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Despite the research on the responses of grassland vegetation to climate change
and topography has advance worldwide, the large-scale importance of these
parameters to grassland vegetation greening in arid regions across environmental
gradients is unclear. To address this, in this study, we applied MODIS Normalized
Difference Vegetation Index (NDVI) data and trend analysis methods to measure
the spatial–temporal variation in grassland vegetation greening in central Eurasia.
Multiple regressionmodels and hierarchical partitioningwere used to quantify the
importance of climate [annual precipitation (AP), annual mean temperature
(AMT), relative humidity (RH)] and topography [elevation (ELE), aspect (ASP),
topographic position index (TPI)] to the NDVI. The results showed that there
was a significant increasing trend in the NDVI of meadows, but not other
grassland types, from 2000 to 2021 (3.3 × 10−3/year, p < 0.05). Additionally,
the responses of the NDVI to climate and topography in deserts were positively
correlated with RH, AP, and ELE. Meanwhile, the dependence of NDVI on climate
and topography decreased with increasing RH. Under conditions of escalating
AMT and AP, RH and ELE independently contributed to explaining the NDVI.
However, RH may be the key determinant of long-term NDVI stabilization in arid
grassland. These findings underscore the significance of
vegetation–climate–topography feedback and can inform the development of
more comprehensive and effective climate mitigation and adaptation strategies.
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1 Introduction

Grasslands cover approximately 40% of the terrestrial biosphere (Hufkens et al., 2016)
and provide abundant livestock products and diverse ecosystem services such as carbon
cycling, climate regulation, and maintenance of biological diversity (Knapp and Smith,
2001; Maestre et al., 2022). Grasslands are commonly found in arid and semi-arid regions
with an annual precipitation of at least 400 mm, and their existence is primarily attributed
to climate control (Bardgett et al., 2021). Almost all grassland vegetation, which supports
multiple ecosystem functions, has experienced large fluctuations due to frequent climatic
and topographic changes over recent decades (Erdős et al., 2022).

Numerous studies have demonstrated that topography, an aggregate indicator of spatial
and physical characteristics, can dramatically affect vegetation structure and functioning;
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elevation, in particular, is frequently associated with alterations in
community composition (Fairbanks and McGwire, 2004; Hu and
Xia, 2019). Since the last century, temperate grasslands have
experienced warming and wetting, especially during extreme
weather events, the effects of which are uncertain (Sloat et al.,
2018; Styles et al., 2018). One fundamental way through which
vegetation and variation in topography interact across all ecosystems
is through their marked effect on local temperature and moisture
availability, which can affect grassland vitality. However, their
interactive effects are complex and unclear and have been largely
ignored in these highly heterogeneous grasslands (Erdős et al., 2022).

The Normalized Difference Vegetation Index (NDVI), which is
computed from the difference between the reflectance of the near-
infrared (NIR) and red bands, is a commonly used measure for
evaluating the presence of healthy green vegetation in an observed
area (Dutta et al., 2021). It has been effectively used in vegetation
dynamics monitoring (such as coverage, productivity, and
phenology) and the study of vegetation responses to climatic
changes at different scales during the past few years (Mao et al.,
2012; Piao et al., 2014). Additionally, this index is the primary input
for generating other geophysical products, such as the leaf area
index, evapotranspiration, and land cover classification (Cihlar et al.,
1991; Iiames et al., 2020).

On the other hand, topography plays a significant role in
modulating the effect of climate on grassland vegetation. It
affects local temperature and moisture availability, thereby
influencing the distribution and characteristics of grassland
ecosystems (Fang et al., 2005). Topographical factors, such as
slope orientation and aspect, can determine whether a region
supports forested areas or steppe-dominant landscapes
(Lembrechts and Nijs, 2020). The presence of north-facing steep
hills in the Inner Asian steppe region is often associated with
forested areas, while south-facing hillsides promote the expansion
of temperate steppe vegetation (Dengler et al., 2014). Soil moisture
disparities resulting from topography further contribute to the
distribution of grassland types (Andrade Diaz et al., 2023;
Schrader Patton et al., 2023). Regions with better soil moisture,
such as north-facing aspects, typically support mountain meadows
or temperate meadow steppes, while south-facing hillsides with
higher temperatures and decreased soil moisture favor temperate
steppe expansion (Dunne et al., 2003). Additionally, specific
topographic features like ravines, erosion gullies, and depressions
can create microclimates with milder conditions and a greater
supply of soil water, thereby facilitating the occurrence of
meadows (Evans, 1960).

Abiotic factors can influence vegetation growth and then
indirectly impact the NDVI (Joiner et al., 2018; Sanz et al., 2021).
However, there is still no consensus on the relationship between
climatic factors and topographic features (Callaghan et al., 2020).
Large-scales studies covering a wide range of temperatures, moisture
levels, and elevations are particularly scarce (Callaghan et al., 2020;
Elsen et al., 2020). Typically, regions exhibiting high temperatures
and moisture levels possess greater soil moisture inputs, thereby
enhancing the NDVI. Paradoxically, NDVI values in the Mekong
River Basin are lower in areas characterized by higher temperatures
and moisture levels (Ouyang et al., 2020). This could primarily be
attributed to the increased soil respiration rates and heightened soil
moisture brought about by elevated temperatures, resulting in

reduced oxygen levels with potential detrimental effects on the
NDVI (Fu and Sun, 2022). Understanding vegetation changes in
grasslands and their drivers is essential for comprehending the
trade-offs between grassland function relating to food security
and climate mitigation, as well as how grassland management
could be improved to meet global climate targets.

Currently, there is insufficient knowledge about the empirical
connections between climate, plants, soil, microbial physiological
traits, and NDVI. Here, we investigated the relative contribution of
climate [annual precipitation (AP), annual mean temperature
(AMT), and relative humidity (RH)] and topography [aspect
(ASP), elevation (ELE), and topography position index (TP)] to
grassland vegetation greening. We collected meteorologic,
topographic, and remote sensing data for different environmental
gradients in grasslands from 2000 to 2021 in Xinjiang, a central part
of the Eurasian and most arid region of China. We investigated
whether increased hydrothermal conditions have a positive effect on
grassland across environmental gradients and sought to identify the
important predictors of NDVI variation. Understanding the changes
in grassland vegetation greening is critical for addressing climate
change-induced fluctuations in grassland vegetation.

