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Introduction: Global watershed sustainable development has experienced
world-wide threats from continuing anthropogenic stressors, and the need to
deepen and broaden research encompassing the intersection in global
environmental change as well as environmentally oriented watershed
sustainable development (EOWSD) has been noticed. However, there is not
yet a widely recognized cognition on the applicability and scope of various
EOWSD issues, and the zoning of global EOWSD issues is remains uncertain
despite it is crucial for achieving global watershed sustainable development.

Methods: This research was conducted to both clarify the zoning and evolution of
various EOWSD issues around the world, and differentiate the relative impacts on
EOWSD of climate change and human activities. The global EOWSD issues were
summarized from 62watersheds around the world as 6 categories associated with
different aspects of global watershed sustainability. And the partition method, in
which the spatial and temporal variations of global summer Normalized Difference
Vegetation Index in summer were examined and the quantitative climate
classification were conducted, indicates a clear and definite relationship
between the zoning of EOWSD issues and 8 natural geographical zones.
Meanwhile, we selected 34 watersheds either or both are the 100 most
populous river basins and the 100 largest (by area) river basins in the world
from the 62 watersheds to assess relative effects of human impact on
watershed sustainability.

Results: Results from the numerical analyses of baseline water stress (BWS)
values, which was used to provide a robust measure of human impact and
evaluate the impact and relative importance of human-induced changes on
watershed sustainability, indicate that the human activities do not affect the
zoning of EOWSD issues at global scale while the environmental change induced
by water engineering development should be certain to affect that on the
long-term.
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Discussion: Our findings present a new perspective to illustrate the relationship
among global EOWSD, environmental change and human impacts, and will also
provide a scientific basis on setting future emphasizes of global watershed
sustainable development and furthering the related disciplines.
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environmental change, sustainable development, zoning, climate change, human
activities, watershed, global scale

1 Introduction

Global watershed sustainable development, which plays important
and unique roles in the provision of ecological and economic services
and advancement of human civilization (Postal and Carpenter, 1997;
Covich et al., 2004; Wang et al., 2022), has experienced worldwide
threats from continuing anthropogenic stressors. Thus, it is necessary to
deepen and broaden research encompassing the intersection of
watershed sustainable development and the evolution of global
environmental change and water engineering development (Brinson
and Malvarez, 2002; Malmqvist and Rundle, 2002; Covich et al., 2004).
According to the most frequently quoted definition of sustainable
development from Our Common Future (WCED, 1987), the
Brundtland Report recognizes the dependency of humans on the
environment to meet present and future needs and regards the
environmentally oriented development issues as one of the two key
concepts in sustainable development definition. Given that interactions
with global change dynamics (Walker et al., 2009) and the development
of water engineering (Vormoor, 2010) are not addressed, sustainable
development is no longer possible, and promoting global watershed
sustainable development requires research on a wide range of
environmentally oriented watershed sustainable development issues,
such as the potential impact of environmental changes and water
engineering development on regional water supplies, biodiversity,
food security, and feedback from watershed itself. Environmentally
oriented watershed sustainable development (EOWSD) is of
importance in meeting both economic development goals and global
environmental risks, so many studies have been conducted on one
specific drainage basin or part of it (Covich et al., 2004; Palmer et al.,
2007). However, there is not yet a widely recognized cognition on the
applicability and scope of various EOWSD issues, and the zoning of
global EOWSD issues remains uncertain, although it is crucial for
achieving global watershed sustainable development.

Furthermore, in addition to global warming and relevant changes in
the hydrological cycle, which are likely to increase the frequency and
severity of extreme climate events, the increase in human activities by
way of water engineering, including cultivation, afforestation, irrigation,
deforestation, and urbanization, has also resulted in changes to flow
regimes, especially large-scale changes in land cover or management in
watersheds (Bates et al., 2008; Milliman et al., 2008; Déry et al., 2009;
Jung et al., 2012; Thompson, 2012). Meanwhile, the close connection
between watershed sustainable development and water engineering
development and its impact on socio-economic conditions has been
demonstrated (Wang and Gao, 2002; Vormoor, 2010). Thus,
understanding the impact and relative importance of water
engineering development on EOWSD has recently drawn
considerable concerns. Assessing the relative impact of climate
change and human activities is important, both for understanding

the mechanism of global watershed sustainability and for local water
resources management as well as drought and flood protection (Ye
et al., 2013; Luan et al., 2021; Ahmad et al., 2023).

Given the importance of setting future emphasis on global EOWSD
and furthering the related disciplines, there is a clear need to clarify the
zoning and evolution of various EOWSD issues around the world and
distinguish the relative effects of human activities and climate change on
EOWSD. In this study, we integrated the EOWSD issues from
62 watersheds located in different parts of the world (Figure 1). To
study the distribution characteristics of these EOWSD issues and to
explore the underlying evolutionary mechanisms, the zoning of global
EOWSD issues, which is based on the assessment of environmental
variables, including climate change and vegetation condition, was
proposed by producing a global map of climate on the basis of
observational data and examining the spatial and temporal
variations of global summer vegetation conditions. Meanwhile,
baseline water stress and similar withdrawal-to-availability indicators
were quantitatively analyzed to provide a robust measure of human
impact on the hydrological context at the catchment scale and evaluate
the effect and relative importance of human-induced change on
watershed sustainability and distribution of EOWSD issues. In
addition, simulated climate data were obtained to predict the
evolution of global EOWSD and address the future emphasis on
global watershed sustainable development.

