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Water temperature is a controlling factor for physical, biological, and chemical
processes in rivers, and is closely related to hydrological factors. The construction
of reservoirs interferes with natural water temperature fluctuations. Hence
constructing a model to accurately and efficiently predict the reservoir
discharge water temperature (DWT) is helpful for the protection of river water
ecology. Although there have been studies on constructing efficient and accurate
machine learning prediction models for DWT, to our knowledge, there is currently
no research focused on hourly scales. The study proposed in this paper is based on
high-frequency monitoring data of vertical water temperature in front of a dam,
water level, discharge flow, and DWT. In this study, six types of machine learning
algorithms, namely, support vector regression, linear regression, k-nearest
neighbor, random forest regressor, gradient boosting regression tree, and
multilayer perceptron neural network, were used to construct a refined
prediction model for DWT. The results indicated that the SVR model using the
radial basis function as the kernel function had the best modeling performance.
Based on the SVR model, we constructed a 1–24 h early warning model and
optimized the scheduling of DWT based on changing discharge flow. In summary,
a machine learning model for DWT that can provide short-term forecasting and
decision support for reservoir managers was refined in this study.
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1 Introduction

China has the world’s largest installed capacity of hydropower, which contributes over
60% of the country’s renewable energy supply (Ge et al., 2023). Hydroelectric power, as a
clean energy source, can reduce carbon emissions while meeting energy needs (Li and Zhang,
2014). However, reservoir construction may cause a series of adverse environmental impacts
(Zhang et al., 2022; Lu et al., 2023). After the construction of a reservoir, thermal
stratification can occur in the water body, causing the discharge water temperature
(DWT) to deviate from the natural water temperature (Ren et al., 2019). Due to the
crucial role of water temperature in water quality and aquatic ecosystem processes (Booker
and Whitehead, 2022), DWT fluctuations may have adverse effects on downstream aquatic
ecosystems (Lu et al., 2023). Therefore, DWT prediction and control is currently a topic of
concern for reservoir managers. To protect downstream ecological health as much as
possible, there is an urgent need to establish an efficient and accurate DWT prediction model
for reservoir water temperature management.
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The commonly used methods for studying the DWT include
prototype observations (Gray et al., 2019), physical model
experiments (Song et al., 2020), and numerical simulation (He
et al., 2018) methods. The prototype observation method is the
most direct method for obtaining DWT data. This method is the
foundation for thermal analysis, numerical simulation, and other
related fields. The physical model experiment method is based on a
simulation of the temperature and flow fields of a reservoir by a
model. This method explores the relationship between the DWT and
influencing factors based on different operating conditions.
Establishing empirical formulas based on the patterns of
prototype observation and physical model experiment data can
be applied to achieve rapid DWT prediction (Gao et al., 2014).
However, these formulas are based on fitting the relationship
between existing data, and there is no complete theoretical
derivation process. In practical applications, there is significant
uncertainty, and accuracy is difficult to guarantee. The numerical
simulation method is based on physical mechanisms, and existing
one-dimensional models, such as GLM-ADE (Weber, 2018), two-
dimensional models, such as CE-QUAL-W2 (Larabi et al., 2022),
and three-dimensional models, such as Flow-3D (He et al., 2018) can
effectively calculate the DWT. However, the numerical simulation
calculation time is relatively long, and due to the need for multiple
scheme decisions in a short period in actual management scenarios,
it is not suitable for timely DWT prediction. Therefore, it is difficult
to meet the needs of efficiently and accurately predicting the DWT
simultaneously to provide a decision-making basis for managers
with commonly used methods.