2 Materials and methods

2.1 Study area

Xinjiang is an autonomous region in northwestern China,
situated at the intersection of Central and East Asia. It is the
largest province-level division in China, encompasses an
expansive area of over 1.6 million km2 and is home to
approximately 25 million inhabitants. Geographically, Xinjiang
shares borders with a multitude of countries, including Russia,
Mongolia, Kyrgyzstan, Kazakhstan, Tajikistan, Pakistan,
Afghanistan, and India. The majestic Karakoram, Kunlun, and
Tian Shan Mountain ranges dominate substantial sections of
Xinjiang’s borders, particularly in the western and southern
regions. The study area focuses on the southern desert and
northern marsh of Xinjiang (34°25′–48°10′N, 73°40′–96°18′E;
altitude: 173–8,052 m; Figure 1). Xinjiang is subject to a semiarid
or desert climate, as classified by the Köppen BSk or BWk climate
types, respectively (Rubel and Kottek, 2011). The region is
characterized by significant seasonal temperature fluctuations,
with harsh winters. In the summer, the Turpan Depression
frequently experiences some of the highest temperatures in the
country, surpassing 40°C. In the northernmost regions, where the
mountains reach their peak, winter temperatures routinely plummet
below −20°C. The dominant soils are desert soils, brown calcic soils,
chernozem, kastanozem, and saline–alkaline soils (Xie et al., 2007).
Natural grassland covers 3.95 × 107 ha, or 23.85% of the entire area
of Xinjiang (Sciences, 2001). The vegetation in this region is
primarily composed of perennial plants such as tussock grasses
(Agropyron cristatum, Festuca valesiaca, and Stipa spp.) and
Seriphidium (Seriphidium transiliense and S. borotalense).
According to China’s grassland classification standards, grassland
in Xinjiang is divided into 11 types-alpine desert, temperate steppe
desert, temperate desert, alpine steppe, temperate meadow steppe,
temperate steppe, temperate desert steppe, lowland meadow,
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mountain meadow, alpine meadow, and marsh (Supplementary
Figure S8). The study area encompasses three primary grassland
types: meadow, steppe, and desert, as per the classification standards
outlined by China’s grassland classification system (Su, 1996).
Owing to the changeable climate and complex topography, the
three types of grasslands are staggered with each other from
north to south. The specific region of grassland is given by the
Xinjiang Uygur Autonomous Region Forestry and Grassland
Administration (Figure 1).

2.2 Regional-scale digital elevation model
and meteorological data

The topographic data with a spatial resolution of 30-m were
obtained from the Geospatial Data Cloud of the Chinese Academy of
Sciences (https://www.gscloud.cn). SuperMap GIS 9D was used to
mosaic and mask, as well as to extract the elevation (ELE) and
calculate the aspect (ASP) and topographic position index (TPI).
The contribution of three climatic variables, namely, AP (mm), RH
(%), and AMT (°C), to grassland variability was quantified. The
study obtained these variables from 66 meteorological stations
across the study region, which were acquired from the China
Meteorological Data Service Center website (http://data.cma.cn/
en). First, a spatial interpolation technique was used to estimate

climate variables for the period 2000–2021. The ANUSPLIN
software package was used to interpolated the site-level at a
resolution of 250-m (Parra and Monahan, 2008). The package
utilizes thin plate smoothing splines, a widely used for the
interpolation of climatic variables (McKenney et al., 2006). The
accuracy and reliability of the interpolated meteorological dataset
have been rigorously evaluated and demonstrated to be of high
quality (Mahony et al., 2017). Second, to obtain climate variables in
grassland sampling sites from 2000 to 2021, image data were
extracted using SuperMap GIS 9D.

2.3 Data on grassland vegetation greening

The study utilized vegetation greening datasets (NDVI)
produced by the MODIS instrument (MOD13Q1 product). The
datasets utilized in this study were obtained from the MODIS Terra
satellite sensor, providing a spatial resolution of 250 m. These
datasets were composited over a 16-day period. Pre-processed
MODIS NDVI images were downloaded from the NASA
database available at https://ladsweb.modaps.eosdis.nasa.gov. The
acquired NASA NDVI time series data spanning from 2000 to
2021 served as the fundamental dataset for analyzing the spatial and
temporal patterns of NDVI within the study areas. To mitigate
atmospheric effects and cloud contamination present in MODIS

FIGURE 1
Overview of the location of the study area. The impacts of climate change and topography on the vegetation of grasslands in Xinjiang in northwest
China were investigated; white on the map indicates non-grassland.
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biweekly datasets, maximum value compositing (MVC) of daily data
was employed (Gutman, 1991). The resultant biweekly NDVI
datasets were in a band sequential (BSQ) image format. Image
processing software, namely, SuperMap GIS 9D and GEOWAY, was
employed to convert the images into raster grid format and extract
the specific study areas.

2.4 Statistical analysis

Pearson’s rank correlation coefficient was employed to
investigate relationship among interannual variability in AP, RH,
AMT, ASP, ELE, TPI, and NDVI for grassland. After log
transformation, Pearson’s rank correlation coefficients were
calculated for non-normally distributed variables. Correlations
with p-values < 0.05 were considered significant. A pixel-based
analysis was performed to estimate vegetation trends on an annual
time series using the Mann-Kendall test (Mann, 1945). Mann-
Kendall statistics were computed to assess temporal trends for all
possible combinations of values at each pixel over time
(MauriceKendall, 1949). Subsequently, the NDVI time series data
were analyzed to estimate the temporal variations within the three
distinct grassland types, namely, meadow, steppe, and desert. We
used MATLAB 2020b software to perform the Mann-Kendall.
Random Forest classification was applied to determine pairwise
proximities and measure the similarities between data points
relation to the supervised task (Rhodes et al., 2023). “Random
Forest classification” is a method used to analyze data and make
predictions based on patterns. It works by creating a group of
decision trees that work together to classify or categorize data. In
this case, the Random Forest classification was used to find out how
similar or close different data points are to each other in relation to a
specific task that involves supervision or guidance (Speiser et al.,
2019). The pairwise proximities refer to comparing each pair of data
points to see how alike or different they are. This helps measure the
similarities between the data points based on the supervised task.
Overall, the Random Forest classification was used to find
similarities between data points by comparing them to each other
using a grouping of decision trees (Karabadji et al., 2023).

This study utilizes a machine-learning algorithm to enhance the
conventional classification and regression tree methods. The
algorithm was applied to identify the key factors that significantly
influence NDVI and multiple ecosystem functions. The importance
of environmental factors was assessed through 1,000 iterations of
10-fold cross-validation, implemented using the “rfcv” function
from the R package “randomForest,” with five repetitions
(Breiman, 2001). To conduct a comprehensive multi-model
comparison (MUM), we employed the “dredge” function from
the MuMIn package (Polley et al., 2012). This function
systematically generates all possible sub-models and ranks them
based on the corrected Akaike Information Criterion (AICc) values.
Model averaging was performed for the best models with a ΔAICc <
2 threshold, utilizing the “model.avg” function from the MuMIn
package. This process allowed us to obtain the most influential
predictor variables and their corresponding coefficients. To
determine the relative importance of predictors in driving NDVI,
we calculated the relative effect of parameter estimates for each
predictor compared to all parameter estimates in the model.

Hierarchical partitioning (HP) was performed in R using
rdacca.hp (Lai et al., 2022). To assess the direct and indirect
effects of climate change and livestock grazing on grassland and
evaluate their interaction, we employed piecewise structural
equation modeling (SEM) with the piecewiseSEM package
(Lefcheck, 2016). The flow chart for the methodology used is
shown in Figure 2.

3 Results

3.1 Spatial and temporal variation in
environmental factors and
vegetation greening

Grassland NDVI values displayed high spatial heterogeneity in
Xinjiang. Areas with a high NDVI (>0.6) constituting 17.2% of the
entire land area, were predominantly found in the mountainous
regions located in the northern and central parts. In the central
regions, 34.9% of the grassland NDVI was in the 0.3–0.6 range, while
47.9% of the north basin had a low (<0.3) NDVI (Figures 3A–C).