2 Materials and methods

2.1 Global data

As the existing research aiming to achieve EOWSD is highly
fragmented and always focuses on one specific aspect, we have
selected 62 watersheds for the unbiased collection and cataloging of
global environmentally oriented watershed sustainability (Table 1). To
investigate the interrelationship between environmental changes and
watershed sustainable development at global scales, we categorized
EOWSD issues according to the goals specified in the data source
(Bernhardt et al., 2005) or based on key phrases in the title and
description when the goals were not clearly articulated in the data
source.We particularly avoided inferring the intent of a study or project
from the data record.

2.2 Global climate and vegetation zoning

A zoning method, in which a global map of climate based on
observational data was produced and spatial and temporal variations
of the global normalized difference vegetation index (NDVI) in
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summer were examined, was used here to achieve a better
understanding of the relationship between global climate and
vegetation zoning and the distribution of EOWSD issues and to
explore the underlying evolutionary mechanisms.

In order to assess the influence of climate change on global
EOWSD issues, the Köppen–Geiger system was used to represent
long-term mean climate conditions. There have been many
modifications proposed to the Köppen system, but here we
followed the criteria from Köppen’s last publication about his
classification system in the Köppen–Geiger Handbook (Köppen,
1936). The NCEP Reanalysis data for the period of 2001–2014 were
downloaded from the NOAA/OAR/ESRL PSD, Boulder, Colorado,
USA (http://www.esrl.noaa.gov/psd/). Data from the Community
Earth System Model version 1 with the Community Atmosphere
Model version 5 [CESM1 (CAM5)] (Hurrell et al., 2013), which is a
single climate model of the Coupled Model Intercomparison Project
Phase 5 (CMIP5), during 2041–2050 and 2091–2100 were both
processed by the Köppen–Geiger system to examine the current
status and evolution of emphasis on EOWSD in different parts of the
world. The description and definition criteria for the Köppen
climate symbols are listed in Table 2.

One series of 16-day NDVI data from a Moderate Resolution
Imaging Spectroradiometer (MODIS) sensor at spatial resolutions of
1,000 m, which were downloaded from the Distribution Active Archive
Center (DAAC) at the NASA Goddard Space Flight Center (GSFC)
during the summer (June to August in the Northern Hemisphere and
December to February in the Southern Hemisphere) of 2000–2014, was
quantitatively analyzed using the EOFmethod to evaluate the influence
of vegetation change on EOWSD issues around the world.

The EOF analysis is similar to the principal component
analysis (PCA) commonly used for decorrelating a set of
variables. The dataset of the observed parameter can be
treated as a function s(x, y, t) of spatial coordinates (x and y)
and time t (Eq. 1). The EOF analysis basically decomposes s(x, y,
t) into a series of orthogonal functions fi (x, y) of the spatial
coordinates only. The temporal variation is captured in a series of
temporal functions g(t) such that

s x, y, t( ) � ∑N
i�1
∫

i
x, y( )gi t( ), (1)

where N is the total number of observations made in time t,
which is taken for the 15-year period from 2000 to 2014 in this study.
The orthogonal functions fi (x, y) of EOF and their respective
coefficients g(t) can be determined by solving the eigenvalue
equation constructed from the covariance matrix of s(x, y, t). The
orthogonal functions fi (x, y) are arranged in decreasing order of the
corresponding eigenvalues of the covariance matrix. Thus, the first
few orthogonal functions usually account for most of the spatial
variance that exists in the dataset.

2.3 The human impact: baseline water stress
for 34 specific basin watersheds and
numerical analyses

Based on the locations and ecosystem service value of
watersheds, we have selected 62 watersheds to summarize their
EOWSD issues, of which 34 watersheds, from either or both the
100 most populous river basins (Bernhard et al., 2008; CIESIN,
2010) and the 100 largest (by area) river basins (CIESIN, 2010) in the
world, were chosen to assess the relative effect of human impact on
watersheds. Baseline water stress (BWS), a commonly used indicator
also known as relative water demand (Brown and Matlock, 2011),
indicates the level of competition for available water and estimates
the demand for freshwater (Gassert, 2013). The raw data of BWS we
used here were obtained from the Aqueduct Water Risk Atlas
(Aqueduct) (Reig et al., 2013), which is a publicly available,
global database and interactive tool developed by the World
Resources Institute (WRI). It evaluates, maps, and scores water
risks globally based on 12 indicators, including baseline water stress.
Baseline water stress measures the ratio of total annual water
withdrawal (Ut) to average annual available blue water (Ba) (Eq.
2). It is important to note that most estimates of relative water
demand do not account for upstream consumptive use as BWS here.

