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The Yellow River Basin is an important ecological barrier zone in China, and
the landscape pattern has changed greatly due to intense human activities. It is
of great significance to explore the dynamic forecasting of ecological risk
based on terrain gradient for the ecological security of the Yellow River Basin.
In this study, the distribution characteristics of ecological risk from 2000 to
2040 are evaluated by CA-Markov and ERI models. We put forward a new
method of landscape ecological risk assessment based on terrain gradient and
further analyzed the relationship between ecological risk and terrain index.
The results showed that the proportion of the cultivated land and the
grassland in the Yellow River basin is more than 73%, with the largest
dynamic change in 2020. The ecological risk in the study area showed a
spatial pattern of “high in the northwest and southwest, low in the east and
south-central.” During the study period, the overall ecological risk showed a
decreasing trend, and the high risk was reduced by four times. The future
ecological risk of all terrain gradient will show a decreasing trend, the high
risks mainly occurred in areas with “flat terrain with low terrain gradient and
low vegetation coverage.” This study will provide a new perspective for the
dynamic forecasting of ecological risk and the analysis of the change of
ecological risk through terrain gradients.
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Highlights

• We successfully predicted the landscape ecological risk in future years using CA-
Markov model.

• The overall ecological risk showed a decreasing trend during the study period, and the
high risk was mainly distributed in the “Low-lying flat terrain, low vegetation
coverage” areas.

• The results of this study will help to provide a new perspective to analyze the change of
ecological risk only through terrain.
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1 Introduction

Ecological security, as a pivotal indicator for assessing regional
ecosystem stability, serves as a vital foundation for the development
of ecological civilization and the sustainable growth of human
society. Furthermore, it constitutes a crucial guarantee for
promoting the healthy evolution of social economy and building
a robust national security framework (Xie et al., 2020). In recent
years, with the rapid growth of the global economy and increased
human activities, there has been mounting pressure on natural
resources and ecosystems. As a result, ecological risks and
environmental problems are becoming increasingly prevalent
(Strand et al., 2018; Pérez-Girón et al., 2020). Hence, there is a
need for scientific prediction and assessment of ecological hazards to
enhance the theoretical foundations in establishing regional
ecological security and fostering the harmonious and sustainable
development of ecosystems. Furthermore, it is imperative to
optimize the landscape configuration and effectively mitigate and
tackle the pragmatic predicaments of ecological risks in the future
(Fan et al., 2016).

In the field of environmental ecology, there has been a growing
interest in dynamic forecasting and evaluation of ecological risk in
recent years (Ji et al., 2021). Early ecological risk simulations rely on
models such as CLUE-S, Logistic, grey system, and meta-cellular
automata. However, these models typically neglect the dynamic
nature of ecosystem changes and their forecasting accuracy needs to
be improved. Therefore, there is a need to develop more advanced
approaches for accurately forecasting ecological risk and promoting
the coordinated and sustainable development of ecosystems (Fu
et al., 2018; Wang et al., 2021). In recent years, CA-Markov models
using landscape pattern transfer matrices have been increasingly
utilized for simulating and forecasting landscape ecological risk.
This approach combines the temporal analysis capability of the
Markov model with the spatial analysis capability of the CA model,
allowing for effective simulation of the process of spatial pattern
change among different landscape types. This method has shown
promising results in addressing early ecological risk simulation and
forecasting but its application for large watersheds is currently
underreported (Popp et al., 2017; Xu et al., 2021). The Yellow
River Basin is the fifth largest river basin in the world and serves
as the main agricultural production base in China, earning the title
of “energy basin.” The study area is predominantly situated in arid
and semi-arid regions, with altitude, climate, geomorphology, and
human activities impacting the area. This has led to the
concentration of desertification and sandy land, poor soil quality,
grassland degradation, soil erosion, extensive industrial pollution,
and insufficient water resources. Consequently, it has caused
numerous issues such as a fragile ecological environment and
challenging management (Chen et al., 2020).