The NDVI of grasslands displayed an overall increasing trend in
Xinjiang (Figure 3J). By the Mann-Kendall trend test, regions
exhibiting upward trends comprised more than 20% of the
overall area, while those with a significantly increased NDVI
(9.5%) were distributed in the central mountainous region (Tian
Shan Mountains). Moreover, it is noteworthy that a considerable
portion, 10.7% of the studied area exhibited a declining trend.
Intriguingly, only a minuscule 1.1% of the region demonstrated
an immensely significant increased trend in NDVI. This noteworthy
trend was primarily observed in the northern sector, with sporadic
occurrences also noted in the southern portion of the grassland
(Figures 3D–F). We found a spatially and temporally distinct
relationship between environmental factors and the NDVI in
Xinjiang grassland from 2000 to 2021 (Figures 3A–F, J). During
the designated study period, diverse distributions of NDVI were
observed across various grassland types (Figures 3D–F). Notably, the
NDVI of the meadow exhibited a substantial and statistically
significant upward trend (3.3 × 10−3/year, R2 = 0.56, p < 0.05),
while those of steppe (3.0 × 10−3/year, R2 = 0.04) and desert (2.8 ×
10−4/year, R2 = 0.06) showed no significant trend (Figures 3A–C).

Moreover, spatial variation in climate and topography was found in
both the horizontal and vertical dimensions. Horizontally, the AP in
meadow, steppe, and desert was significantly higher toward the north
than in the south (p < 0.05), and was also higher in the west than in the
east (Supplementary Figure S1; Supplementary Table S8). On a vertical
scale, there was a significant difference in AP between mountains and
plains (p < 0.05), with the central portion of the Tian Shan Mountain
range being considerably wetter than the meadow and steppe plains
(Supplementary Figures S1A, B). RH exhibited comparable spatial
variability and displayed a significant increase in both the
mountainous and flat regions to the north compared with that in
the south (Supplementary Figure S2). Meadows had a higher RH
(78.04%) than deserts and steppes, and the higher RH meadows
occur in the central Tian Shan Mountains (Supplementary Figure S2).

The AMT exhibited a spatial pattern opposite to that of AP and
RH, with the greatest increase being observed in the southern plains,
while a slight reduction was detected in the meadows of the center of
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the Tian Shan Mountain range (Supplementary Figure S3A). In
deserts, however, warming was more pronounced in the northern
basin (Supplementary Figure S3C). AP, AMT, and RH also varied
from 2000 to 2021, exhibiting an upward trend in grasslands
(Figure 3G). Over the past 21 years, the AP increased by an
average of 2.06 mm, with the maximum (247.60 mm) occurring
in 2016, exceeding the 21-year average precipitation of 105.52 mm
(Supplementary Table S1). Although RH is positively correlated
with AP, its variation was negligible, and the highest value was
recorded in 2017 (60.74%). Additionally, there was a slight increase
in the AMT, amounting to 0.12°C, from 2000 to 2021
(Supplementary Table S1).

In Xinjiang, the ELE of grasslands is generally higher in the
south than in the north. In this study, the grassland distribution
ranged from 6,323 m at its highest point in steppe on the west side of
the Kunlun Mountains to −121 m at its lowest point, which was in
the Turpan Basin (Supplementary Figure S4; Supplementary Table
S2). The grassland area was divided into nine ASPs from south to

north according to the orientation of the hillside (Supplementary
Figure S5). North was the most common ASP in the three grassland
types (meadow: 22.82%, steppe: 21.75%, desert: 22.27%), followed by
south (meadow: 17.83%, steppe: 16.64%, desert: 17.10%); flat aspect
accounted for <2% of the total grassland area (Supplementary Table
S3). The TPI showed marked variation in mountains. The TPI value
ranged from 1,127 in the Kunlun Mountains to −748 in the Tian
Shan Mountains (Supplementary Figure S6;
Supplementary Table S2).

3.2 The relationship of topography and
climate with vegetation greening

The three grassland types exhibited a highly heterogeneous spatial
distribution in our study areas, as illustrated by the radar plots in
Figure 4. The highest ELE and NDVI values were found in the wettest
meadows. Meanwhile, the driest deserts were distributed in areas with

FIGURE 2
Flow chart for the methodology used.

FIGURE 3
Spatial and temporal variation of climatic factors and vegetation greening in different grassland types between 2000 and 2021 in Xinjiang. (A–C) The
spatial distribution of the Normalized Difference Vegetation Index (NDVI). (D–F) The NDVI trend of meadow, steppe, and desert, respectively. The white
areas were excluded from the assessment because the focus of this study was limited to natural grassland. (G–J) Interannual climate factors and NDVI
variation in different grassland types from 2000 to 2021.
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the highest AMT and more complex and variable topography (both
ASP and TPI exhibit their maximum values in desert), while steppes
were distributed in areas lying between deserts andmeadows (Figure 4).

Notably, our data suggested that different vegetation types across
environmental gradients exhibit varying sensitivities to climatic and
topographic factors. Through Pearson’s correlations, we observed a

FIGURE 4
(A) Radar plots representing the relationship between grassland vegetation greening and environmental factors. (B–D) Pearson correlations
between climate, topography and vegetation greening. Red and blue color indicate a positive and negative relationship. (E–G) The importance ranking of
features obtained from random forest analysis across various grasslands. (B,E) Meadow, (C,F) steppe, and (D,G) desert. Climatic factors include annual
mean precipitation (AP, mm), relative humidity (RH, %), and annual mean temperature (AMT, °C); topography includes elevation (ELE, m), aspect
(ASP), and topography position index (TPI).
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positive correlation between NDVI and AP, RH, and ELE, while AMT
on NDVI varied depending on the specific vegetation type and
topographical characteristics, resulting in both positive and negative
effects (Supplementary Figure S7). To assess the impact of different
environmental factors on the different grasslands, we applied ten-fold
cross-validation and random forest classification in our study regions to
determine the important predictors of changes in the NDVI. Based on
the outcomes of the ten-fold cross-validation (Supplementary Table S4),
it has been determined that only 4 out of the 6 variables are required to
elucidate the variations observed in NDVI throughout this study.
Consequently, through the implementation of random forests, the
4 explanatory variables possessing the highest levels of significance
were diligently chosen for further investigation and analysis (RH, ELE,
AP, and AMT) (Figure 4; Supplementary Table S4). The most
important variables were found to be RH and ELE, especially in
steppe and meadow. In these two grassland types, the importance of
different climatic and topographic factors differed across our datasets.
In addition to ELE and RH, AP and AMT were the major
environmental factors affecting the NDVI in meadows and steppes
(Figures 4A, B, E). In deserts, partial dependency plot analysis indicated
that a higher NDVI was associated with higher AMT, RH, and AP,
while ELE had a greater effect on the other grassland types (Figures 4C,
F). Accordingly, the analysis results from the random forest model
indicated that both RH and ELE emerged as the most influential
predictors (Figure 4), and climate (AP and AMT) was the most
significant driver of NDVI variation (Figure 4;
Supplementary Table S4).

3.3 The dominant determinants of
vegetation greening in different grasslands

Based on the four most important environmental factors (RH,
ELE, AP, and AMT) predicted by the random forest model, we
further quantitatively analyzed the impact of those environmental

factors on the NDVI. Analysis based on multivariable stepwise
regression and the analytic hierarchy process revealed significant
relationships between environmental factors and changes in
grassland vegetation (Figure 5; Supplementary Table S5). The
model that best explained the NDVI included climate,
topography, and interaction predictors (Supplementary Table S5).
Within the selected AIC threshold (ΔAICc ≤ 2), only one model,
namely, Model 1(Supplementary Table S5) demonstrated a
substantial degree of explanatory power in accounting for the
majority of the variance observed in NDVI (meadow: R2 = 0.688,
steppe: R2 = 0.648, desert: R2 = 0.648; Figure 5). Variation in the
NDVI among grassland types was most significantly linked with
environmental factors. Model-averaged coefficients were estimated
from the six best-candidate models (Supplementary Tables S5, S6).
Meanwhile, we also considered the interaction between climate and
topography because the NDVIs of the various grasslands are always
associated with different topographical and climatic contexts
(Supplementary Table S4). The results of MUM, HP, and SEM
collectively showed that the dominant drivers of grassland NDVI
differed among environmental gradients (Figures 4, 5). For the
moistest meadows, the MUM and HP results revealed that
interaction between ELE and RH played an important role in
regulating the NDVI across the study area. RH × ELE explained
42.45% of the spatial variability observed in the NDVI (Figure 5A).
SEM analysis also demonstrated that the NDVI was primarily and
directly affected by ELE and RH, with a standardized direct effect of
0.57 and 0.23, respectively (Figure 6A).