FIGURE 1
Eight natural geographical zones based on the Köppen–Geiger system and terrestrial vegetation, and the locations of the 62 watersheds. The letters
in legends represent different natural geographical zones: A, humid tropical rainforest zone; B, tropical savanna climatic zone; C, humid evergreen broad-
leaved forest zone; D, arid steppe-desert zone; E, humid and semihumid mixed broadleaf–conifer forest zone; F, arid and semiarid steppe zone; G,
subpolar tundra zone; and H, polar ice sheet zone.
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TABLE 1 Global EOWSD research cases.

Serial
number

Name Continent Watershed
location
(latitude)

Watershed
location
(longitude)

Length
(km)

Natural
geographical
zone

Reference

1 Yangtze River Asia 30.13 106.48 6,300 C Chen and Chen (2005);
Zhong et al. (2003)

2 Yenisei River Asia 60.50 95.00 5,539 G Standring et al. (2009)

3 Kherlen River Asia 47.50 111.00 5,498 G Hideyuki et al. (2004)

4 Yellow River Asia 40.00 110.00 5,464 E Zhang and Sun (2005);
Zhang et al. (2011)

5 Ob–Irtysh River Asia 58.00 75.00 5,410 F Guo et al. (2001); Deng
et al. (2011)

6 Amur River Asia 49.50 130.00 4,444 E Wang and Chang
(2006)

7 Mekong River Asia 16.00 105.00 4,350 C Ferguson et al. (2010)

8 Euphrates River Asia 34.00 44.30 3,596 F Al-Ansari and
Knutsson (2011)

9 Indus River Asia 30.00 70.80 3,180 C Gosain et al. (2006)

10 Syr Darya–Naryn River Asia 44.50 66.00 3,078 G Karimov et al. (2010)

11 Nujiang River Asia 25.00 98.00 3,060 C Cai (2011)

12 Brahmaputra River Asia 27.50 95.00 2,948 C Phukan et al. (2012)

13 Amu Darya Asia 38.60 64.00 2,620 G Glantz (2005)

14 Ganges River Asia 26.00 84.00 2,510 C Sarkar et al. (2007)

15 Zhujiang River Asia 23.46 110.60 2,200 C Xia (1999)

16 Tarim River Asia 41.06 84.00 2,100 D Chen et al. (2003)

17 Tigris River Asia 31.60 44.50 1,950 F Al-Yamani et al. (2007)

18 Songhua River Asia 46.81 130.37 1,927 E Wang et al. (2013)

19 Ili River Asia 43.70 80.00 1,400 D Qiao et al. (2007);
Wang (2007)

20 Kura River Asia 40.93 47.18 1,364 C Abbasov and
Mahmudov (2009)

21 Liaohe River Asia 43.58 123.50 1,345 E Tu et al. (2013)

22 Krishna River Asia 15.95 78.17 1,300 C Venot et al. (2008)

23 Chindwin River Asia 22.11 95.13 1,207 C Goel et al. (2005)

24 Anadyr River Asia 65.50 173.27 1,120 H Alexander and
Windom (1999)

25 Volga River Europe 51.50 46.09 3,645 G Liao et al. (2003)

26 Danube River Europe 47.50 19.04 2,850 E Sommerwerk et al.
(2010); Tockner et al.
(1998)

27 Dnieper River Europe 48.51 34.87 2,287 E Dubnyak and
Timchenko (2000)

28 Rhine River Europe 50.74 7.11 1,320 E Rob et al. (2003)

29 Amazon River South America −2.11 −55.11 6,400 A Braga et al. (2011); Coe
et al. (2009)

30 La Plata Parana River South America −31.71 −60.51 5,578 C Gottgens et al. (2001)

31 Rio Madeira South America −5.84 −61.34 3,350 A Bastos et al. (2007)

(Continued on following page)
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TABLE 1 (Continued) Global EOWSD research cases.

Serial
number

Name Continent Watershed
location
(latitude)

Watershed
location
(longitude)

Length
(km)