Flexible and efficient machine learning (ML) algorithms have
been applied to water temperature prediction (Zhu and Piotrowski,
2020). Fewer input variables are needed in ML models than in
numerical simulation methods. Moreover, ML models have similar
or even better performance than numerical simulation methods
(Zhang et al., 2022). In addition, it is more convenient to combine
ML models with optimization algorithms, helping managers make
efficient optimization decisions (Wang et al., 2022). At present, ML
algorithms are mainly applied to predict river water temperature at
different time scales. For example, Sivri et al. (2009) successfully
predicted monthly stream water temperature using an artificial
neural network (ANN) model, while Zhu et al. (2019)
constructed a daily scale river water temperature prediction
model using an extreme learning machine (ELM) model. In
addition, Lu and Ma (2020) conducted ML modeling for hourly
scale river water temperature. However, due to the much more
complex thermal state of reservoirs compared to that of rivers,
research onMLmodeling of reservoir water temperature is currently
relatively limited. Soleimani et al. (2016) constructed a DWT
prediction model using multilevel water intake data based on a
support vector machine (SVM). Lu et al. (2023) and Zhang et al.
(2022) constructed DWT prediction models using stratified water
intake data from a stacked beam gate based on support vector
regression (SVR) and long short-term memory (LSTM),
respectively. In most existing research, the daily scale DWT is
modeled. As automatic water temperature monitoring equipment
has become popular, hourly scale DWT datasets have begun to
contain rich data. Furthermore, due to diurnal changes in
meteorological conditions, diurnal changes in water temperature
may be significant (Yang et al., 2020). As researchers pay

increasingly more attention to the impact of reservoir water
temperature on downstream water ecology, it is essential to
accurately and efficiently predict the DWT on an hourly scale.

In summary, the main objective of this study is to construct aML
prediction model for hourly scale DWT, enabling more efficient and
refined reservoir management. In this study, the Pubugou Reservoir
(PBGR) in southwestern China is selected as an example. To obtain a
better ML model, the modeling performance of SVR, linear
regression (LR), K-nearest neighbor (KNN), random forest
regressor (RFR), gradient boost regression tree (GBRT), and
multilayer perceptron neural network (MLPNN) in terms of
hourly scale DWT is compared. Finally, the hourly scale early
warning performance of the optimal model and the ability to
optimize the scheduling of DWT are explored.

2 Materials and methods

2.1 Study area and data sources

In this study, the PBGR on the Dadu River Basin in
southwestern China is selected as an example. The PBGR, the
19th level of the planned cascade of the main stream of the
Dadu River, is a controlling reservoir in the middle reaches of
the Dadu River and has seasonal regulation capacity. The PBGR is
mainly used for power generation and has other functions, such as
sediment retention and flood control. The maximum dam height of
the PBGR is 186 m, and the total installed capacity is 3600 MW. The
total storage capacity of the PBGR is 53.37 × 108 m3. The reservoir
area is 84.14 km2, and the backwater length is approximately 72 km
(Zhang and Xu, 2014). Statistics have shown that there are various
types of protected Chinese fish species distributed in the Dadu River
Basin (Bangfu et al., 2022). The water temperature discharged from
the reservoir may have adverse effects on these protected fish species
(Zhou et al., 2016). Therefore, this study focuses on the DWT of the
PBGR, a large reservoir in the Dadu River Basin.

We conducted a water temperature prototype observation at the
PBGR in 2022, automatically monitoring the reservoir vertical water
temperature (RVWT) and DWT. The monitoring points are shown
in Figure 1. A temperature chain was installed approximately 800 m
upstream of the PBGR dam to monitor the RVWT, with a
monitoring frequency of once per hour. Eighteen thermometers
were tied to the temperature chain. We installed temperature
recorders at depths of 0.5 m, 1–10 m (1 every 1 m) and 20–80 m
(1 every 10 m). The DWT monitoring frequency is also once per
hour. In addition, we obtained reservoir operation data on water
level (WL) and discharge flow (DF) data from the dammanagement
office, with a frequency of once per hour. All types of data were
recorded at the same time, and the monitoring data were organized.
A total of 5,288 sets of valid data were obtained (due to equipment
failures during some periods, corresponding data were removed).

2.2 Modeling and model application process

Figure 2 shows the flowchart for modeling and model
application. The step 1 is to select indicators. Firstly, since the
DWT is the target of our prediction, it has been chosen as the output.
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Then, the input indicators of the model are selected according to the
impact mechanism of the DWT. At last, the corresponding data are
collected and integrated to construct a dataset. The step 2 is to

establish the DWT ML prediction models. In this step, the data are
first preprocessed to satisfy the requirements of the ML algorithms.
The preprocessing steps include dividing the dataset into training,

FIGURE 1
Location and monitoring points of the PBGR. (A) Dadu river basin; (B) Area in front of the PBGR Dam; (C) Schematic diagram of water temperature
monitoring.