Terrain is a crucial factor that limits the man-land system by
influencing the spatial distribution of human activities through its
impact on light, temperature, water, and nutrients distribution,
ultimately determining the landscape pattern and spatial
distribution of ecological risk (Goldsmith et al., 2017). The
change in ecological risk usually exhibits a certain distribution
pattern on the terrain gradients. By analyzing the relationships
between ecological risk change and terrain gradients, many
scholars have discussed the terrain characteristics, the spatial

expansion, the future terrain pressure of the ecological risk
change (Andraski et al., 2014; Zhang et al., 2016). However,
current research on the relationship between landscape ecological
risk and terrain gradients has mainly examined the isolated effects of
individual terrain factors such as elevation or slope. Although some
studies have proposed that high ecological risks are predominantly
found in “high elevation complex terrain” and “low elevation flat
terrain” (Xue et al., 2019), relatively few studies have investigated the
combined effects of multiple terrain factors on the variability of
landscape ecological risk.

Therefore, this study focused on the Yellow River Basin and
utilized CA-Markov models, satellite data of watershed, and
adaptive atlas to predict data of landscape component for the
next 20 years. Furthermore, the study employed the landscape
disturbance index and spatial autocorrelation model to uncover
the spatial-temporal patterns and concentration state of landscape
ecological risk. By calculating the terrain niche index based on
elevation and slope, and combining the distribution index, this study
also examined the variation of ecological risk on different terrain
gradients. The study provided a theoretical foundation and technical
support for ecosystem management, human activity management,
and natural disaster prevention in the Yellow River Basin.

2 Study area and data sources

2.1 Overview of the study area

The Yellow River Basin originates from the Bayan Har Mountains
on the Qinghai-Tibet Plateau, flowing eastward through 73 prefecture-
level cities across Qinghai, Sichuan, Gansu, Ningxia, Inner Mongolia
Autonomous Region, Shaanxi, Shanxi, Henan, and Shandong provinces
(Zhang et al., 2018). With a basin area of approximately 793,000 km2

and a total length of approximately 5,464 km, the Yellow River is the
second longest river in China and the fifth longest river in the world. Its
geographical location lies between 96°–119°E and 32°–42°N, belonging
to the mid-latitude zone, with an average temperature range of
about −4–14°C and an average annual rainfall range of about
300–600 mm (Qu et al., 2021; Xiao et al., 2021). The Yellow River
Basin encompasses four distinct geomorphic units: the Qinghai-Tibet
Plateau, the Inner Mongolia Plateau, the Loess Plateau, and the Huang-
Huai-Hai Plain. The climate of the region is varied and complex, and
the terrain ranges from high in the west to low in the east, with an
intricate network of ravines and a mixture of different landscape types.
Due to its fragile ecological environment, the Yellow River Basin is
regarded as one of themost vulnerable regions in China (Lu et al., 2020).
The location of the study area is shown in Figure 1.

2.2 Data sources

The data utilized in this study consisted of the following: 1) The
data of landscape components: the data of landscape component for
2000 and 2010 were acquired from the Data Centre of the Resource
and Environment Science Service website of the Chinese Academy
of Sciences (http://www.resdc.cn), with an accuracy better than 85%.
The data of landscape components for 2020 were acquired from the
National Center for Basic Geographic Information’s Global Land
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Cover Data website (https://www.webmap.cn), with an accuracy of
better than 86%. The data of landscape components were reclassified
into six categories: forest, grassland, farmland, water, bare land, and
urban, using ArcGIS in this study. 2) The data used in this study was
sourced from various databases. DEM data with a ground resolution
of 30 m * 30 m were obtained from the Geospatial Data Cloud
(http://www.gscloud.cn), while the slope data were calculated from
the DEM data. Temperature and precipitation data were obtained
from the National Meteorological Science Data Centre (http://data.
cma.cn). Additionally, data related to the distance from towns and
roads were sourced from the National Public Service Platform for
Geographic Information (https://service.tianditu.gov.cn).

3 Methods

3.1 CA-Markov model

The CA-Markov model integrates the capabilities of cellular
automata (CA) models to manage spatial changes in complex systems
with the features of Markov models for predicting the temporal and
quantitative aspects of landscape components, thus achieving the
dynamic evolution of landscape components in both space and time
(Karimi et al., 2018; Faichia et al., 2020). In this study, the transition area
matrix and transition probability matrix of landscape components were
established using the CA-Markov module of Idrisi software to derive the
transition rules of future landscape components (Mansour et al., 2020).
By combining the suitability atlas, we simulated the forecast of landscape
component changes in 2020, and the accuracy between the actual and
simulated maps in 2020 was verified using the Kappa index. The Kappa
index was calculated using the Eq. (1):

Kappa � Po − Pc

PP − Pc
(1)

wherePo is the probability of a correct simulation; Pc is the probability of
a predicted simulation; Pp is the probability of an ideal simulation.