Like meadow, HP results showed that RH × ELE explained a
much higher proportion (23.36%) of the variation in the NDVI than
ELE (10.41%) or RH (14.68%) alone in steppe (Figure 5B). SEM
analysis also confirmed the important role of climatic and
topographical factors in NDVI variation, showing that with
increasing ELE, greater amounts of AP exert a negative effect on
the NDVI (−0.24) (Figure 6B). AP and ELE jointly explained 13.77%
of the spatial variation in the NDVI (Figures 4B, 6B). In contrast, in

FIGURE 5
The importance of climate and topography on Normalized Difference Vegetation Index (NDVI) variation. Multiple rank regression revealed the
relative importance of themost important predictors of NDVI variation in (A)meadow, (B) steppe, and (C) desert. The standardized regression coefficients
of themodels along with their associated 95% confidence intervals are shown for each predictor. *p < 0.05, **p < 0.01, ***p < 0.001. The bar graphs show
the relative importance of each group of predictors, expressed as the percentage of the explained variance. Climatic factors include annual
precipitation (AP, mm), relative humidity (RH, %), and annual mean temperature (AMT, °C); topography includes elevation (ELE, m), aspect (ASP), and
topography position index (TPI).
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arid deserts, an increase in the AMT generally had a direct negative
effect on the NDVI (Figure 6C). Furthermore, AP and RH both
significantly increased the NDVI (AP: 14.42% and RH: 15.49%)
(Figure 5C); with increasing ELE, greater AP levels decreased the
NDVI (−0.35), whereas RH × ELE increased NDVI (Figure 6C).

4 Discussion and conclusion

Through the utilization of bibliography, long-term observations,
and various statistical methodologies, we conducted a
comprehensive assessment of the temporal and spatial patterns as
well as the primary factors influencing the greening of grassland
vegetation across environmental gradients in Xinjiang. We found
increased temperature and precipitation have resulted in an increase
in NDVI within the grasslands of Xinjiang, specifically in the
mountain meadows (Figure 3). Besides, there is a relatively close
relationship of climate in arid grasslands compared to wet grasslands
(desert: 47.24% vs. meadow: 28.09%; Figures 5A, C). This
phenomenon might be caused by rise in atmospheric CO2; CO2

has been identified as a significant factor contributing to various
environmental changes. One notable effect is the reduction in
precipitation sensitivity, which is observed globally due to the
decreased leaf-level transpiration caused by elevated CO2 levels,
especially in regions with high moisture content. However, it is
important to note that in arid regions, this reduction in leaf-level
transpiration is counterbalanced at the canopy scale by a substantial
proportional increase in leaf area. This phenomenon underscores
the complexity of CO2-induced impacts on transpiration and
highlights the need for further investigation in dryland
ecosystems (Zhang et al., 2022). We also observed that the main
drivers changed with environmental gradients: AMT and AP
dominantly regulated the NDVI of arid grassland, while
interaction between RH and ELE played a more important role
in all grasslands. Despite the significant relationships with ASP and
TPI, they did not enter the final SEM. These results indicate that
microclimate due to changes in topography is not an important
factor for vegetation characteristics as previous studies reported

(Burnett and Anderson, 2019; Ferreira and Duarte, 2019). Instead, it
is possible that other biotic and abiotic factors, such as RH and ELE,
may play a more significant role in influencing the development and
persistence of vegetation greening across the grasslands of Xinjiang.

4.1 Unneglectable role of climate and
topography in vegetation greening
at meadows

Meadow are considered azonal grasslands, and the natural
conditions of the environmental gradients where they are located
favor vegetation growth to a certain extent (Janisova et al., 2011). In
our study period, in meadow located in the moistest area, the NDVI
was more closely associated with RH and ELE (p < 0.05), with RH ×
ELE explaining 42.45% of the spatial variance in NDVI values
(Figures 3A, 4A); additionally, as the RH and ELE increased, the
meadow NDVI also increased, and this effect was significant (3.3 ×
10−3/year, R2 = 0.56, p < 0.05; Figure 3A). This can be explained by
the fact that water use efficiency is enhanced with increasing RH,
which can lead to higher rates of leaf-level photosynthesis and a
decrease in transpiration, resulting in higher NDVI values
(Cernusak and Cheesman, 2015). Boosting leaf-level water use
efficiency promotes ecosystem health, driving vegetation growth
and soil moisture, particularly in water-scarce areas. It paves the way
for sustainable ecosystem management and increases the ecosystem
NDVI as well as soil moisture availability (Wolf et al., 2016).
Previous modeling studies have suggested that indirect effects
play a much more important role in arid regions than in humid
ones because they can be amplified due to differences in vegetation
(Wang et al., 2014; Fatichi et al., 2016).

Furthermore, aside from hydrothermal conditions, other
environmental factors also significantly influence the NDVI.
Limited vegetation greening in these regions is due to constraints
like light, nutrient availability, sink strength, and plant carbon
allocation (Zhang et al., 2022). Generally, higher elevations
benefit from warming and increased humidity, supporting
herbaceous plant growth such as Carex breviculmis and C.

FIGURE 6
Path diagram for structural equation models (SEM) relating to the influence of climate and grazing variables on vegetation greening in the three
grassland types [(A) Meadow, (B) Steppe, (C) Desert]. Climatic factors include annual precipitation (AP, mm), relative humidity (RH, %), and annual mean
temperature (AMT, °C); topography includes elevation (ELE, m).
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alatauensis. However, excessive rainfall decouples transpiration and
precipitation, reducing vegetation’s reliance on precipitation and
increasing resilience to climate variations (Zhang et al., 2023). The
varying strengths of indirect environmental gradients, particularly
hydrothermal conditions, contribute to differences in vegetation’s
dependence on precipitation along dryness gradients (Alkama
et al., 2022).

The minimalistic model employed in this study provides a
hydrological perspective to explain the observed phenomena,
namely, for wetter meadows, where energy availability is the
primary limiting factor, increasing the RH essentially decreases
transpiration and the degree of NDVI dependency on other
environmental factors. This response is also supported by the
similar trends observed in global wetter grasslands for drylands
and non-drylands (Higgins et al., 2023). Furthermore, it is
important to consider additional factors such as soil texture,
rooting depth, water table depth, precipitation seasonality, and
stomatal sensitivity to RH. These factors influence ecosystem
water availability and precipitation sensitivity, and their
interaction with ELE requires further investigation. Additionally,
although the trends in RH and ELE may not fully elucidate the
contrasting global-scale NDVI trends, they do play a significant role
in regulating local water availability. Therefore, studying the
interplay between RH, ELE, and NDVI variation at local scales
contributes to a more comprehensive understanding of ecosystem
dynamics and water availability dynamics.