Natural
geographical
zone

Reference

32 Tocantins River South America −10.06 −48.38 2,699 A Costa et al. (2003)

33 Araguaia River South America −9.90 −50.26 2,627 A Coe et al. (2011)

34 Parana River South America −21.69 −57.89 2,549 B Agostinho et al. (2013)

35 Pilcomayo River South America −25.26 −57.73 2,500 A Smolders et al. (2002)

36 Atrato River South America 6.92 −76.94 700 A Mosquera-Machado
and Ahmad (2007)

37 Nile River Africa 24.10 32.89 6,650 D Kim and Kaluarachchi
(2009); Kassas (1971)

38 Orange River Africa −28.89 22.00 2,092 B Conley and Niekerk
(2000)

39 Limpopo River Africa −22.22 29.97 1,800 B Hanjra and Francis
(2008)

40 Senegal River Africa 16.13 −13.59 1,641 B Barreteau et al. (2001)

41 Volta River Africa 7.14 0.19 1,600 B Hanjra and Francis
(2008)

42 Okavango River Africa −17.23 18.31 1,600 D Mbaiwa (2004)

43 Vaal River Africa −27.67 25.64 1,210 E Braune and Rogers
(1987)

44 Murray–Darling River Oceania −34.11 141.91 3,750 D Thoms and Sheldon
(2000)

45 Cooper River Oceania −28.09 139.25 1,420 D Arthington et al.
(2005)

46 Fly River Oceania −7.59 141.40 1,290 A Swales (2002)

47 Sepik River Oceania −4.22 142.68 1,126 A Dudgeon and Smith
(2006)

48 Mississippi River North America 38.34 −90.37 6,275 C Schoenholtz et al.
(2001); Day et al.
(2007)

49 Mackenzie River North America 65.16 −126.43 4,241 H Morris and de Loë
(2014)

50 Yukon River North America 66.57 −145.39 3,184 H Hay and Mccabe
(2010)

51 Nelson–Saskatchewan
River

North America 53.83 −98.84 2,570 G Cutlac and Horbulyk
(2010)

52 Arkansas River North America 37.05 −97.06 2,348 G Gober and Wheater
(2013)

53 Colorado River North America 36.14 −114.43 2,333 D Christensen et al.
(2004)

54 Columbia River North America 49.00 −117.63 2,250 E Naiman et al. (2012)

55 Platte River North America 40.87 −98.28 1,594 F Supalla et al. (2000)

56 Grande River North America 28.99 −103.26 1,438 C Pinheiro et al. (2004)

57 Fraser River North America 53.92 −122.71 1,368 E Martins et al. (2010)

58 Brazos River North America 32.13 −97.50 1,352 E Vogl and Lopes (2009)

59 Ottawa River North America 47.40 −79.55 1,271 F Newton et al. (2007)

60 Athabasca River North America 56.74 −111.40 1,231 G Seitz et al. (2013)

(Continued on following page)
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TABLE 1 (Continued) Global EOWSD research cases.

Serial
number

Name Continent Watershed
location
(latitude)

Watershed
location
(longitude)

Length
(km)

Natural
geographical
zone

Reference

61 Kuskokwim River North America 61.70 −157.18 1,050 G Gisclair (2009)

62 Tennessee River North America 34.76 −87.29 1,049 C Wang et al. (2016)

Note: The letters in legends represent different natural geographical zones: A, humid tropical rainforest zone; B, tropical savanna climatic zone; C, humid evergreen broad-leaved forest zone; D,

arid steppe-desert zone; E, humid and semihumid mixed broadleaf–conifer forest zone; F, arid and semiarid steppe zone; G, subpolar tundra zone; and H, polar ice sheet zone.

TABLE 2 Description of Köppen climate symbols and defining criteria.

First Second Third Description Criteriaa

A Tropical Tcold≥18

Af Rainforest Pdry≥60

Am Monsoon Pdry<60 and Pdry≥(100–MAP/25)

Aw Savannah Pdry<60 and Pdry<(100–MAP/25)

B Arid MAP<10aPth

BS Steppe MAP≥5aPth

BW Desert MAP<5aPth

h Hot MAT≥18

k Cold MAT<18

C Temperate Thot>10 and 0 <Tcold<18

Cs Dry summer Psdry<40 and Psdry < Pwwet/3

Cw Dry winter Pwdry < Pswet/10

Cf Without dry season Not (Cs) or (Cw)

a Hot summer Thot≥22

b Warm summer Thot<22 and Tmon10 ≥ 4

c Cold summer Not (a or b) and 1≤ Tmon10 < 4

D Cold Thot>10 and Tcold≤0

Ds Dry summer Psdry<40 and Psdry < Pwwet/3

Dw Dry winter Pwdry < Pswet/10

Df Without dry season Not (Ds) or (Dw)

a Hot summer Thot≥22

b Warm summer Thot<22 and Tmon10 ≥ 4

c Cold summer Tcold ≥ −38 and Tmon10 < 4

d Very cold winter Not (a or b) and Tcold < −38

E Polar Thot<10

ET Tundra Thot>0

EF Frost Thot≤0

aMAP, mean annual precipitation (mm); MAT, mean annual temperature (oC); Thot, temperature of the hottest month; Tcold, temperature of the coldest month; Tmon10, number of months

where the temperature is above 10; Pdry, precipitation of the driest month; Psdry, precipitation of the driest month in summer; Pwdry, precipitation of the driest month in winter; Pswet,

precipitation of the wettest month in summer; Pwwet, precipitation of the wettest month in winter; Pth, varies according to the following rules (if 70% of MAP occurs in winter, then Pth = 2 ×

MAT; if 70% of MAP occurs in summer, then Pth = 2 ×MAT +28; otherwise, Pth = 2 ×MAT +14). Summer (winter) is defined as the warmer (cooler) 6-month period of ONDJFM and AMJJAS.
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A long time series of supply (1950–2010) were used to reduce the
effect of multi-year climate cycles and to ignore complexities of
short-term water storage (e.g., dams and floodplains) for which
global operational data are nonexistent (Beek et al., 2011; Wada
et al., 2011). Baseline water stress thus measures chronic stress rather
than drought stress.

rBWS � Ut2010
mean 1950,2010[ ] Ba( )

. (2)

We masked catchments with less than 0.012 m/m2/year of
withdrawal and 0.03 m/m2/year of available blue water as “arid
and low water use” since catchments with low values were more
prone to error in estimates of BWS.