3.2 Division of landscape ecological
risk regions

The sampling process for dividing the risk regions was
conducted using a grid with a size two to five times larger than
the average area of landscape patches (Peng et al., 2015). The Yellow
River Basin was divided into 3,868 risk regions, each measuring
20 km × 20 km, using the fishing net tool in ArcGIS 10.2.

3.3 Landscape ecological risk model

Combining the theory of landscape ecology and the actual situation
of the watershed, the landscape ecological risk index (ERI) was
calculated by using the area proportion of various landscape
components and the landscape loss index (Zhang et al., 2020). The
calculation formula of landscape ecological risk index (ERI) is Eq. (2):

ERI � ∑n

i�1
Aki

Ak
Ri (2)

where n represents the total number of landscape types, Aki

represents the area of the ith landscape type in the kth
evaluation unit, Ak represents the total area of kth evaluation
unit, Ri represents the loss degree index of the ith landscape
type, which is calculated as Eq. (3):

Ri � Ei × Fi (3)
where Fi represents the landscape vulnerability index. Based on the
experience of previous studies (Liang et al., 2017; Cui et al., 2018),
and the characteristics of the study area, the following values were
assigned in descending order: 6 for bare land, 5 for water, 4 for
farmland, 3 for grassland, 2 for forest, and 1 for urban. Each
landscape vulnerability index was obtained after normalization
(Jin et al., 2019; Chen et al., 2022; Tian et al., 2023). Ei

represents the landscape disturbance degree index, which is
calculated as Eq. (4):

FIGURE 1
Location of the study area.
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Ei � aCi + bNi + cDi (4)
Where Ci, Ni and Di represent the fragmentation index,
segmentation index and dominance index of the landscape type,
respectively. a, b and c are the weights of the corresponding
respective landscape pattern indices, which were assigned weights
of 0.5, 0.3 and 0.2, respectively (Jin et al., 2019).

3.4 Spatial autocorrelation analysis

Spatial autocorrelation analysis (Moran’s I) can describe
whether there is a significant correlation between the attribute
value of an element and the attribute value of its adjacent
elements in space (Bosso et al., 2017). This paper uses Geoda
software to calculate global and local Moran’s I to reveal the
spatial aggregation characteristics of landscape ecological risk in
the Yellow River Basin. Global Moran’s I index is used to examine
the spatial correlation of attribute values of an element across the
study area, with Moran’s I values ranging between plus and
minus 1. Moran’s I = 0 indicates no spatial correlation,
Moran’s I > 0 indicates the presence of positive spatial
correlation and vice versa for negative spatial correlation
(Darand et al., 2017). Local Moran’s I index is used to reflect
the correlation between the attribute value of a certain element
and the adjacent spatial units. Moran’s I > 0 indicates a high state
of aggregation of high-high or low-low, and Moran’s I <
0 indicates high-low or low-high low aggregation states, and
Moran’s I = 0 indicates non-significant states (Davarpanah et al.,
2018). Global and local Moran’s I were calculated as Eqs 5, 6,
respectively.

GlobalMoran′s I � ∑n
i�1∑n

j�1Wij xi − �x( ) xj − �x( )
S2∑n

i�1∑n
j�1Wij

(5)

LocalMoran′s I � n xi − �x( )∑n
j�1Wij xj − �x( )

∑n
i�1 xi − �x( )2 (6)

Where n denotes the number of samples, xi and xj denotes the
sample i and j attribute values, �x denotes the sample mean, Wij

denotes the spatial weights.

