment structures, thereby changing the land use pattern.
At this stage, except for X3, the explanatory power q of all other
factors is greater than 0.1, indicating that the driving factors of
LUCC during this period are more complex and are not
dominated by a single factor. The explanatory power of
socioeconomic factors on LUCC shows an increasing trend,
which further verifies that with economic development, LUCC
is increasingly driven by socioeconomic factors.

The third stage is from 2010 to 2020. The explanatory power
(q) of the driving factors of lLUCC in LRYR in 2015 is ranked as
follows: X7 (0.780) > X1 (0.349) > X5 (0.323) > X2 (0.303) > X4

TABLE 3 The explanatory power of land use drivers in LRYR, 1995–2020.

Type of system Type of element Factors 1995 2000 2005 2010 2015 2020

Natural factors Topographic characteristics X1: Elevation 0.307 0.274 0.300 0.294 0.349 0.334

X2: Slope 0.286 0.264 0.281 0.271 0.303 0.292

X3: Aspect 0.004- 0.009- 0.003- 0.003- 0.004- 0.002-

Climatic characteristics X4: Precipitation 0.515 0.194 0.429 0.518 0.294 0.605

Socio-economic factors Population distribution X5: Population density 0.187 0.033 0.308 0.340 0.323 0.265

Economic level X6: GDP 0.156 0.072 0.367 0.444 0.183 0.180

X7: Secondary industry output value 0.462 0.430 0.742 0.742 0.780 0.690

X8: Nighttime light brightness 0.277 0.268 0.292 0.353 0.134 0.190

Note: - indicates that it does not pass the 1% significance level test.

FIGURE 9
Changes in the explanatory power q value of driving factors for LUCC in LRYR from 1995 to 2020.
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(0.294) > X6 (0.183) > X8 (0.134) > X3 (0.004); The explanatory
power (q) of each factor in 2020 is ranked as follows: X7 (0.690) >
X4 (0.605) > X1 (0.334) > X2 (0.292) > X5 (0.265) > X8 (0.190) >
X6 (0.180) > X3 (0.002). The secondary industry output value is
the factor with the strongest explanatory power of LUCC, with
the explanatory powers of 0.780 and 0.690 respectively,
indicating that at this stage, the secondary industry output
value is still the dominant factor in LUCC in LRYR. From

2010 to 2020, the explanatory power of X1, X2, and X4 began
to increase. Compared with 2000–2010, the impact of natural
factors on LUCC is more prominent. This is closely related to the
fact that after 2015, China began to implement the development
strategy of “lucid waters and lush mountains are invaluable
assets.” China’s economic development has shifted from
“rough” to “high-quality” (Niu et al., 2022). The development
of cities and towns continues to be based on socioeconomics and

FIGURE 10
Interaction detection results of land use change in LRYR.
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guided by geographical characteristics and comprehensively
considers socioeconomic and geographical characteristics,
increasing the driving role of natural factors.

3.2.2 Factor interaction analysis
LUCC is affected by the comprehensive effects of multiple

factors. The interaction detection reflects the difference in the
impact of the driving factors on LUCC compared with that of a
single factor. The interactive detection results of driving factors
of LUCC in LRYR in different periods are shown in Figure 10.
The results show that the interaction detection results between
the driving factors in different periods showed a bivariate
enhancement effect, indicating that the explanatory power of
the interaction between the factors on LUCC has enhanced effect
to different degrees compared with that of the single factor. At the
same time, the strongest interaction in 1995–2020 is the
secondary industry output value ∩ precipitation, which
indicates that the secondary industry output value in the
socio-economic factors and the precipitation in the natural
factors jointly dominate the land use changes. From the
perspective of the whole study period, the interaction between
the secondary industry output value and other factors is the
strongest, followed by the interaction between precipitation and
other factors, which further verifies that the secondary industry
output value and precipitation are more active on land use
changes in all periods (Table 4).

4 Discussion

4.1 Spatial and temporal changes in land use
in LRYR

Firstly, the characteristics of LUCC in LRYR from 1980 to
2020 were systematically analyzed in terms of spatial and
temporal patterns of land use, LUDD, and LUDCI, and the land
use changes in LRYR were classified into two phases, of which
1980–2000 was the beginning stage of urbanization, and
2000–2020 was the stage of rapid urbanization. Based on the
above stage division, the land use transfer characteristics in
LRYR were further analyzed. The SLUDD, CLUDD, land use
change transfer matrix, and LUDCI not only provide a
comprehensive picture of the intensity of spatial and temporal
land-use changes but also enhance the comparability of changes
in different land-use types.