The BWS values were then mapped to thresholds and
normalized to a score between 0 and 5 such that scores
0–1 correspond to the lowest category and scores 4–5 correspond
to the highest category. The general function for mapping indicators
like BWS, whose thresholds are on a logarithmic scale (Eq. 3), is

min 5, max 0,
ln r − ln t1
ln base

+ 1( )( )( ), (3)

where r is the raw value, t1 is the lowest category’s upper
threshold, and base is the rate of increase between thresholds.
Values greater than 5 or less than 0 are truncated to remain
within the range of 0–5. For BWS, t1 = 0.1 and base = 2. The
threshold method of indicator normalization has several
advantages. Foremost is it creates clear categories and enables
scores to be matched with guidelines. Relative to purely
mathematical or statistical methods of normalization,
thresholds are unaffected by extreme values. They allow for
comparison even when using new sources of data.

The subprogram discriminant in SPSS 16.0 was used to
perform the descriptive statistics, bivariate analysis,
discriminant analysis, and hierarchical cluster analysis of BWS
scores in order to examine whether human activities affect the

distribution of environmentally oriented watershed sustainable
development issues at a global scale.

3 Results

3.1 Global distribution of EOWSD issues

A great deal of research aiming to achieve global EOWSD has
attracted significant attention all over the world. In the tropical
region, EOWSD issues mainly focus on rainforest recovery and
restoration and maintenance of natural ecosystem functions
(Dudgeon and Smith, 2006; Coe et al., 2009; Laura et al., 2016;
Richard et al., 2022). The impact of human activities, which has led
to the introduction of chemical pollutants, altered flows, and system
instability (Wang and Chang, 2006; Sarkar et al., 2007), is a crucial
part of EOWSD in mid-latitude regions, which is the origin of many
ancient civilizations and also has the world’s important economic
belts. The primary issue of EOWSD in the polar regions is how to
deal with the effects of global warming (Westmacott and Burn, 1997;
Hay andMccabe, 2010; Lin et al., 2019), while a rational allocation of
water resources is an essential component in regions of water
scarcity and flood (Richardson et al., 2005; Karimov et al., 2010).
Themain global EOWSD issues were summarized into six categories
associated with different aspects of watershed sustainable
development to explore the interrelations of environmental
changes and watershed sustainable development at global scales
(Supplementary Figures S1–S8). The six categories of EOWSD issues
are as follows (Figure 2): A) water scarcity and allocation of water
resources, which exists in Central Asia, the southern tip and
northern tip of Africa, Central and southern Australia, and the
mid-east of North America. B) Floods and water resource allocation
could mainly be found in Central and Western Asia. In South
America, northern North America, and South Asia, there exists the
issue of C) interaction between the watershed itself and the potential

FIGURE 2
Global distribution of EOWSD issues. The six categories of the issues are as follows: (A) Water scarcity and allocation of water resources. (B) Floods
and water resource allocation. (C) Interaction between the watershed itself and the potential impact of environmental changes and human behaviors on
watershed sustainable development. (D) Prevention and control of water quality deterioration. (E) Prevention and control of damage to habitats and
fishery resources. (F) Changes in biodiversity. The letters in legends represent different natural geographical zones: A, humid tropical rainforest zone;
B, tropical savanna climatic zone; C, humid evergreen broad-leaved forest zone; D, arid steppe-desert zone; E, humid and semihumid mixed
broadleaf–conifer forest zone; F, arid and semiarid steppe zone; G, subpolar tundra zone; and H, polar ice sheet zone.
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impact of environmental changes and human behaviors on
watershed sustainable development. D) Prevention and control of
water quality deterioration particularly occurs in Europe and some
plain areas of Asia. E) Prevention and control of damage to habitats
and fishery resources mainly exists around 50° north latitude. F)
Changes in biodiversity concentrate in Eastern and Western Asia.