3.5 Terrain gradient analysis

3.5.1 Terrain niche index
The terrain niche index is a terrain factor that integrates

elevation and slope, which can provide a comprehensive
synthesis of the spatial differentiation of terrain conditions (Tong
et al., 2016). The calculation formula of terrain niche index is Eq. (7):

TNI � lg
E

�E + 1
( ) ×

S
�S + 1

( )[ ] (7)

where TNI represents the terrain niche index, E and S represent the
elevation and slope of any raster in the space, respectively. �E and �S
represent the average elevation and average slope of the entire study
area, respectively. In general, the terrain niche index of a raster with
low elevation and low slope is small and vice versa.

3.5.2 Distribution index
The distribution index is used to describe the distribution of

different classes of landscape ecological risk on the terrain index
gradient, indicating the distribution dominance of different classes
of ecological risk (Gong et al., 2017). The calculation formula of
distribution index is Eq. (8):

Pie � Sie/Si( )
Se/S( ) (8)

where Pie represents the distribution index, e represents the terrain
niche factor, Sie represents the total area of ecological risk class i
under a specific class of e terrain position factor, Si represents the
total area of ecological risk class i in the study area, Se represents the
total area of the study area under a specific class of e terrain position
factor, and S is the total area of the study area. When Pie >1, it means
that the specific ecological risk class is in dominant distribution on
the specific terrain position gradient, the larger Pie value, the higher
the dominance, and when Pie <1, it means the lower the degree of
distribution dominance.

4 The analysis of result

4.1 Landscape component forecasting

Utilizing the data of landscape component of the Yellow River
Basin in 2000 and 2010, and in accordance with previous research
findings (Bastakoti et al., 2017), a suitability atlas was created by
integrating DEM, slope, temperature, precipitation, distance from
towns, and distance from roads with the present conditions of the
study area. The CA-Markov model was applied to generate a simulated
landscape component typemap of the Yellow River Basin for 2020. The
Kappa index was computed between the simulated and actual maps for
2020, yielding a value of 86%, indicating a goodmodel fit. Furthermore,
using the data of landscape components in 2010 and 2020, the spatial
data of landscape components in 2030 and 2040 were successfully
predicted. The ArcGIS software was utilized to generate a spatial
distribution map of landscape components (Figure 2), which showed
that although the spatial distribution pattern of the data of landscape
component in the forecast years (2020–2040) and the current years
(2000–2020) is similar, the types of interior landscape components
undergo significant changes.

Based on the area proportion of landscape components in the
Yellow River Basin (Figure 3), it could be seen that grassland and
farmland landscapes dominated the study period, accounting for
more than 73% of the total area. The farmland and forest landscapes
exhibited a trend of increasing before decreasing, both reaching a
maximum value of 250,000 and 119,000 km2, respectively in 2020.
Meanwhile, the grassland and bare land landscapes experienced a
decrease before increasing, reaching a minimum value of
346,000 and 40,000 km2 in 2020, respectively. The urban
landscape showed a continuous expansion, with its area
proportion gradually increasing from 2.4% in 2000 to 3.9% in
2040, resulting in a total increase of 12,000 km2. Meanwhile, the
proportion of water landscape remained relatively stable, with the
least change range compared to other landscape types. It stabilized at
around 1.6% and covered an area of approximately 13,000 km2.
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4.2 Ecological risk assessment and
forecasting

The ecological risk value of each risk cell was calculated and
assigned as an attribute value to the central point of each evaluation
unit. Kriging interpolation method was used to interpolate the
landscape ecological risk values of each evaluation unit, and the
spatial distribution of landscape ecological risk in the study area
from 2000 to 2040 was obtained. The landscape ecological risk was
divided into five grades by natural breakpoint method of ArcGIS
software: low risk (ERI ≤ 0.12), lower risk (0.12 < ERI ≤ 0.14),
middle risk (0.14 < ERI ≤ 0.16), higher risk (0.16 < ERI ≤ 0.20), and
highest risk (ERI > 0.20). The spatial distribution of landscape
ecological risk in the Yellow River Basin from 2000 to 2040 was then
mapped (Figure 4).