FIGURE 2
Flowchart for modeling and model application.
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validation, and test sets, as well as standardizing the data. Then,
different ML algorithms are selected for comparison, and the most
suitable algorithm is selected for DWT prediction. The algorithms
selected in this study include SVR, KNN, MLPNN, LR, RFR, and
GBRT, all of which are implemented in Python. Then, the
optimization algorithms are used to optimize the model
parameters during the training process to build the optimal
parameter prediction model. The step 3 is to input the test set
data into the optimal parameter prediction model for calculation.
The model is then evaluated by combining the predicted and
measured values that are output from the model to obtain the
most suitable ML algorithm for the DWT prediction of the case
reservoir. The step 4 is to apply the optimal model selected in the
step 3. Among them, the step 4.1 builds an early warning model, and
the step 4.2 optimizes the scheduling of DWT. In the step 4.1, the
previous model achieves real-time outputs based on real-time
inputs. However, this model is not suitable for reservoir
managers to make management decisions. Therefore, we build an
early warning model based on the DWT and input values n hours
ago, repeating steps 2 and 3 to build a model that is suitable for
managers’ decisions. In step 4.2, we select typical thermal
stratification days and adjust the DWT of the reservoir by
adjusting the DF in hydrological conditions to determine the
most suitable DF pattern.

2.3 Model indicator selection

ML models are black box models that do not consider physical
processes. Therefore, the performance and generalizability of the
model largely depend on its input and output (Zhang et al., 2022).
Therefore, selecting input indicators based on the impact
mechanism of the DWT will help to increase the interpretability
of the model. Some studies have investigated the factors influencing
the DWT in reservoirs based on numerical simulations and
experiments (He et al., 2018; Yang et al., 2021; Liu et al., 2022).
The results of these studies indicate that the DWT is related to the
RVWT, WL, and DF.

Deep reservoirs often experience thermal stratification,
especially during high temperature seasons. As shown in
Figure 3, when the reservoir is in the thermal stratification
period, the difference in RVWT will generate buoyancy to hinder
the vertical movement of the water body. The size of the DF

determines whether the inertial force generated by the DF can
suppress buoyancy, further determining where the discharge
comes from. When the DF is small, the buoyancy effect is
sufficient to hinder the vertical movement of the water body, and
the water intake can only reach the water near it (Figure 3, blue
dashed line); As the DF increases, the inertial force will gradually
suppress the buoyancy effect, and the water intake can take water
closer to the surface (Figure 3, red dashed line). In addition, the
changes in WL affect the water head and the distribution of RVWT,
thus also having a significant impact on the DWT. Figure 3
generalizes the flow pattern, and in fact, there are complex mixed
flows in the reservoir, including inflow mixing, surface mixing,
internal mixing, etc (Zhang et al., 2022). However, when we use
factors close to the front of the dam as input indicators, we can
minimize the impact of complex mixing processes on the results. To
sum up, the RVWT, DF, and WL are selected as the input indicators
for the ML models in this study, and the mathematical expression of
the DWT prediction model in this study is shown in Equation 1.

DWT � f RVWT,WL,DF( ) (1)

2.4 Machine learning modeling process

2.4.1 Machine learning algorithms
We examined the DWT prediction performance of six ML

algorithms, SVR, KNN, MLPNN, LR, RFR, and GBRT, using the
sklearn library in Python. These six algorithms are
introduced below.

2.4.1.1 SVR
SVR is an application model of SVM in regression problems.

The main idea of SVR is to find a hyperplane in a feature space,
minimizing the distance between the hyperplane and the training
samples while also meeting a certain tolerance (i.e., allowing some
training samples to exceed a certain distance range) (Wang et al.,
2022). This distance is usually calculated using a “kernel function”,
which enables SVR to perform well in nonlinear problems. Due to
the different performances of different kernel functions, we
investigated the performance of ML models using linear
functions, polynomial functions, radial basis functions (RBF), and
sigmoid functions. In addition, the parameters of the SVR model,
mainly the penalty coefficient C and kernel function coefficient γ,
have a significant impact on the model performance.