4.2 The regulatory effects of climatic and
topographic controls on steppe and desert
vegetation greening

Despite plant growth is affected by both water availability and
temperature, in temperate grasslands, our results indicated that RH had
a stronger regulatory influence on the spatiotemporal pattern of NDVI
(Figures 5B, C). The fact that the major water sources of the inland
steppes and deserts in Xinjiang are brought in by the moist westerly
Atlantic air masses explains why the NDVI of both relatively arid
grasslands generally decreased from the northwest to the southeast in
Central Eurasia, except for the eastern edge that experiences the
influenced of the western North Pacific monsoon. This effect of
topography was reported to result in higher precipitation in the
windward slope of the Tian Shan mountain range (Schiemann et al.,
2008), which supported the relatively high NDVI in steppes in the west/
northwest of themountains observed in our study (Figure 3B). Since the
late 1990s, the temperature and precipitation in Xinjiang have increased
significantly, possibly due to protracted El Niño episodes (He et al.,
2020; Zhang et al., 2021). This change in climate explains why steppe
and desert NDVIs in the arid areas of our study grasslands increased,
but not significantly (steppe: 3.0 × 10−3/year,R2 = 0.04; desert: 2.8 × 10−4/
year, R2 = 0.06) in the 2000s (Figure 3G). This phenomenon was also
found in five Central Asian grasslands; approximately 14% of the region
exhibited a notable and substantial decline in NDVI, with only 5%
seeing an increase in the NDVI increase due to drought, which can be
identified as the primary factor causing vegetation degradation in this
area during the 2000s (Zhang et al., 2016).

Future convection activities in the equatorial Pacific could
intensify El Niño events, leading to droughts in central Eurasia

and threatening its steppe and desert ecosystems (Ding et al., 2022).
Meanwhile, IPCC climate simulations predict a 10%–30% increase
in warm nights and precipitation in Eurasia throughout the 21st
century (IPCC, 2023). Although quantifying the exact effects of
climate change is challenging, future precipitation changes could
significantly impact the dynamics and heterogeneity of Xinjiang’s
desert NDVI. Grasslands across different environments exhibit
distinct NDVI patterns and sensitivities to precipitation.
Consequently, future climate change may induce vegetation
succession in the grasslands studied, leading to substantial
uncertainties in NDVI dynamics within the steppe and desert
regions (Figures 4, 5).

Xinjiang has experienced one of the most rapid temperatures
increases globally since the 1980s, with a rate ranging from 0.36°C to
0.42°C per decade (He et al., 2020). The warming trend observed in
recent years is projected to persist throughout the 21st century,
potentially surpassing the global average rate (Huber and Knutti,
2014). In our study, higher NDVIs in deserts were found to be
positively correlated with AMT (Figure 4G), the main reason being
that temperature changes can affect the length of the growing season
(Möhl et al., 2022). Furthermore, it is important to note that with the
increase in evapotranspiration, the aridity of the steppes and deserts
may be further exacerbated by the warming effects. Additionally, the
rising temperatures pose a significant threat to the sustainability of
the mountain glaciers found in the Pamir and Tian Shan regions.
These glaciers serve as crucial water sources during the summer
months for numerous grassland ecosystems in Central Eurasia.
Specifically, the riparian shrubs, which exhibit relatively high
coverage, are of particular concern as they are predominantly
located at the western and north-western foot of the Tian Shan
Mountains. It is imperative to address these environmental changes
to ensure the long-term viability of these ecosystems (Sorg
et al., 2012).

4.3 Potential uncertainties in the considered
drivers of vegetation greening

Although we have convincingly demonstrated the pivotal role
play by climate and topography in regulating grassland vegetation
greening across environmental gradients, there were some
uncertainties associated with the auxiliary variables employed to
elucidate the spatial pattern of the NDVI. First, meteorological data
after 2000 was selected for analysis, which might not reflect actual
long-term climate change across the study area. However, based on
continuous measurements obtained from the China Meteorological
Administration, some studies have shown abrupt changes in
temperature and precipitation series after 2000 (He et al., 2020).
Additionally, the quality of remote sensing data has improved
significantly since 2000. Accordingly, to ensure accuracy in our
analysis, we chose data from the 21st century. Moreover, although
the aridity index is often used to analyze vegetation changes, the RH
data used in this study can represent the comprehensive effects of
AP and AMT. And because they are derived from actual monitoring
data, they may more accurately reflect the microclimates associated
with topography complexity (Waterhouse, 1950).

Second, nomadic pastoralism is a form of pastoralism in which
livestock are herded to search for new pastures. In Xinjiang, a
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traditionally nomadic area, vertical transhumant pastoralism is one
of the most enduring and successful prosperous ecological strategies,
suggesting that vegetation can adapt to the original grazing intensity
even without grazing exclusion practices (Frachetti et al., 2017).
Consequently, the impact of livestock grazing on grassland
vegetation was not considered in this study.

Third, China’s grassland classification in Xinjiang consists of 11 types
(Supplementary Figure S8). For this study, we categorized them into three
main types based on environmental gradients to analyze grassland
responses to climate change. Future studies should prioritize assessing
hydrothermal conditions across different grassland types in Xinjiang.

4.4 Conclusion

In conclusion, our findings, derived from a comprehensive
analysis encompassing large-scale investigation and model
simulation, we observed that the contribution of the interaction
between climate and topography to the NDVI in different
environmental gradients reached up to 60% across Xinjiang
grasslands, highlighting the critical role it plays in representing
vegetation greening stabilization. We also found that the dominant
factors regulating NDVI were grassland type-dependent, namely,
the effects of AP weakened with increased ELE in wetter meadows,
whereas the influence of RH strengthened with increasing ELE in
arid deserts. Future studies should incorporate the differential
regulatory effects of ELE and RH on the NDVI to reduce
uncertainties in forecasting vegetation greening dynamics. Our
findings also suggest that RH may be the crucial factor in
regulating long-term stabilization of NDVI in arid grassland
(steppe and desert), with the potential to mitigate the putative
positive NDVI-climate feedback under a changing climate.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding author.

Author contributions

QX: Conceptualization, Formal Analysis, Methodology,
Software, Visualization, Writing–original draft, Writing–review
and editing. SA: Data curation, Investigation, Methodology,

Writing–review and editing. ML: Funding acquisition, Project
administration, Software, Supervision, Visualization,
Writing–review and editing.

Funding

The authors declare financial support was received for the
research, authorship, and/or publication of this article. This
research was funded by National Key Research and Development
Program of China (2022YFF1300905).