3.2 The relationship between the zoning of
global EOWSD issues and climate and
vegetation zoning

In order to examine the influence of climate and vegetation
changes on the distribution of global EOWSD issues, the global
NDVI in the summer of 2000–2014 was quantitatively analyzed
using the EOF method (Figure 3A; Supplementary Figure S9). The
first three EOF modes account for 21.64%, 14.03%, and 11.17% of
the total variance in the Northern Hemisphere and 20.49%, 12.60%
and 10.33% of the total variance in the Southern Hemisphere,
respectively. Since there is a distinct correspondence between
EOF modes and distribution of the main sustainable
development issues and the global vegetation growth is mainly
dominated by climate change, a partition method based on the
Köppen–Geiger system and terrestrial vegetation was used to
achieve a better understanding of the distribution of global
EOWSD issues and to verify their applicability and scope. The
first three temporal EOFs show that the responses of vegetation to
climate change in different parts of the world have consistency even
though the responsiveness varies, as shown in the associated EOF
modes (Figure 3B). Ultimately, a clear and definite relationship
between the distribution of the main EOWSD issues and different
natural geographical zones is shown (Figure 2). In the humid
tropical rainforest zone (A), issue C exists in six of all eight
rivers, issues B and E occur in one river each, and three rivers
have issue D. All five rivers in the tropical savanna climatic zone (B)

have issue A, while two rivers have issue B, and one river has issue E.
Issue A–F all exist in the humid evergreen broad-leaved forest zone
(C), whilst the numbers of theories are various. Issue A is the main
watershed sustainable development issue in the arid steppe-desert
zone (D), and the sustainable development practices implemented in
the Nile also led to issue F. Issue D can be found in most rivers in the
humid and semihumid mixed broadleaf–conifer forest zone (E),
which is the origin of many ancient civilizations and also has many
of the world’s important economic belts. Issues A and E are also
obvious in this area. The main watershed sustainable development
issues in the arid and semiarid steppe zone (F) concentrate on issues
A, B, E, and F, while issues A, C, D, E, and F are found in the
subpolar tundra zone (G). The main watershed sustainable
development issues in the polar ice sheet zone (H) are issues C
and D. It is worth noting that using the NDVI as a standard for
global analyses has its limitations, especially in tropical regions, and
should be improved in subsequent studies.

3.3 Evaluation of watershed human impacts
on the zoning of global EOWSD issues

In the context of global climate change and anthropogenic
pressures, intensified regional environmental change and human
water engineering efforts have been identified as two factors
influencing EOWSD. Here, we selected 34 watersheds from
62 watersheds, from the 100 most populated watersheds globally
(Bernhard et al., 2008; CIESIN, 2010) and the 100 largest watersheds
globally (in terms of area) (CIESIN, 2010), in order to assess the
relative impacts of human activities on watersheds (Table 3). When
evaluating the influence and relative importance of human impact
on watersheds (Vörösmarty et al., 2000), it is particularly important
to understand baseline water stress (BWS), which measures total
annual water withdrawals expressed in percentage of total available
flow. Two variables determine baseline water stress: water supply

FIGURE 3
Spatial and temporal variations of the global NDVI in summer. (A) First EOF mode of the global NDVI in the summer (June to August in the Northern
Hemisphere (1) and December to February in the Southern Hemisphere (2)) during 2000–2014. (B) Temporal anomaly of EOF1, temperature anomaly,
and precipitation anomaly (Bernhard et al., 2008) in the Northern Hemisphere and Southern Hemisphere (Harris et al., 2014). TA.N, temperature anomaly
in the Northern Hemisphere; TA.S, temperature anomaly in the Southern Hemisphere; PA.N, precipitation anomaly in the Northern Hemisphere;
PA.S, precipitation anomaly in the Southern Hemisphere.
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availability and demand for that water. Water supply estimates are
obtained from a model that considers a wide variety of variables,
including temperature, precipitation, wind speed, and soil moisture
absorption. The demand for water is computed by adding the total

annual withdrawals from municipal, industrial, and agricultural
sources based on a series of reported and modeled global datasets
(Gassert et al., 2013). Water withdrawals of the three sectors
(agricultural, domestic, and industrial) are used as a weight to

TABLE 3 BWS scores of 34watersheds from either or both the 100most populous river basins and the 100 largest (by area) river basins in the world from the
62 watersheds.