2.4.1.2 KNN
The KNN algorithm is a nonparametric classification and

regression method that is commonly used in pattern recognition
and ML. The basic idea of the KNN algorithm is to determine the
classification or prediction value of an unlabeled data point by
measuring the distances between data points (Guo et al., 2006). The
KNN algorithm does not require explicit model training during the
training phase. Instead, it draws inferences from existing data during
the prediction phase. The advantages of the KNN algorithm include
its simplicity and applicability to multiclass problems. In addition,
the KNN algorithm makes no assumptions about the data
distribution. However, it also has some drawbacks, including its
high computational overhead (i.e., it requires distance calculations

FIGURE 3
Brief schematic diagram of water intake flow pattern.
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between all training samples), sensitivity to outliers, and so on.
When using the KNN algorithm, it is usually necessary to consider
issues such as the selection of K-values and distance metrics to
achieve better prediction performance. Common distance measures
include the Euclidean distance, Manhattan distance, etc.

2.4.1.3 MLPNN
The MLPNN is a common artificial neural network used for

variousML tasks, such as classification and regression (Velasco et al.,
2019). It consists of multiple layers, each containing multiple
neurons. The MLPNN typically consists of an input layer, a
hidden layer, and an output layer. The input layer receives raw
data or features and passes them to the hidden layer. The hidden
layer is the core of a neural network, which can have one or more
hidden layers. Each hidden layer can contain multiple neurons. Each
neuron is connected to all neurons in the previous layer, and each
connection has a weight value that can be adjusted according to the
training data. The function of the hidden layer is to perform
nonlinear transformations on the input data, enabling the neural
network to learn more complicated patterns. Finally, the output
layer generates the results of the neural network. We adopted the
simplest MLPNNmodel structure, which consists of one input layer,
one output layer, and some hidden layers. The number of hidden
layer neurons is an important parameter that is determined by
parameter optimization.

2.4.1.4 LR
LR is a common statistical and ML method used to establish

models of linear relationships between variables. In LR, an attempt is
made to predict the relationship between a dependent variable (or
response variable) and one or more independent variables (or
features) by fitting a straight line. By finding the optimal slope
and intercept, the most suitable linear relationship among the data
points can be established for prediction or analysis.

2.4.1.5 RFR
RFR is a ML algorithm that uses an ensemble learning method

(Alwadai et al., 2022). Ensemble learning is a technique that
combines multiple models to achieve better prediction
performance. RFR is an improved random forest algorithm for
regression problems. In regression problems, the goal is to
predict a continuous numerical output, rather than discrete labels
as in classification problems. RFR makes predictions by combining
multiple decision tree models trained on different datasets. It also
performs well in handling high-dimensional data, missing values,
and outliers. In summary, RFR is a powerful ML algorithm that can
be used to solve various regression problems.

2.4.1.6 GBRT
The GBRT is a powerful ML technique used to solve regression

problems (Xu et al., 2023). It is a type of ensemble learning method
that improves the prediction performance by combining multiple
decision tree models. Specifically, the working method of the GBRT
is to gradually construct a series of decision tree models, each of
which is trained based on the residuals of the previous model.
During the training process, the model pays more attention to
samples with previous model prediction errors to gradually
reduce the overall prediction error. This is achieved by adjusting

the weights of the samples and the learning rate, allowing each new
model to focus more on samples that the previous model did not
predict correctly.

2.4.2 Preprocessing before modeling
The dataset was stochastically divided into training, validation,

and test sets with the widely accepted ratio of approximately 6:2:2
(Yoon, 2021). A total of 3,174 training set data were used to train the
model, 1,058 validation set data were used for parameter
optimization, and 1,056 test set data were used to test the
model’s generalizability and robustness. In addition, to avoid the
impact of differences in data magnitude on the model’s learning
ability, Eq. 2 was applied to standardize the data.

X′
i �

Xi − �X

σ
(2)

Where Xi is the original sample value, �X is the average value of
the original sample, σ is the standard deviation of the original
sample, and X′

i is the standardized value.