Several scholars have explored the land use change
characteristics of the Southeast Rivers Basin (Zhang and Zang,
2019), Tien Shan region (Wei et al., 2021), Weihe River Basin (Xu
et al., 2023), and Selenge River Basin (Ren et al., 2022), etc.,
respectively, using the above single or multiple indicators. The
results of the studies all show that the rate of LUCC in each region
has increased to different degrees over time, and the impact of
human activities on land use has gradually increased. The above
results are similar to this study. There is a large difference in the
distribution of land use in the east-west direction in LRYR from
1980 to 2020, which is mainly closely related to the socio-
economic development of the region and the utilization of
land resources, etc. Shanghai, the southern region of Jiangsu,
Hangzhou, Jiaxing, and Huzhou of Zhejiang Province are the
highly urbanized areas in China, with a developed socio-economy
and the expansion of the urban construction land. It directly
affects the transformation of construction land and other land
types, which leads to the continuous zone of construction land
along the line from Shanghai to Nanjing and from Shanghai to
Hangzhou.

On the other hand, land policies and measures have also had a
large impact on changes in woodland, arable land, and
waterbody. The afforestation policy in the 1990s caused a
small increase in the area of woodland in LRYR and caused
the conversion of construction land to woodland. The
construction of water conservancy projects and the rise of the
aquaculture industry led to an increase in water body area during
the period from 1980 to 2010. Into the 21st century, influenced by
rapid socio-economic development and new urbanization
policies (Yang et al., 2017), the area of arable land converted
to construction land has increased dramatically, and the scale of
cities has continued to expand. Combining the spatial
distribution of land use in LRYR, it can be found that
construction land in remote rural areas continues to decrease,
rural construction land is reclaimed as arable land, and
construction land on the edge of cities continues to expand.
This is closely related to the policy of integrating rural villages
into towns. After 2010, large-scale demolition and reclamation of
rural areas were carried out, and the scale of cities and medium-
sized villages and towns continued to expand. As the
urbanization of cities in Shanghai, southern Jiangsu, and
northern Zhejiang gradually reached a mature stage, the areas
with drastic LUCC began to shift to the central and western
regions in LRYR. Especially after 2015, with the promulgation
and implementation of the Yangtze River Delta City Circle

TABLE 4 The explanatory power of land use drivers in LRYR, 1995–2020.

Year Interaction explanatory power ranking (top four combinations)

1995 X7 ∩ X4 (0.777) > X4 ∩ X6 (0.658) > X4 ∩ X8 (0.629) > X7 ∩ X1 (0.598)

2000 X7 ∩ X4 (0.600) > X7 ∩ X1 (0.524) > X7 ∩ X2 (0.513) > X7 ∩ X8 (0.490)

2005 X7 ∩ X4 (0.815) > X7 ∩ X1 (0.783) > X7 ∩ X2 (0.782) > X7 ∩ X5 (0.760)

2010 X7 ∩ X4 (0.824) > X7 ∩ X6 (0.804) > X7 ∩ X5 (0.797) > X7 ∩ X8 (0.775)

2015 X7 ∩ X4 (0.839) > X7 ∩ X2 (0.806) > X7 ∩ X1 (0.805) > X7 ∩ X5 (0.797)

2020 X7 ∩ X4 (0.785) > X7 ∩ X5 (0.737) > X7 ∩ X1 (0.733) > X7 ∩ X2 (0.727)
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Development Plan (2014–2020), the central and western cities in
the region have benefited from the integrated development of the
Yangtze River Delta and have experienced rapid social and
economic development (Ganguly et al., 2016). This further
promoted the rapid transformation of land use types in LRYR.
Therefore, between 2015 and 2020, CLUDD in LRYR is the
largest at this stage, reaching 0.66%.