Based on Figure 4, there was a similar spatial distribution of
landscape ecological risk values in different years, showing a general
pattern of “high in the northwest and southwest, low in the east and
south-central parts.” The spatial distribution of ecological risk values
in the Yellow River Basin varies greatly among different areas. The
regions with the lowest risk were scattered and mainly concentrated
in Guoluo Prefecture of Qinghai Province, Gannan Prefecture of
Gansu Province, Baoji and Xi’an City of Shaanxi Province, Luoyang
City of Henan Province, Jinan and Zibo City of Shandong Province,
most areas of Shanxi Province, and the north of Baotou City and
Hohhot City of Inner Mongolia Autonomous Region. The regions
with lower ecological risk were primarily distributed surrounding
the areas with the lowest ecological risk, mainly in Gansu Province,
the junction of Qinghai Province and the Yellow River Basin, as well
as in most regions of Shaanxi Province, Shanxi Province, Henan

FIGURE 2
Actual landscape component type maps of 2000 (A), 2010 (B), 2020 (C) and simulated landscape component type maps of 2020 (D),
2030 (E), 2040 (F).

FIGURE 3
Percentages of landscape component types area in the Yellow River Basin.
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Province, and Shandong Province. The regions with moderate
ecological risk were mainly located in the central part of the
Yellow River Basin, including most of Ningxia Hui Autonomous
Region, the eastern part of Gansu Province, Yulin City in Shaanxi
Province, and the southeastern part of Bayannur City in Inner
Mongolia Autonomous Region. The regions with higher ecologic
risk were mainly concentrated in the westernmost parts of Qinghai
Province, Yulin City in Shaanxi Province, and Ordos City in Inner
Mongolia Autonomous Region. The area of these high-risk regions
decreased gradually over time. In 2040, Zhongwei City in Ningxia
Hui Autonomous Prefecture shifted from being a middle-risk region
to a high-risk region. The areas with the highest ecologic risk were
mainly located in the north and south of Ordos City in Inner
Mongolia Autonomous Region, the northwestern part of Aba
Prefecture in Sichuan Province, and the junction of Haibei
Prefecture and Haixi Prefecture in Qinghai Province.

By using ArcGIS to calculate the average value of landscape
ecological risk from 2000 to 2040, it was found that the order was:
2000 ERI (0.1439) > 2010 ERI (0.1438) > 2020 ERI (0.1389) >
2030 ERI (0.1371) > 2040 ERI (0.1286). This indicated a decreasing
trend in the overall ecological risk value of the Yellow River Basin,
with the ecological risk level of each region gradually decreasing over
time. Based on Table 1, the ecological risk in the Yellow River Basin
was mainly at the lower and middle risk levels. During the study
period, the extent of regions with the lowest risk showed a
continuous increase, with the largest increase of 25.24%, and the
most significant increase occurred between 2030 and 2040. The area
of regions with lower ecological risk exhibited a gradual change, with
an increase and then decline, reaching its maximum in 2020 at
43.51% of the total area. The area of regions with medium ecological
risk displayed an overall decreasing trend, with a total reduction of
69,600 km2 over the 40-year period. The area of high ecological risk
and ecologic risk regions had also decreased, with their respective
proportions decreasing by factors of 2 and 4, respectively.

Based on the landscape type and level, the proportion of the
landscape ecological risk area in the Yellow River Basin from 2000 to
2040 (Figure 5), which indicated that the ecological risk of artificial

landscape had been changing in a consistent and stable manner.
Farmland landscapes were predominantly associated with lower
risk, while urban landscapes were associated with the lowest risk,
both having less than 5% of their highest risk regions. The overall
ecological risk of natural landscape decreased over the study period.
Forest landscape and water landscape were dominated by middle
risk, comprising about 40%–60% of the area, followed by the lowest
risk. The highest risk area proportion peaked in 2010 and then
gradually decreased. The ecological risk of grassland landscape
decreased gradually with the highest risk level in the 40-year
period. Bare land landscape was dominated by the highest risk
with less than 10% of the area at lower risk and the lowest risk. The
ecological risk level for each type of landscape component was
ranked as follows from highest to lowest: bare land landscape >
grassland landscape > water landscape > forest landscape >
farmland landscape > urban landscape.