2.4.3 Parameter optimization
The genetic algorithm is a popular parameter optimization

algorithm that has been applied in multiple ML model research
(Wang et al., 2022; Quan et al., 2022). This algorithm is designed
and proposed based on the evolutionary laws of organisms in
nature. When optimizing parameters, genetic algorithms usually
first construct a set of random solutions called populations and
evaluate these solutions through fitness functions. Then, leave
behind some solutions with higher fitness, and generate the next-
generation through crossover and mutation. In this way, as the
algebra increases, the solution develops towards the optimal
direction until it reaches the stopping condition. Finally, the
genetic algorithm will output the solution with the highest fitness,
which is the approximate optimal solution of the problem.
Therefore, when setting the algorithm, it is necessary to set
the fitness function, population size, maximum genetic
algebra, crossover fraction, and mutation fraction. When using
genetic algorithms to solve complex combinatorial optimization
problems, better optimization results are achieved more quickly
compared to those of some conventional optimization
algorithms.

2.4.4 Model performance evaluation methods
Three evaluation indicators, the root mean square error

(RMSE), mean absolute error (MAE), and Nash–Sutcliffe
efficiency (NSE), were used to evaluate the performance of the
model. When the RMSE and MAE values are smaller and the NSE
is closer to 1, the prediction performance of the model is better
(Lu et al., 2023). The calculation formulas for the evaluation
indicators are as follows:

RMSE �
�������������
1
n
∑n
i�1

obi − pri( )2√
(3)

MAE � 1
n
∑n
i�1

obi − pri
∣∣∣∣ ∣∣∣∣ (4)

NSE � 1 − ∑n
i�1 obi − pri( )2∑n
i�1 obi − ob( )2 (5)

Frontiers in Environmental Science frontiersin.org05

Huang and Chen 10.3389/fenvs.2023.1328723

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1328723


where n is the sample size, obi and pri are the monitored and
predicted values of the ith sample, respectively, and ob is the average
of the monitored values.

3 Results and discussion

3.1 Analysis of discharge water temperature

In addition to the DWT in 2022 (DWT 2022) monitored in this
study, we also collected the natural water temperature at the dam site
before the construction of the PBGR, the discharge water
temperature in 2017 (DWT 2017), and the DWT in 2018 (DWT
2018). We processed these water temperature data into monthly
averages and displayed them in Figure 4. Affected by meteorological
conditions, the natural water temperature showed a trend of
increasing from January to August and decreasing from August
to December. The construction of the reservoir had a certain impact
on the rhythm of water temperature, showing a consistent pattern in
DWT 2017, DWT 2018, and DWT 2022, namely, a decrease from
January to March, an increase from March to September, and a
decrease from September to December. Compared to natural water
temperatures, the PBGR released low temperature water from
March to August and high temperature water from other
months. It can be seen that the construction of the PBGR has
disrupted the rhythm of natural water temperature, which is
consistent with many existing reservoirs (Alavian et al., 1992; Lu
et al., 2023; Wang et al., 2024). Within the statistical year (Figure 4),
the maximum low-temperature water discharge amplitude is 2.9°C,
which will have a negative impact on the aquatic ecology
downstream of the dam (Zhang et al., 2015; Labaj et al., 2016).
As the watershed where the study case is located, the Dadu River
Basin is home to numerous habitats and spawning grounds for
protected Chinese fish species (Song et al., 2008; Bangfu et al., 2022).
Numerous reservoirs have been constructed in the Dadu River
Basin, disrupting the natural fluctuations of the water
temperature and potentially threatening the survival and
reproduction of fish (Barbarossa et al., 2021). Therefore, how to
achieve rapid prediction and regulation of watershed water
temperature is an urgent problem to be solved.

3.2 Construction of machine learning
models for discharge water temperature

3.2.1 Parameter optimization based on
genetic algorithm

The genetic algorithm was used to optimize the parameters of
the models. We referred to (Wang et al., 2022) to set the parameters
of the genetic algorithm (Table 1) and used R2 as the fitness function.
When using the coefficient of determination (R2) as the fitness
function of the genetic algorithm, the larger the R2 value is, the better
the model performance. The optimal parameters and their R2 values
on the validation set are presented in Table 2. In response to the
problem in this study, the SVR algorithm performs best when using
RBF as the kernel function. The optimal values for C and γ are
15.4 and 0.58, respectively, corresponding to an R2 of 0.979. When
using the KNN to model, the optimal number of neighbors is
determined to be 5, and with this setting, the R2 is 0.945. When
using the MLPNN model for prediction, the optimal results are
obtained when using the tanh function as the activation function.
With this setting, the use of 761 hidden layers is optimal, and the
corresponding R2 is 0.941. The performance of the LRmodel is poor,
with an R2 of only 0.862. However, the performance of the RFR and
GBRT is similar to that of SVR. The optimal results are achieved
with these two models when using 22 decision trees and 89 decision
trees, respectively, with corresponding R2 values of 0.962 and 0.967.
It can be seen that during the training process, the optimal model is
the SVR model, followed by the GBRT and RFR models. This study
used genetic algorithm for parameter optimization to quickly obtain
high-precision models. We also attempted grid search and found
that the efficiency of the same parameter range was much lower than