Acknowledgments

The authors wish to thank the Key Laboratory of Vegetation
Ecology of Ministry of Education, Northeast Normal University and
College of Grassland Sciences, Xinjiang Agricultural University for
support of this project, as well as the reviewers whose inputs greatly
improved the quality of this manuscript. We also thank the handling
editor and two reviewers for their contributions to improving this
manuscript.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fenvs.2023.1324742/
full#supplementary-material

References

Alkama, R., Forzieri, G., Duveiller, G., Grassi, G., Liang, S., and Cescatti, A. (2022).
Vegetation-based climate mitigation in a warmer and greener World. Nat. Commun. 13
(1), 606. doi:10.1038/s41467-022-28305-9

Andrade Diaz, M. S., Piquer Rodriguez, M., and Baldi, G. (2023).
Conservation opportunities for threatened paleochannel grasslands in the
South American Dry Chaco. J. Nat. Conserv. 71, 126306. doi:10.1016/j.jnc.
2022.126306

Bardgett, R. D., Bullock, J. M., Lavorel, S., Manning, P., Schaffner, U., Ostle, N., et al.
(2021). Combatting global grassland degradation. Nat. Rev. Earth Environ. 2 (10),
720–735. doi:10.1038/s43017-021-00207-2

Breiman, L. (2001). Random forests. Mach. Learn. 45 (1), 5–32. doi:10.1023/A:
1010933404324

Burnett, J. D., and Anderson, P. D. (2019). Using generalized additive models for
interpolating microclimate in dry-site ponderosa pine forests. Agric. For. Meteorol. 279,
107668. doi:10.1016/j.agrformet.2019.107668

Callaghan, M. W., Minx, J. C., and Forster, P. M. (2020). A topography of climate
change research. Nat. Clim. Change 10 (2), 118–123. doi:10.1038/s41558-019-0684-5

Cernusak, L. A., and Cheesman, A. W. (2015). The benefits of recycling: how
photosynthetic bark can increase drought tolerance. New Phytol. 208 (4), 995–997.
doi:10.1111/nph.13723

Frontiers in Environmental Science frontiersin.org10

Xun et al. 10.3389/fenvs.2023.1324742

https://www.frontiersin.org/articles/10.3389/fenvs.2023.1324742/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fenvs.2023.1324742/full#supplementary-material
https://doi.org/10.1038/s41467-022-28305-9
https://doi.org/10.1016/j.jnc.2022.126306
https://doi.org/10.1016/j.jnc.2022.126306
https://doi.org/10.1038/s43017-021-00207-2
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.agrformet.2019.107668
https://doi.org/10.1038/s41558-019-0684-5
https://doi.org/10.1111/nph.13723
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1324742


Cihlar, J., St.-Laurent, L., and Dyer, J. A. (1991). Relation between the normalized
difference vegetation index and ecological variables. Remote Sens. Environ. 35 (2),
279–298. doi:10.1016/0034-4257(91)90018-2

Dengler, J., Janišová, M., Török, P., and Wellstein, C. (2014). Biodiversity of
Palaearctic grasslands: a synthesis. Agric. Ecosyst. Environ. 182, 1–14. doi:10.1016/j.
agee.2013.12.015

Ding, R., Tseng, Y. H., Di Lorenzo, E., Shi, L., Li, J., Yu, J. Y., et al. (2022). Multi-year El
Niño events tied to the north Pacific oscillation. Nat. Commun. 13 (1), 3871. doi:10.
1038/s41467-022-31516-9

Dunne, J. A., Harte, J., and Taylor, K. J. (2003). Subalpine meadow flowering
phenology responses to climate change: integrating experimental and gradient
methods. Ecol. Monogr. 73 (1), 69–86. doi:10.1890/0012-9615(2003)073[0069:
SMFPRT]2.0.CO;2

Dutta, S., Rehman, S., Chatterjee, S., and Sajjad, H. (2021). “Chapter 3 - analyzing
seasonal variation in the vegetation cover using NDVI and rainfall in the dry
deciduous forest region of Eastern India,” in Forest resources resilience and
conflicts. Page. Editors P. Kumar Shit, H. R. Pourghasemi, P. P. Adhikary,
G. S. Bhunia, and V. P. Sati (Elsevier).

Elsen, P. R., Monahan, W. B., and Merenlender, A. M. (2020). Topography and
human pressure in mountain ranges alter expected species responses to climate change.
Nat. Commun., 11, 1974. doi:10.1038/s41467-020-15881-x

Erdős, L., Török, P., Veldman, J. W., Bátori, Z., Bede-Fazekas, Á., Magnes, M., et al.
(2022). How climate, topography, soils, herbivores, and fire control forest–grassland
coexistence in the Eurasian forest-steppe. Biol. Rev. Camb. Philos. Soc. 97 (6),
2195–2208. doi:10.1111/brv.12889

Evans, R. A. (1960). Differential responses of three species of the annual grassland
type to plant competition and mineral nutrition. Ecology 41, 305–310. doi:10.2307/
1930220

Fairbanks, D. H. K., and Mcgwire, K. C. (2004). Patterns of floristic richness in
vegetation communities of California: regional scale analysis with multi-temporal
NDVI. Glob. Ecol. Biogeogr. 13 (3), 221–235. doi:10.1111/j.1466-822X.2004.00092.x

Fang, J., Piao, S., Zhou, L., He, J., Wei, F., Myneni, R. B., et al. (2005). Precipitation
patterns alter growth of temperate vegetation. Geophys. Res. Lett. 32 (21), L21411.
doi:10.1029/2005GL024231

Fatichi, S., Leuzinger, S., Paschalis, A., Langley, J. A., Donnellan Barraclough, A., and
Hovenden, M. J. (2016). Partitioning direct and indirect effects reveals the response of
water-limited ecosystems to elevated CO2. Proc. Natl. Acad. Sci. U. S. A. 113 (45),
12757–12762. doi:10.1073/pnas.1605036113

Ferreira, L. S., and Duarte, D. H. S. (2019). Exploring the relationship between urban
form, land surface temperature and vegetation indices in a subtropical megacity. Urban
Clim. 27, 105–123. doi:10.1016/j.uclim.2018.11.002

Frachetti, M. D., Smith, C. E., Traub, C. M., andWilliams, T. (2017). Nomadic ecology
shaped the highland geography of Asia’s silk roads. Nature 543 (7644), 193–198. doi:10.
1038/nature21696

Fu, G., and Sun, W. (2022). Temperature sensitivities of vegetation indices and
aboveground biomass are primarily linked with warming magnitude in high-cold
grasslands. Sci. Total Environ. 843, 157002. doi:10.1016/j.scitotenv.2022.157002

Gutman, G. G. (1991). Vegetation indices from AVHRR: an update and future
prospects. Remote Sens. Environ. 35 (2-3), 121–136. doi:10.1016/0034-4257(91)90005-q

He, B., Sheng, Y., Cao, W., and Wu, J. (2020). Characteristics of climate change in
northern Xinjiang in 1961–2017, China. China. Chin. Geogr. Sci. 30 (2), 249–265.
doi:10.1007/s11769-020-1104-5

Higgins, S. I., Conradi, T., and Muhoko, E. (2023). Shifts in vegetation activity of
terrestrial ecosystems attributable to climate trends.Nat. Geosci. 16 (2), 147–153. doi:10.
1038/s41561-022-01114-x

Hu, M., and Xia, B. (2019). A significant increase in the normalized difference
vegetation index during the rapid economic development in the Pearl River Delta of
China. Land Degrad. Dev. 30 (4), 359–370. doi:10.1002/ldr.3221

Huber, M., and Knutti, R. (2014). Natural variability, radiative forcing and climate
response in the recent hiatus reconciled. Nat. Geosci. 7 (9), 651–656. doi:10.1038/
ngeo2228

Hufkens, K., Keenan, T. F., Flanagan, L. B., Scott, R. L., Bernacchi, C. J., Joo, E., et al.
(2016). Productivity of North American grasslands is increased under future climate
scenarios despite rising aridity. Nat. Clim. change 6 (7), 710–714. doi:10.1038/
NCLIMATE2942

Iiames, J. S., Cooter, E., Pilant, A. N., and Shao, Y. (2020). Comparison of EPIC-
simulated and MODIS-derived leaf area index (LAI) across multiple spatial scales.
Remote Sens. 12 (17), 2764. doi:10.3390/rs12172764

Ipcc (2023). Climate change 2021 – the physical science basis: working group I
contribution to the sixth assessment report of the Intergovernmental panel on climate
change. Cambridge: Cambridge University Press.