The GeoDa software was used to calculate the global Moran’s I
index for landscape ecological risk in the Yellow River Basin from
2000 to 2040. The results showed values of 0.642, 0.641, 0.624,
0.651 and 0.591 for each risk unit (Figure 6), all of which were above
0.59, indicating that the landscape ecological risk in the study area
exhibited spatial clustering. The local Moran’s I index was utilized to
investigate the clustering properties and correlations between
neighboring units’ attribute values of landscape ecological risk,
revealing that ecological risk in the Yellow River Basin exhibited
two aggregation types: High-High and Low-Low. The former
dominated the highest risk areas while the latter occupied the
lowest risk areas. Furthermore, there were only a few instances of
High-Low or Low-High aggregation, and scattered distribution
displayed strong spatial heterogeneity.

4.3 Distribution of landscape ecological risk
along with terrain gradient

The terrain distribution index was used to display the
distribution of different landscape ecological risk levels on

FIGURE 4
Spatial distribution of ecological risk in the Yellow River Basin from 2000 to 2040.
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various terrain factor gradients. To achieve this, ArcGIS natural
breaks was utilized to categorize elevation, slope, and terrain niche
into five levels based on numerical values. The terrain niche gradient
levels were as follows: Grade I gradient (TNI ≤ 0.3), Grade II
gradient (0.3 < TNI ≤ 0.5), Grade III gradient (0.5 < TNI ≤ 0.7),
Grade IV gradient (0.7 < TNI ≤ 0.9), and Grade V gradient (TNI >
0.9). The terrain factor gradient distribution was then visualized and
presented in Figure 7.

Based on Figure 8, it was evident that the dominant distribution
of landscape ecological risk levels across different terrain niche
gradients varies significantly. The dominant distribution of the
lowest risk in the Yellow River Basin from 2000 to 2040 gradually
increased with the rise in TNI gradient levels. The distribution of lower
risk was relatively consistent, with TNI gradient levels of grade I, IV, and
V being the dominant areas. The middle risk exhibited a “bulge” shape
across the five TNI gradients, with the dominant area being gradients II
and III. As time advanced, the dominant distribution of higher risk
gradually became apparent on the lower TNI gradients. The most
significant concentration of the highest risk was observed in the lower
terrain gradients with low elevation and less slope, particularly on the
grade I gradient.

5 Discussion

5.1 Landscape ecological risk
distribution patterns

As the national ecological civilization strategy is being
implemented and human awareness of environmental protection
improves, the overall ecological risk in the Yellow River Basin is
consistently decreasing, and the risk level in each region is declining
over time. The lowest risk areas in the Yellow River Basin have high
internal stability of the landscape due to low intensity of human
activities, mainly consisting of large-scale contiguous distribution of
forest. With the continuous strengthening and improvement of
relevant national policies and measures, the extent of lowest risk
regions is expanding. The landscape fragmentation in the lower risk
areas of the Yellow River Basin is relatively low, and the farmland
landscapes of high-quality distributed in this area. Due to the
susceptibility of this landscape type to soil erosion, which leads
to the existence of its ecological risk. However, the ecological risk
level of the basin is decreasing with the continuous increase of efforts
in soil and water prevention and control (Ying et al., 2020). The

TABLE 1 Area (104 km2) and percent (%) of each ecological risk grades of the Yellow River Basin from 2000 to 2040.

Risk level 2000 2010 2020 2030 2040

Area Percent Area Percent Area Percent Area Percent Area Percent

Lowest risk (ERI ≤ 0.12) 10.91 13.75 11.58 14.61 15.69 19.79 18.39 23.19 30.92 38.99

Lower risk (0.12 < ERI ≤ 0.14) 31.80 40.10 31.62 39.87 34.51 43.51 30.78 38.81 26.63 33.58

Middle risk (0.14 < ERI ≤ 0.16) 22.08 27.84 21.89 27.60 18.26 23.03 19.96 25.16 15.12 19.06

Higher risk (0.16 < ERI ≤ 0.20) 10.09 12.74 9.76 12.31 7.14 9.00 7.13 8.99 5.53 6.97