FIGURE 4
Discharge water temperature of PBGR in different periods.

TABLE 1 Genetic algorithm parameter settings (Wang et al., 2022).

Parameter Value

Population size 50

Maximum genetic algebra 100

Mutation fraction 0.05

Crossover fraction 0.5
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that of genetic algorithms. Some studies (Liashchynskyi and
Liashchynskyi, 2019; Alibrahim and Ludwig, 2021) have pointed
out that the performance of different optimization algorithms is
difficult to compare. However, for larger parameter search ranges,
evolutionary algorithms such as genetic algorithms are the best
options for parameter optimization. Therefore, when we do not
know the approximate position of the parameters, in order to obtain
the optimal parameter combination, genetic algorithms can be used
to obtain the desired results most efficiently.

3.2.2 Comparison and selection of models
In this section, the model performance of the six ML algorithms

with their best settings, as obtained in Section 3.2.1, is evaluated. In

addition, the prediction performance of each model is evaluated
using the fitting effect between the observed and predicted values, as
well as the MAE, RMSE, and NSE statistical indicators.

Figure 5 shows the prediction results of the optimal settings of
the six models on the test set. The fitting effects of most models are
within the acceptance range. The R2 values of the SVR, KNN,
MLPNN, LR, RFR, and GBRT models are 0.976, 0.972, 0.908,
0.875, 0.974, and 0.976, respectively. From the model
performance evaluation indicators in Table 3, the performance of
the SVR model is superior to that of the other models. The RMSE,
MAE, and NSE values of the SVR model are 0.490°C, 0.272°C, and
0.976, respectively, while those of the KNN model are 0.530°C,
0.226°C, and 0.972, respectively. The RMSE and MAE values of the

TABLE 2 Optimal parameters and validation stage performance for each model.

Algorithm Parameter R2

SVR Use the RBF as the kernel function (C = 15.4 and γ = 0.58) 0.979

KNN Use the Euclidean distance to calculate the distance (K = 5) 0.945

MLPNN Use tanh as the activation function (hidden layers = 761) 0.936

LR — 0.862

RFR 22 decision trees 0.962

GBRT 89 decision trees 0.967

Note: The bolded row in the table represents the best performing model.

FIGURE 5
Scatter plot of DWT observed and predicted in the test set. (A–F) Represent the results of SVR, KNN, MLPNN, LR, RFR, and GBRT models,
respectively.
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MLPNN model were significantly higher than those of SVR and
KNN, with values of 0.969 °C and 0.570°C, respectively. Thus, the
performance of this model is clearly unsatisfactory. The RMSE,
MAE, and NSE values of the LR are 1.137°C, 0.706°C, and 0.871,
respectively, indicating that the problem of DWT is a nonlinear
problem. The performance of the RFR and GBRT models is similar
but still slightly inferior to that of the SVR model. The maximum
absolute error of each model was statistically analyzed, and the
values of the SVR, KNN, MLPNN, LR, RFR, and GBRT models are
3.76°C, 5.10°C, 8.10°C, 9.78°C, 8.74°C, and 3.99°C, respectively. In
addition, when comparing the models in terms of the validation and
test set results, the SVR, and GBRT models all show similar
performance. However, the SVR model is more stable, with the
smallest R2 difference between the validation and test sets. Overall,
we evaluated the performance of the models from multiple
perspectives. The maximum absolute errors of the KNN, LR,
RFR, and MLPNN were unacceptable, even if the overall errors
of some models were small. Therefore, these four models were
excluded, and the performance rankings of the other models were as
follows: SVR > GBRT. Hence the SVR model (RBF kernel function)
was chosen as the DWT prediction model, which is consistent with
previous research (Lu et al., 2023).