Janisova, M., Bartha, S., Kiehl, K., and Dengler, J. (2011). Advances in the
conservation of dry grasslands: introduction to contributions from the seventh
European Dry Grassland Meeting. Plant Biosyst. 145 (3), 507–513. doi:10.1080/
11263504.2011.603895

Joiner, J., Yoshida, Y., Anderson, M., Holmes, T., Hain, C., Reichle, R., et al. (2018).
Global relationships among traditional reflectance vegetation indices (NDVI and
NDII), evapotranspiration (ET), and soil moisture variability on weekly timescales.
Remote Sens. Environ. 219, 339–352. doi:10.1016/j.rse.2018.10.020

Karabadji, N. E. I., Amara Korba, A., Assi, A., Seridi, H., Aridhi, S., and Dhifli, W.
(2023). Accuracy and diversity-aware multi-objective approach for random forest
construction. Expert Syst. Appl. 225, 120138. doi:10.1016/j.eswa.2023.120138

Knapp, A. K., and Smith, M. D. (2001). Variation among biomes in temporal
dynamics of aboveground primary production. Science, 291(5503), 481–484. doi:10.
1126/science.291.5503.481

Lai, J., Zou, Y., Zhang, J., and Peres-Neto, P. R. (2022). Generalizing hierarchical and
variation partitioning in multiple regression and canonical analyses using the rdacca.hp
R package. Methods Ecol. Evol. 13 (4), 782–788. doi:10.1111/2041-210X.13800

Lefcheck, J. S. (2016). PiecewiseSEM: piecewise structural equation modelling in R for
ecology, evolution, and systematics. Methods Ecol. Evol. 7 (5), 573–579. doi:10.1111/
2041-210X.12512

Lembrechts, J. J., and Nijs, I. (2020). Microclimate shifts in a dynamic world. Science
368 (6492), 711–712. doi:10.1126/science.abc1245

Maestre, F. T., Le Bagousse-Pinguet, Y., Delgado-Baquerizo, M., Eldridge, D. J., Saiz,
H., Berdugo, M., et al. (2022). Grazing and ecosystem service delivery in global drylands.
Science 378 (6622), 915–920. doi:10.1126/science.abq4062

Mahony, C. R., Cannon, A. J., Wang, T., and Aitken, S. N. (2017). A closer look at
novel climates: new methods and insights at continental to landscape scales. Glob.
Change Biol. 23 (9), 3934–3955. doi:10.1111/gcb.13645

Mann, H. B. (1945). Nonparametric tests against trend. Econometrica 13 (3), 245–259.
doi:10.2307/1907187

Mao, D., Wang, Z., Luo, L., and Ren, C. (2012). Integrating AVHRR andMODIS data
to monitor NDVI changes and their relationships with climatic parameters in Northeast
China. Int. J. Appl. Earth Observation Geoinformation 18, 528–536. doi:10.1016/j.jag.
2011.10.007

Maurice, G., and Kendall, M. A. (1949). Rank correlation methods. J. Inst. Actuar. 75
(1), 140–141. doi:10.1017/S0020268100013019

Mckenney, D. W., Pedlar, J. H., Papadopol, P., and Hutchinson, M. F. (2006). The
development of 1901–2000 historical monthly climate models for Canada and the
United States. Agric. For. Meteorol. 138 (1), 69–81. doi:10.1016/j.agrformet.2006.03.012

Möhl, P., Von Büren, R. S., and Hiltbrunner, E. (2022). Growth of alpine grassland
will start and stop earlier under climate warming. Nat. Commun. 13 (1), 7398. doi:10.
1038/s41467-022-35194-5

Ouyang, W., Wan, X., Xu, Y., Wang, X., and Lin, C. (2020). Vertical difference of
climate change impacts on vegetation at temporal-spatial scales in the upper stream of
the Mekong River Basin. Sci. Total Environ. 701, 134782. doi:10.1016/j.scitotenv.2019.
134782

Parra, J. L., and Monahan, W. B. (2008). Variability in 20th century climate change
reconstructions and its consequences for predicting geographic responses of California
mammals. Glob. Change Biol. 14 (10), 2215–2231. doi:10.1111/j.1365-2486.2008.
01649.x

Piao, S., Nan, H., Huntingford, C., Ciais, P., Friedlingstein, P., Sitch, S., et al. (2014).
Evidence for a weakening relationship between interannual temperature variability and
northern vegetation activity. Nat. Commun. 5 (1), 5018. doi:10.1038/ncomms6018

Polley, H. W., Jin, V. L., and Fay, P. A. (2012). Feedback from plant species change
amplifies CO2 enhancement of grassland productivity. Glob. Change Biol. 18 (9),
2813–2823. doi:10.1111/j.1365-2486.2012.02735.x

Rhodes, J. S., Cutler, A., and Moon, K. R. (2023). Geometry- and accuracy-preserving
random forest proximities. IEEE Trans. Pattern Anal. Mach. Intell. 45 (9), 10947–10959.
doi:10.1109/tpami.2023.3263774

Rubel, F., and Kottek, M. (2011). Comments on: the thermal zones of the earth by
Wladimir Köppen (1884). Meteorol. Z. 20, 361–365. doi:10.1127/0941-2948/2011/0285

Sanz, E., Saa-Requejo, A., Díaz-Ambrona, C. H., Ruiz-Ramos, M., Rodríguez, A.,
Iglesias, E., et al. (2021). Normalized difference vegetation index temporal responses to
temperature and precipitation in arid rangelands. Remote Sens. 13 (5), 840. doi:10.3390/
rs13050840

Schiemann, R., Lüthi, D., Vidale, P. L., and Schär, C. (2008). The precipitation climate
of Central Asia—intercomparison of observational and numerical data sources in a
remote semiarid region. Int. J. Climatol. 28 (3), 295–314. doi:10.1002/joc.1532

Schrader Patton, C. C., Underwood, E. C., and Sorenson, Q. M. (2023). Annual
biomass spatial data for southern California (2001–2021): above- and belowground,
standing dead, and litter. Ecology 104 (5), e4031. doi:10.1002/ecy.4031

Sciences, C. A. O. (2001). Vegetation atlas of China. Beijing: Science Press.

Sloat, L. L., Gerber, J. S., Samberg, L. H., Smith, W. K., Herrero, M., Ferreira, L. G.,
et al. (2018). Increasing importance of precipitation variability on global livestock
grazing lands. Nat. Clim. Change 8 (3), 214–218. doi:10.1038/s41558-018-0081-5

Sorg, A., Bolch, T., Stoffel, M., Solomina, O., and Beniston, M. (2012). Climate change
impacts on glaciers and runoff in Tien Shan (Central Asia). Nat. Clim. Change 2 (10),
725–731. doi:10.1038/nclimate1592