Highest risk (ERI > 0.20) 4.42 5.57 4.44 5.60 3.71 4.67 3.05 3.84 1.10 1.39

FIGURE 5
Proportion of ecological risk areas of different landscape types at different grades from 2000 to 2040.
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fragmentation degree of landscape in the middle risk areas of the
Yellow River Basin is relatively high. These areas are mainly
characterized by interlaced distribution of grassland landscapes
and farmland landscapes. The differentiated economic
development and ecological protection measures in the basin
have led to heterogeneous changes in landscape ecological risks
in different regions of the basin. For example, the strict ecological
protection policies in Qinghai Province and Shaanxi Province have
prompted human activities to develop towards rationalization after
2010, therefore, the middle risk areas are gradually transforming
into lowest- and lower risk areas, whereas the ecological
environment of Zhongwei City in Ningxia Hui Autonomous
Region has been seriously damaged due to the unreasonable
mining activities, leading to an increasing ecological risk (Fang

et al., 2016). It is expected to transform from middle risk to
higher risk by 2040. It is anticipated that the city will transition
from middle risk to higher risk by 2040, hence necessitating the
adoption of appropriate measures to mitigate the situation. The
Yellow River Basin’s higher risk regions are primarily characterized
by the distribution of grassland and bare land landscapes. These
landscapes have become increasingly fragmented due to the
cumulative impact of human activities and the demand for
development and construction, resulting in a high ecological risk
level. The regions with the highest risk in the Yellow River Basin are
primarily characterized by extensive bare land with high
vulnerability and limited coverage of grassland. The impact of
human activities has disrupted the ecosystem, resulting in
fragmented landscapes, reduced connectivity, diminished stability,

FIGURE 6
Global and local spatial autocorrelations of the ecological risk index in the Yellow River Basin from 2000 to 2040.

FIGURE 7
The gradient distribution map of terrain factors.
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and weakened resilience to external disturbances. Furthermore,
significant alterations in the natural environment have led to
snow melting, frost, and other natural disasters, culminating in
high levels of risk (Liu et al., 2018).

The policies on development and supervision have a significant
impact on artificial landscapes, resulting in high stability of
landscape patches and low ecological risk as the prevalent risk
factor. However, for natural landscape, each component type is
distributed in a disjointed manner, leading to a lack of internal
structural stability and connectivity. The high level of fragmentation
and separation of landscape patches results in a high ecological risk
(Xie et al., 2021). The adjacent space units exhibit similar levels of
ecological risk, which presents significant space aggregation. These
findings are consistent with previous studies by Baran et al. (2018),
Wu et al. (2018), and Li et al. (2020).

5.2 Influence of terrain gradients on
ecological risk distribution patterns in
the landscape

Terrain is a crucial factor that impacts the spatial distribution of
landscape components in the natural environment, wherein
alterations in the landscape component types directly influence
the stability of regional ecological environments. Thus, terrain is
inextricably linked to the distribution of ecological risk (Wilson
et al., 2013). The northwestern section of the Grade I TNI gradient
has a flat terrain dominated by the extensive distribution of unused

landscape, with interwoven grassland and low-coverage woodland
landscapes. Due to early deforestation and overgrazing, this terrain
section witnessed increased fragmentation in the woodland and
grassland landscapes (Kayumba et al., 2021). Since 2010, there has
been increased focus on environmental and ecological protection,
leading to a gradual reduction in ecological risk on the Grade I TNI
gradient. Large areas of grassland landscape are distributed on the
Grade II, Grade III and Grade IV TNI gradients, interspersed with
farmland landscape, water landscape and urban landscape, resulting
in a high density of patches. These landscapes are continuously
affected by human activities, leading to a moderate and low level of
ecological risk. Since 2010, Shaanxi Province and Qinghai Province
have been actively responding to the national call to implement
restrictive development policies and ecological protection measures.
These efforts have led to a certain extent of improvement in the
ecological environment (Teng et al., 2019). The Grade V TNI
gradient is not suitable for human habitation and production due
to the limitations of terrain conditions. As a result, human
interference has gradually decreased, forests are extensively
distributed, and patch density is high, resulting in predominance
of the lowest and lower risk levels (Liu et al., 2019).

The future ecological risk across all terrain gradients in the
Yellow River Basin will exhibit a decreasing trend. Regions with the
highest risk mainly distribute in the areas of ‘flat terrain in low-lying
areas, low vegetation coverage’ affected by the pressures from both
human activities and environmental changes. Therefore, it is crucial
to implement appropriate protective, restorative, and utilization
measures, tailored specifically to the characteristics of high-risk

FIGURE 8
Distribution index of each ecological risk grade on terrain gradient from 2000 to 2040.