We compared the DWT prediction performance of six ML
models, namely, the SVR, LR, RFR, KNN, MLPNN, and GBRT
models. Among them, the LR model has the worst performance
(Table 2; Table 3; Figure 5). The DWT problem is a nonlinear
problem. Thus, the LR model has poor mechanism recognition. The
other models are able to better identify DWT variations (Table 2;
Table 3; Figure 5), among which the SVR model (RBF kernel
function) has the best performance. ML algorithms have the
ability to make functional predictions by establishing mapping
relationships between input and output indicators. The SVR
model has a good nonlinear relationship modeling ability,
mapping data to higher dimensional spaces through kernel
functions, thereby finding better linear relationships in new
spaces (Meng et al., 2023). In addition, RBF kernel functions
have strong nonlinear modeling capabilities, mapping data to
high-dimensional spaces, enabling better identification of
nonlinear relationships in new spaces and capturing more
complex data patterns. The shape of the RBF kernel function can
be adaptively adjusted according to the data distribution, thereby
improving the flexibility of the model. In this study, the SVR model
using RBF is the most suitable for predicting the DWT of the case

reservoir. However, it should be noted that the performance
differences of the various models in this study are not significant.
Therefore, the optimal algorithm should be redefined when applied
to other reservoirs.

3.3 Early warning model performance

We used the SVR model with the best performance in section
3.2 to construct a DWT early warning model. This model was
refined based on an hourly scale. The early warning hours ranged
from 1 h to 24 h. Train and test warning models at different
times, and conduct statistical analysis of model performance
(Figure 6). Overall, the performance of nonearly warning
model (0 h) is slightly better than that of early warning
models (1 h–24 h). The RMSE and MAE values of the early
warning model (1 h–24 h) are slightly higher than those of the
nonearly warning model (0 h) while the R2 is slightly lower. The
R2 of the early warning models fluctuate in the range of
0.943–0.979 for 1 h–24 h, while the RMSE and MAE values
fluctuate in the range of 0.487°C–0.604°C and
0.222 °C–0.305°C, respectively. The performance is acceptable,
and the model can provide early warning functions within 24 h.

At present, researchers have proposed many ML prediction
models for river water temperature (Zhu and Piotrowski, 2020;
Jiang et al., 2022), but there are few warning models and almost no
research on hourly scale warning models for reservoir DWT. For the
river water temperature, its natural value, which is not affected by
the reservoir, fluctuates with air temperature during the day (Hebert
et al., 2014; Croghan et al., 2019). However, under the influence of
the reservoir, the downstream water temperature flattens (Yong-Bo
et al., 2010). To best mitigate the impact of the reservoir on
downstream water temperature, the DWT should be adjusted
hourly, and the warning model constructed in this section creates
the possibility for such adjustments. In addition, compared to
numerical simulation, ML models are more suitable for high-
frequency DWT prediction. Numerical simulation methods are
commonly used for DWT prediction, but these methods require
inflow flow rate, discharge flow rate, meteorological, complex
terrain, and inlet and outlet water temperature data (Wang et al.,
2023), and their calculation speed is relatively slow. Therefore, the
DWT warning model constructed in this study is more suitable for
short-term prediction of DWT.

TABLE 3 Model performance evaluation index values during the test period.

Algorithm Test period

RMSE (°C) MAE (°C) NSE

SVR 0.490 0.272 0.976

KNN 0.530 0.226 0.972

MLPNN 0.969 0.570 0.908

LR 1.137 0.706 0.871

RFR 0.515 0.281 0.974

GBRT 0.496 0.288 0.976

Note: The bolded row in the table represents the best performing model.