Natural geographical zone Name All sector Sd Agricultural Domestic Industrial

C Indus River 4.30 1.21 4.31 4.08 4.14

D Colorado River 4.18 1.28 3.97 4.24 4.48

E Liaohe River 4.00 0.72 4.14 3.86 3.50

E Yellow River 4.00 1.03 4.07 3.91 3.87

F Tigris and Euphrates 3.54 1.15 3.60 3.35 2.98

C Ganges–Brahmaputra 3.39 1.61 3.43 2.89 3.24

C Kura River 3.26 0.97 3.36 2.96 2.90

C Krishna River 3.08 1.07 3.08 3.12 3.07

F Ob (Tobol) River 2.83 0.90 3.00 2.81 2.79

E Columbia River 2.78 1.98 3.07 1.74 2.13

B Limpopo River 2.69 1.39 2.53 3.00 2.80

C Mississippi River 2.44 1.76 3.35 1.69 1.76

G Amur River 2.38 1.41 2.40 2.38 2.33

B Orange River 1.91 1.53 2.07 1.70 1.66

C Yangtze River 1.62 1.48 1.69 1.57 1.36

E Rhine River 1.48 0.96 1.70 1.26 1.53

C Ganges River 1.46 1.55 1.57 1.01 0.71

G Volga River 1.12 1.36 0.97 1.51 0.99

B Parana River 0.96 1.37 1.21 0.79 0.60

E Dnieper River 0.92 0.99 0.86 0.82 0.98

D Nile River 0.86 1.25 0.90 0.69 0.66

E Danube River 0.78 0.98 0.46 0.71 0.85

G Yenisei River 0.65 1.64 0.57 0.69 0.67

A Amazonas River 0.53 0.78 0.71 0.29 0.35

C Mekong River 0.34 0.44 0.34 0.38 0.37

B Senegal River 0.11 0.41 0.13 0.04 0.01

B Volta River 0.00 0.07 0.00 0.00 0.00

E Brazos River 3.88 1.49 4.56 2.76 2.79

D Murray River 3.73 1.27 3.74 3.37 3.31

G Nelson River 1.94 1.28 2.68 1.96 1.65

D Okavango River 0.59 1.61 0.15 1.10 0.47

H Mackenzie River 0.58 1.07 0.38 0.50 0.59

E Fraser River 0.39 0.68 0.25 0.66 0.28

A Tocantins River 0.00 0.00 0.00 0.00 0.00

Note: A, humid tropical rainforest zone; B, tropical savanna climatic zone; C, humid evergreen broad-leaved forest zone; D, arid steppe-desert zone; E, humid and semihumid mixed

broadleaf–conifer forest zone; F, arid and semiarid steppe zone; G, subpolar tundra zone; and H, polar ice sheet zone.
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measure the exposure of each sector’s water users to BWS (Figure 4),
which allows us to explore the internal characteristics in specific
river basins. The baseline water stress of all 34 river basins was used
in the numerical analyses.

The ternary diagram shows that the distribution and variability
of the agricultural/industrial/domestic (AID) withdrawals in the
34 watersheds (Figure 5A) do not suggest an evident relationship
between the composition features of AID and the different natural
geographical conditions since there is no obvious centrality of
watersheds from each natural geographical zone. The raw BWS
values are then mapped to thresholds (low (<10%); low to medium
(10%–20%); medium to high (20%–40%); high (40%–80%); and
extremely high (>80%)) using continuous functions and normalized
to a score between 0 and 5 on account of thresholds that are
unaffected by extreme values and allow for comparison even
when using new sources of data relative to purely mathematical
or statistical methods of normalization. Descriptive statistics and
bivariate analysis were used to characterize scores of agricultural,
industrial, domestic, and total baseline water stress and to examine
whether the human impact could be well represented by the AID
scores (Table 4). The results of the discriminant analysis confirm
that the normalized scores of the 34 watersheds do not exhibit
distinctive spatial signatures, as represented by the 8 natural

geographical zones (Figure 5B). Meanwhile, two major groupings
are indicated by hierarchical cluster analysis based on the BWS
scores, and the clustering results are very different from the groups
divided according to various natural geographical conditions of
watersheds (Figure 5C). Therefore, human activities do not affect
the distribution of EOWSD issues on a global scale, even though
water engineering development may have significant influences on
watershed sustainable development in each specific natural
geographical zone.

4 Discussion

Environmental change and human activities are the two major
factors that affect watershed sustainable development (Zhang et al.,
2023). According to the zoning of global EOWSD issues in eight
different natural geographical zones, it is quite evident that EOWSD
issues vary under different natural geographical conditions and that
the scientific basis of watershed sustainable development issues in
identical natural geographical zones is always unified (Fu et al., 2019;
Qi et al., 2020; Zhou et al., 2023).Meanwhile, under the condition that
the number andmagnitude of water engineering activities are growing
rapidly (Postal and Carpenter, 1997; Malmqvist and Rundle, 2002),

FIGURE 4
Quantile–quantile plots of the total baseline water stress vs (A) agricultural, (B) domestic, and (C) industrial (AID) scores in the 34 watersheds.
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human activities were thought to be the main factor that threatens
watershed sustainable development. However, our results based on
BWS scores of 34 river basins and related numerical analyses suggest
that water engineering development does not affect the distribution of
EOWSD issues at a global scale directly, even though it may have
significant influences on watershed sustainable development in each
specific natural geographical zone. Nevertheless, environmental
change induced by water engineering activities (Vörösmarty et al.,
2010; Schewe et al., 2014) should be certain to affect the distribution of
EOWSD issues in the long term. Therefore, as demonstrated in this
paper, each natural geographical zone has a principal EOWSD issue,
which provides the scientific basis for watershed sustainable
development governance.