Frontiers in Environmental Science frontiersin.org09

Yan et al. 10.3389/fenvs.2023.1305282

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1305282


areas. It is necessary to increase the efficient utilization of unutilized
land and encourage the development of small, unused land located
near cultivated land or in water areas for cultivation. These unused
areas can be irrigated and made suitable for cultivation, leading to
improved landscape components and economic benefits. This
approach can enhance the landscape of desertification cultivated
land and prevent the abandonment of cultivated land, ultimately
improving land use efficiency. Additionally, it is critical to minimize
the negative impacts of human activities such as agricultural and
tourism practices, and persist with the implementation of ecological
restoration projects to effectively prevent and manage soil erosion,
water loss, and environmental pollution. By implementing sound
planning and management strategies, we can promote coordinated
regional development and maintain a healthy ecological
environment.

5.3 Limitations and future research
directions

The CA-Markov model and distribution index have produced
satisfactory results in predicting landscape ecological risk and
examining gradient distribution characteristics. However, they
also have limitations. For instance, the CA-Markov model may
not be suitable for landscapes with high fragmentation and small
area, such as cities, leading to slight changes in simulation of the
overall landscape pattern, as noted by Li et al. (2017). Therefore,
further research is required to investigate the impact of fragmented
patches on the dynamic forecasting of landscape ecological risk.
Secondly, the division of evaluation cells is critical for portraying the
spatial heterogeneity of ecological risk, and the scale effects can
magnify its uncertainty (Cao et al., 2019). The optimal size of
evaluation cells should be studied more extensively in future
research, and administrative areas could be utilized as evaluation
cells to confirm the variability of ecological risk values calculated
with grid-based evaluation cells. Despite these limitations, this study
can provide a theoretical reference for high-quality development and
ecological security management in the Yellow River Basin.

6 Conclusion

By utilizing the CA-Markov model, data of landscape component
and suitability atlas, we accurately predicted data of landscape
component for the upcoming 20-year period. Through the use of
various indices such as ERI,Moran’s I, TNI and distribution index, we
were able to analyze the spatial and temporal evolution process,
patterns, characteristics, agglomeration areas, and terrain gradient
distribution patterns of landscape ecological risks. Based on our
findings, the study highlights the following key observations:

(1) The landscape components in the Yellow River Basin were
mainly comprised of grassland and farmland, which together
accounted for over 73% of the total area. During the study
period, there were significant changes in the landscape
components, with the cultivated land experiencing the
largest change. Specifically, the bare land and grassland
were primarily converted to cultivated and forest land,

resulting in an increase of 9,500 and 30,000 km2 in the
area of forest and farmland in 2020, respectively. Urban
land continued to expand, leading to an unreasonable
change in the landscape pattern.

(2) The spatial distribution of landscape ecological risk values
among different years was similar, with an overall landscape
pattern of ‘high in the northwest and southwest, low in the
east and middle-south’. These regions demonstrated a high
degree of spatial correlation and significant spatial
aggregation. The overall ecological risk tended to decrease
during the study period, with the ecological risk level of all
regions progressively decreasing over time. Specifically, the
area of highest risk and higher-risk regions decreased by four
times and two times, respectively, from 2000 to 2040.

(3) The artificial landscape patches exhibited stability, with the
lowest and lower risk classes being dominant. However, the
natural landscape areas tended to have higher ecological risks,
showing high spatial correlation and significant clustering.
This finding suggested that due to the growing awareness of
human environmental protection and the continuous
improvement of national development supervision policies,
the ecological risk of the natural landscape had declined over
the years. This indicated a gradual improvement in the
ecological environment of the Yellow River Basin.

(4) The ecological risk in all terrain gradients of the Yellow River
Basin was expected to decrease in the future, with the highest
risk regions concentrated in areas with “low terrain slope, low
vegetation coverage, and double impacts from human activities
and natural environment changes.” To promote high-quality
development, a restoration strategy should be implemented,
with human restoration as the primary approach and natural
restoration as a supplementary measure, taking into account
the distribution characteristics of high-risk areas and reducing
adverse effects caused by human activities and natural
environment changes.
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