FIGURE 6
Early warning model performance.
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3.4 Optimization scheduling of discharge
water temperature based on SVR

Select the stratified period of 27 September 2022 for optimal
scheduling of the DWT. Figure 7A displays the RVWT in front
of the PBGR dam on 27 September 2022. The RVWT
stratification was obvious and presented a pattern of vertical
mixing at depths of 0–10 m and 40–80 m, as well as stratification
at depths of 10–40 m (with a temperature gradient of 0.09 C/m).
We used the SVR model constructed in section 3.2 to predict the
DWT, and the absolute error between the predicted and
observed values was 0.08°C, which was smaller than the error
of most numerical simulations (Shaoxiong et al., 2019; Wang
et al., 2024). Due to the absence of a stratified water intake
facility in this study case, compared to the RVWT, the easier
short-term DWT regulation measure is DF regulation.
Therefore, we predicted the DWT under different DFs based
on the SVR model. Considering that the DF range during the
observation period in 2022 was 88–3,663 m3/s, we set the DF
condition as a range of 100–3,500 m3/s with a gradient of
200 m3/s. We predicted the DWT under different DF, and
the predicted results are shown in Figure 7B. The DWT
increases with the increase of DF, which is consistent with
the actual pattern. In addition, we found that different DF
intervals have different relationships with the DWT. We
divided the areas based on the slope of the scattered points,
with 0–500, 500–2,500, and 2,500–3,500 m3/s being divided into
Zone I, Zone II, and Zone III (Figure 7B). The slopes of the three
zones, from large to small, are 0.13 °C/(100 m3/s) (Zone I),
0.06 C/(100 m3/s) (Zone II), and 0.03 °C/(100 m3/s) (Zone
III). Therefore, the relationship between the inertial force
generated by the DF and the buoyancy generated by the
RVWT stratification is nonlinear (He et al., 2018; Yang et al.,
2021; Liu et al., 2022). The model constructed by this study has
high generalization ability and can be applied to the optimal
operation of reservoir discharge water temperature.

3.5 Future perspective

The Dadu River is located in the upper reaches of the Yangtze River
and is a typical representation of China’s hydropower development
(Duan et al., 2020). At present, a 28 level hydropower plan has been
developed for the Dadu River Basin. With the operation of cascade
reservoirs, its cumulative impact on the water ecology is difficult to
estimate. In this study, we only conductedMLmodeling of the DWT of
the PBGR, a reservoir in the Dadu River. This model can provide
decision-making support for themanagement of theDWTof the PBGR
in terms of reservoir operation. In the future, a prediction model for the
water temperature of cascade reservoirs in the Dadu River Basin should
be established based on themodel constructed in this study. In addition,
this study only conducted a simple analysis of regulating the DF to
regulate the DWT. In fact, reservoir scheduling needs to consider
various factors, such as power generation, water quality, water
quantity, etc. In the future, based on the DWT model constructed
in this study, coupled with the models of other considering factors, an
optimized operationmodel can be constructed to determine the optimal
operation mode of the reservoir.

4 Conclusion

The DWT is the boundary condition of downstream river water
temperature and has a significant impact on the ecological health of
downstream water. Accurately predicting the water temperature of
reservoir discharge is helpful for the ecological protection of
downstream river water. We constructed a refined artificial
intelligence prediction model for DWT according to high-
frequency monitoring data of the PBGR. Based on the influence
mechanism of the DWT, the RVWT, WL, and DF were chosen as
input indicators. We compared the performance of six models: SVR,
KNN, MLPNN, LR, RFR, and GBRT. The SVR model with RBF had
the best performance among these models. The genetic algorithm
was used for parameter optimization, and on the validation set, the

FIGURE 7
Optimization and scheduling results of discharge water temperature on 27 September 2022. (A)Observed vertical water temperature in front of the
dam on 27 September 2022. (B) The optimized scheduling results of discharge water temperature based on discharge flow regulation are divided into
three zones: I (the discharge flow range is 0–500 m3/s), II (the discharge flow range is 500–2,500 m3/s), and III (the discharge flow range is
2,500–3,500 m3/s).
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R2 of the SVR model was 0.979. The performance of the SVR model
based on optimal parameters on the test set was as follows: RMSE =
0.490°C, MAE = 0.272°C, and NSE = 0.976. A 1–24 h early warning
model was constructed based on the SVR model, which had slightly
worse performance than that of the non-early warning model.
However, the performance of this model was still within an
acceptable range. Finally, based on the SVR model, we optimized
the scheduling of DWT and found that the constructed model has
high generalization ability, effectively identifying the nonlinear
relationship between DWT and DF. The constructed model can
provide short-term forecasting and decision-making references for
reservoir management decision-makers.
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