Research indicates that unabated climate change will exacerbate
environmental risks and affect watershed sustainable development

across the world (Brooks and Lake, 2007); hence, two maps of the
eight natural geographical zones during 2041–2050 and
2091–2100 from simulated climate data were produced to predict
the evolution of global watershed sustainability and address the
future emphasis on sustainable development (Figure 6). There is an
obvious change in the ranges of natural geographical zones, which
presents various change trends in different parts of the world. The
tropical savanna climatic zone (B) will increase by 9.11%
(2.40 million km2) of its previous area, while the area of humid
and semihumid mixed broadleaf–conifer forest zone (E) will
decrease by approximately 1.07 million km2 from 2041–2050 to
2091–2100, as indicated by the simulated results. Therefore, water
engineering aimed at water scarcity and water resource allocation
will become even more important in the future, and the applicability
and scope of the principal EOWSD issues of the areas in which the

FIGURE 5
Numerical analyses of BWS values. (A) Ternary diagram of the agricultural/industrial/domestic withdrawals in the 34 watersheds. (B) Discriminant
analysis of total baseline water stress scores. (C) Hierarchical cluster analysis of total baseline water stress scores. The solid circles in subgraph A and
subgraph C represent different natural geographical zones as shown in the figure: A, humid tropical rainforest zone; B, tropical savanna climatic zone; C,
humid evergreen broad-leaved forest zone; D, arid steppe-desert zone; E, humid and semihumid mixed broadleaf–conifer forest zone; F, arid and
semiarid steppe zone; G, subpolar tundra zone; and H, polar ice sheet zone.

TABLE 4 Descriptive statistics and bivariate analysis of agricultural, industrial, domestic, and total baseline water stress.

Agricultural Industrial Domestic

M = 2.037 S = 1.499 M = 1.760 S = 1.335 M = 1.819 S = 1.312

All Sectors M = 1.963 PCC Sig Cov PCC Sig Cov PCC Sig Cov

S = 1.403 0.984 0.000 2.071 0.979 0.000 1.834 0.971 0.000 1.788

Note: M, mean; S, standard deviation; PCC, Pearson’s correlation coefficient; Sig, significance; Cov, covariance.
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type of natural geographical zone will change should be
appropriately adjusted.

The recognition of the natural and social importance of
watershed sustainability has resulted in a massive increase in
efforts toward and research on watershed sustainable
development. However, promoting sustainable development
requires research on a wide range of social, economic, cultural,
institutional, and environmental issues, and research dominated by
the natural sciences must transition toward research involving the
full range of sciences and humanities (Reid et al., 2010). Despite
considerable consensus on the urgent need to improve watershed
health and enhance ecological sustainability and the importance of
understanding how to achieve watershed sustainability (Lake, 2005;
Palmer et al., 2005), there is little evidence for a mechanism or a
theory for guiding the practice of watershed sustainable
development (Palmer et al., 1997; Lake, 2001; Bond and Lake,
2003; Brooks and Lake, 2007). The objectives and emphasis of
global EOWSD efforts are multifarious since there are obvious
differences in EOWSD issue types in various locations of the
world, so it is essential for effective watershed sustainable

development to ascertain the zoning of global EOWSD issues
and identify the priorities of these issues as sustainable
development emphasis could vary broadly. In this study, we
made attempts, in which the distribution and evolution of
various EOWSD issues were clarified and the relative impacts of
environmental change and human activities on watershed
sustainability were distinguished, to provide the scientific basis
for setting future emphasis on global watershed sustainable
development and furthering the related disciplines.

5 Conclusion

The zoning of global EOWSD issues suggested that EOWSD
issues vary under different natural geographical conditions,
while the scientific basis of EOWSD issues in identical
natural geographical zones is always unified. Meanwhile,
human activities do not affect the distribution of EOWSD
issues at a global scale directly, even though they may have
significant influences on watershed sustainability in each specific

FIGURE 6
Evolution of the eight natural geographical zones during (A) 2041–2050 and (B) 2091–2100 from simulated climate data that follows the RCP
4.5 scenario. As indicated by the simulated results, the humid tropical rainforest zone (A), the tropical savanna climatic zone (B), and the arid steppe-desert
zone (D) will increase by 9.55% (0.54million km2), 9.11% (2.40million km2), and 0.44% (0.13 million km2) of their previous area, while the area of the humid
evergreen broad-leaved forest zone (C), the humid and semihumid mixed broadleaf–conifer forest zone (E), the arid and semiarid steppe zone (F),
the subpolar tundra zone (G), and the polar ice sheet zone (H) will decrease by 0.12% (0.04million km2), 2.57% (1.07million km2), 25.97% (0.61million km2),
14.90% (0.87 million km2), and 24.02% (0.48 million km2) from 2041–2050 to 2091–2100.
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natural geographical zone, and environmental change induced
by water engineering development should be certain to affect the
distribution of EOWSD issues in the long term. Furthermore,
water engineering aimed at water scarcity and the allocation of
water resources will become even more important in the
future according to simulated climate data, and the
applicability and scope of the principal EOWSD issues of the
areas in which the type of natural geographical zone will change
should be appropriately adjusted. In light of these results, the
zoning of global EOWSD issues presents a new perspective to
understand the relationship between global EOWSD, human
impacts, and environmental change, and our findings will also
provide the scientific basis for setting future emphasis on global
watershed sustainable development and furthering the related
disciplines.
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