4.2 Drivers of land-use change

The dominant factors of LUCC in LRYR were quantitatively
identified through the geographical detector, and the degree of
influence of the interaction between the factors on land use
change was explained. Before 2015, the main drivers of land use
change in the lower reaches of the Yangtze River were socio-
economic factors, and this conclusion was also supported by
related studies (Song et al., 2018). By 2020, natural factors in the
land use change in LRYR gradually become the main driving
factor, and the explanatory power of topographic factors such as
elevation and slope among natural factors gradually increases,
which is closely related to China’s policy of gradually shifting
from the rough development mode to the refined and green
development mode since China’s Reform and Opening Up (Wu
et al., 2006; Li et al., 2023).

In terms of the influence of two-factor interaction on LUCC,
the strongest explanatory power of the interaction in
1995–2020 is the output value of the secondary industry ∩
precipitation, which indicates that the output value of the
secondary industry and precipitation jointly dominate the
change of land use. On a comprehensive view, the interaction
between the output value of the secondary industry and other
factors is the strongest, followed by the interaction between
precipitation and other factors, which also further verified that
the secondary industry output value and precipitation are more
important to land use changes in all periods.

4.3 Limitations and future directions

This study integrates multiple methods to explore the spatial
and temporal land use change characteristics and driving
mechanisms in LRYR. However, the land use change
characteristics and driving mechanisms in this region should
be improved in the following aspects in the future: 1) Land use
policy, land use policy has always been an important factor
affecting urban or regional land use, but the impact
mechanism of the policy has always been a hot and difficult
point of scientific research, so it is necessary to delve deeper in
this area. 2) The spatial resolution of land use adopted in the
article is 1 km, and the time scale is 5 years, with coarse spatial
and temporal resolution. In the future, we can consider
combining the multi-source remote sensing data to optimize
the database of this study. 3) In terms of the driving
mechanism methodology, although the geographical detector
can describe quantitatively the driving force of factors on the
change of land use, they can not show whether the influence is
positive or negative. Meanwhile, the discretization of data and the

density of sampling points can have an impact on the results. In
the future, it is necessary to consider combining the geographical
detector, traditional correlation analysis methods, and geo-
artificial intelligence methods to reveal the complex
relationship between land use changes in different regions and
the factors of nature, economy, and development of provincial
capitals.

5 Conclusion

This paper discusses the spatiotemporal pattern, dynamic
changes, and transfer characteristics of land use in LRYR from
1980 to 2020, studies the distribution of land use degree in LRYR
using the cold-hotspot analysis method, and finally quantitatively
discusses the driving mechanism of land use changes in LRYR by
combining with geographical detectors. The following are specific
conclusions:

(1) From 1980 to 2020, the dominant land use types in LRYR
were changed from arable land, woodland, and waterbody to
arable land, woodland, and construction land. From 1980 to
2000, the area of construction land increased by 2,694 km2

and the area of arable land decreased by 2,723 km2. From
2000 to 2020, the area of construction land increased by
9,141 km2, and the area of arable land decreased by
9,317 km2. There is not much change in other land use
types. LUCC has been more significant since 2000. The
area of construction land exceeded the area of the
watershed after 2010 to become the third largest land use
type in LRYR and formed a typical urban contiguous area
along the line from Nanjing to Shanghai.

(2) From 1980 to 2020, the CLUDD in LRYR showed a
fluctuating upward trend, and the speed of LUCC
increased significantly after 2000. It indicates that the
LUCC in LRYR was more drastic after 2000. During the
past 41 years, the dynamic degree of arable land has always
been negative, while the dynamic degree of construction land
has always been positive. The dynamic degree of other land
use types has fluctuated positively and negatively, but the
change is not significant.

(3) There is significant spatial heterogeneity in the degree of land
use in LRYR, with obvious cold and hot areas. Shanghai is
always the hot spot of land use; Nanjing, Chuzhou, and
Ma’anshan are the transition areas; Huangshan and Chizhou
are the cold spot areas of land use changes.

(4) The driving mechanism of LUCC in LRYR can be divided into
three stages. Before 2000, LUCC in LRYRwas greatly affected by
natural factors. From 2000 to 2010, socioeconomic factors
became the dominant factor driving LUCC. After 2010, the
driving force of natural factors gradually increased. The
explanatory power of the interaction between the driving
factors on LUCC is also enhanced to different degrees
compared with that of the single factors. The strongest
explanatory power of the interaction is the output value of
the secondary industry ∩ precipitation, which indicates that the
output value of the secondary industry and the precipitation
jointly dominate LUCC.
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