Frontiers in Environmental Science frontiersin.org11

Xun et al. 10.3389/fenvs.2023.1324742

https://doi.org/10.1016/0034-4257(91)90018-2
https://doi.org/10.1016/j.agee.2013.12.015
https://doi.org/10.1016/j.agee.2013.12.015
https://doi.org/10.1038/s41467-022-31516-9
https://doi.org/10.1038/s41467-022-31516-9
https://doi.org/10.1890/0012-9615(2003)073[0069:SMFPRT]2.0.CO;2
https://doi.org/10.1890/0012-9615(2003)073[0069:SMFPRT]2.0.CO;2
https://doi.org/10.1038/s41467-020-15881-x
https://doi.org/10.1111/brv.12889
https://doi.org/10.2307/1930220
https://doi.org/10.2307/1930220
https://doi.org/10.1111/j.1466-822X.2004.00092.x
https://doi.org/10.1029/2005GL024231
https://doi.org/10.1073/pnas.1605036113
https://doi.org/10.1016/j.uclim.2018.11.002
https://doi.org/10.1038/nature21696
https://doi.org/10.1038/nature21696
https://doi.org/10.1016/j.scitotenv.2022.157002
https://doi.org/10.1016/0034-4257(91)90005-q
https://doi.org/10.1007/s11769-020-1104-5
https://doi.org/10.1038/s41561-022-01114-x
https://doi.org/10.1038/s41561-022-01114-x
https://doi.org/10.1002/ldr.3221
https://doi.org/10.1038/ngeo2228
https://doi.org/10.1038/ngeo2228
https://doi.org/10.1038/NCLIMATE2942
https://doi.org/10.1038/NCLIMATE2942
https://doi.org/10.3390/rs12172764
https://doi.org/10.1080/11263504.2011.603895
https://doi.org/10.1080/11263504.2011.603895
https://doi.org/10.1016/j.rse.2018.10.020
https://doi.org/10.1016/j.eswa.2023.120138
https://doi.org/10.1126/science.291.5503.481
https://doi.org/10.1126/science.291.5503.481
https://doi.org/10.1111/2041-210X.13800
https://doi.org/10.1111/2041-210X.12512
https://doi.org/10.1111/2041-210X.12512
https://doi.org/10.1126/science.abc1245
https://doi.org/10.1126/science.abq4062
https://doi.org/10.1111/gcb.13645
https://doi.org/10.2307/1907187
https://doi.org/10.1016/j.jag.2011.10.007
https://doi.org/10.1016/j.jag.2011.10.007
https://doi.org/10.1017/S0020268100013019
https://doi.org/10.1016/j.agrformet.2006.03.012
https://doi.org/10.1038/s41467-022-35194-5
https://doi.org/10.1038/s41467-022-35194-5
https://doi.org/10.1016/j.scitotenv.2019.134782
https://doi.org/10.1016/j.scitotenv.2019.134782
https://doi.org/10.1111/j.1365-2486.2008.01649.x
https://doi.org/10.1111/j.1365-2486.2008.01649.x
https://doi.org/10.1038/ncomms6018
https://doi.org/10.1111/j.1365-2486.2012.02735.x
https://doi.org/10.1109/tpami.2023.3263774
https://doi.org/10.1127/0941-2948/2011/0285
https://doi.org/10.3390/rs13050840
https://doi.org/10.3390/rs13050840
https://doi.org/10.1002/joc.1532
https://doi.org/10.1002/ecy.4031
https://doi.org/10.1038/s41558-018-0081-5
https://doi.org/10.1038/nclimate1592
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1324742


Speiser, J. L., Miller, M. E., Tooze, J., and Ip, E. (2019). A comparison of random forest
variable selection methods for classification prediction modeling. Expert Syst. Appl. 134,
93–101. doi:10.1016/j.eswa.2019.05.028

Styles, D., Gonzalez-Mejia, A., Moorby, J., Foskolos, A., and Gibbons, J. (2018).
Climate mitigation by dairy intensification depends on intensive use of spared
grassland. Glob. Change Biol. 24 (2), 681–693. doi:10.1111/gcb.13868

Su, D. (1996). Grassland resources map of China (1:4000 000). Beijing, China: China
Science Publishing & Media Ltd.(CSPM).

Wang, X., Liu, L., Piao, S., Janssens, I. A., Tang, J., Liu, W., et al. (2014). Soil
respiration under climate warming: differential response of heterotrophic and
autotrophic respiration. Glob. Change Biol. 20 (10), 3229–3237. doi:10.1111/gcb.
12620

Waterhouse, F. L. (1950). Humidity and temperature in grass microclimates with
reference to insolation. Nature 166 (4214), 232–233. doi:10.1038/166232b0

Wolf, A., Anderegg, W. R. L., and Pacala, S. W. (2016). Optimal stomatal behavior
with competition for water and risk of hydraulic impairment. Proc. Natl. Acad. Sci. U. S.
A. 113 (46), E7222–E7230. doi:10.1073/pnas.1615144113

Xie, Z., Zhu, J., Liu, G., Cadisch, G., Hasegawa, T., Chen, C., et al. (2007). Soil organic
carbon stocks in China and changes from 1980s to 2000s. Glob. Change Biol. 13 (9),
1989–2007. doi:10.1111/j.1365-2486.2007.01409.x

Zhang, C., Lu, D., Chen, X., Zhang, Y., Maisupova, B., and Tao, Y. (2016). The
spatiotemporal patterns of vegetation coverage and biomass of the temperate deserts in
Central Asia and their relationships with climate controls. Remote Sens. Environ. 175,
271–281. doi:10.1016/j.rse.2016.01.002

Zhang, L., Liu, Y., Zhan, H., Jin, M., and Liang, X. (2021). Influence of solar activity
and EI Niño-Southern Oscillation on precipitation extremes, streamflow variability and
flooding events in an arid-semiarid region of China. J. Hydrol. 601, 126630. doi:10.1016/
j.jhydrol.2021.126630

Zhang, Y., Gentine, P., Luo, X., Lian, X., Liu, Y., Zhou, S., et al. (2022). Increasing
sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric
CO2. Nat. Commun. 13 (1), 4875. doi:10.1038/s41467-022-32631-3

Zhang, Y., Hong, S., Liu, Q., Huntingford, C., Peñuelas, J., Rossi, S., et al. (2023).
Autumn canopy senescence has slowed down with global warming since the 1980s in
the Northern Hemisphere. Commun. Earth Environ. 4 (1), 173. doi:10.1038/s43247-
023-00835-0

Frontiers in Environmental Science frontiersin.org12

Xun et al. 10.3389/fenvs.2023.1324742

https://doi.org/10.1016/j.eswa.2019.05.028
https://doi.org/10.1111/gcb.13868
https://doi.org/10.1111/gcb.12620
https://doi.org/10.1111/gcb.12620
https://doi.org/10.1038/166232b0
https://doi.org/10.1073/pnas.1615144113
https://doi.org/10.1111/j.1365-2486.2007.01409.x
https://doi.org/10.1016/j.rse.2016.01.002
https://doi.org/10.1016/j.jhydrol.2021.126630
https://doi.org/10.1016/j.jhydrol.2021.126630
https://doi.org/10.1038/s41467-022-32631-3
https://doi.org/10.1038/s43247-023-00835-0
https://doi.org/10.1038/s43247-023-00835-0
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1324742

	Climate change and topographic differences influence grassland vegetation greening across environmental gradients
	1 Introduction
	2 Materials and methods
	2.1 Study area
	2.2 Regional-scale digital elevation model and meteorological data
	2.3 Data on grassland vegetation greening
	2.4 Statistical analysis

	3 Results
	3.1 Spatial and temporal variation in environmental factors and vegetation greening
	3.2 The relationship of topography and climate with vegetation greening
	3.3 The dominant determinants of vegetation greening in different grasslands

	4 Discussion and conclusion
	4.1 Unneglectable role of climate and topography in vegetation greening at meadows
	4.2 The regulatory effects of climatic and topographic controls on steppe and desert vegetation greening
	4.3 Potential uncertainties in the considered drivers of vegetation greening
	4.4 Conclusion

	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


