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The accurate estimation of cropland net primary productivity (NPP) remains a
significant challenge. We hypothesized that incorporating prior information on
NPP simulated by process-based models into normalized difference vegetation
index (NDVI) data would improve the accuracy of cropland ecosystem NPP
estimations. We used NDVI, MNPP (NPP of process-based model), and SNPP
(statistic-based NPP) data estimated by nine process-based models and yield
statistics to build a learning ensemble of the random forest model (LERFM). We
used the newmodel to re-evaluate the cropland NPP in China from 1982 to 2010.
Large spatial discrepancies among MNPPs, which indicate uncertainties in
cropland NPP estimation using different methods, were observed when
compared to SNPP. The LERFM model showed a slightly underestimation of
only −0.37%, while the multi-model average process-based model (MMEM)
strongly underestimated −15.46% of the SNPP. LERFM accurately estimated
cropland NPP with a high simulation skill score. A consistent increasing trend
in the LERFM and MMEM NPP during 1982–2010 and a significant positive
correlation (r = 0.795, p < 0.001) between their total NPP indicate that the
LERFM model can better describe spatiotemporal dynamic changes in
cropland NPP. This study suggests that a learning ensemble method that
combines the NDVI and process-based simulation results can effectively
improve cropland NPP.

KEYWORDS

cropland NPP (net primary productivity), learning ensemble model, NDVI, process-based
model, China

1 Introduction

Cropland ecosystems are heavily impacted by human activity, affecting both the food
supply and carbon cycle (Gray et al., 2014; Li et al., 2014; Medkova et al., 2017; She et al.,
2017; Liu et al., 2022a). Accurate estimation of cropland net primary productivity (NPP) is
crucial for understanding its ability to absorb atmospheric CO2, which is a critical indicator
of the carbon balance in the ecosystem. Globally, cropland ecosystems account for
approximately 14% of the total terrestrial NPP (Maestrini et al., 2022). In China,
croplands are an important carbon sink contributing significantly to national terrestrial
NPP and play a significant role in regulating the carbon balance on both global and regional
scales (Pan et al., 2015; Tang et al., 2019; Tao et al., 2019).
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However, accurate estimation of cropland NPP remains a
significant challenge (Tao et al., 2005; Li et al., 2014; Yuan et al.,
2015; Medkova et al., 2017; She et al., 2017). Compared to forest,
grassland, and shrub ecosystems, cropland ecosystems are strongly
influenced by various human activities such as management,
fertilization, and irrigation. Consequently, changes in NPP are
affected by complex factors, making the estimation process more
challenging and causing greater uncertainty and variance between
the results (Yuan et al., 2015). In addition, different estimation
schemes use varying influencing factors or parameterization
schemes, which causes more differences in the estimation results
(Bonan et al., 2019). Furthermore, data-driven models with different
mechanisms or structures also result in spatiotemporal differences
in simulated cropland NPP (Bonan et al., 2019). As a result, the
differences between these NPP results contribute to the uncertainty
in accurate estimation to some extent. Therefore, improving
regional-scale estimation accuracy and reducing uncertainty in
secondary estimation results by referring to existing estimations
remain challenging. Accurate estimation of cropland NPP is crucial
for deepening our understanding of the carbon cycle mechanisms of
cropland ecosystems, food security, mitigating climate change, and
promoting the development of precision agriculture (Li et al., 2014).
Currently, five main methods are used to estimate NPP: cropland
surveys, empirical models, biochemical models, dynamic vegetation
models, and remote sensing estimation models (Tao et al., 2005; Li
et al., 2014; Jian et al., 2020; Maestrini et al., 2022). At a regional
scale, NPP estimations primarily use model simulations and
cropland inventories. For example, remote sensing data-driven
estimation models can accurately estimate NPP at large scales,
with the normalized difference vegetation index (NDVI)
improving estimation accuracy. Although the cropland inventory
is an important NPP estimation method, it lacks spatial details and is
limited to statistical administrative units. These results contributed
to global and regional cropland NPP estimations and helped narrow
the uncertainty in the estimation results. Despite differences in
cropland NPP estimates, these estimates still contain valuable
prior information.

With the accumulation of observational data and the advent of
the era of big data, the current research focus and challenge lies in
utilizing observational data at various spatiotemporal scales to
enhance the accuracy of simulation models (Shu-Shi et al., 2020;
Medlyn et al., 2015). The challenge for agricultural geoscience big
data is to fully utilize this information to improve NPP estimation
accuracy (Tao et al., 2005; Schwalm et al., 2020; Zhang et al., 2021).
Currently, there are several issues in accurately estimating cropland
NPP: ①Significant discrepancies exist among simulation results
from multiple models, which complicates the precise assessment of
cropland NPP. This discrepancy primarily stems from variations in
model structure, processes, parameters, and driving factors (such as
climate, soil data, and land use data), as well as differences in spatial
and temporal resolutions. As a result, considerable disparities were
observed between the results of the multiple models. Projects such as
TRENDY, MsTMIP (Multiscale Synthesis and Terrestrial Model
Intercomparison Project), ISIMIP (the Inter-Sectoral Impact Model
Intercomparison Project), and others that compare models have
consistently demonstrated inconsistencies and uncertainties in the
simulation results of various ecosystem process models.
Consequently, there is considerable debate regarding the

reliability of carbon sink simulations in regional terrestrial
ecosystems (Stocker et al., 2013; Piao et al., 2022). ②Existing
process-based models typically offer low spatial resolution for
estimating NPP at the national scale, making it challenging to
meet the practical requirements for high-precision carbon
measurements in precision agriculture. This limitation hinders an
accurate assessment of the carbon sink status of cropland
ecosystems. Currently, there is a lack of methodological
foundations for estimating NPP in cropland ecosystems at a large
scale with high precision. Even with the use of advanced spatial
interpolation techniques, the coarse spatial resolution of the model
results can lead to overestimation or underestimation of variable
values.③ Traditional multi-model ensemble methods, which fail to
fully consider the relationships between models, can introduce
secondary errors in cropland NPP estimations. For instance,
compared to the random forest learning ensembles of process-
based models, the simple arithmetic mean ensemble method
tends to overestimate variable values significantly, while the state-
of-the-art machine learning method only slightly underestimates
them (Pan et al., 2020; Han et al., 2022). ④Many existing process
models lack dynamic vegetation simulation capabilities and struggle
to realistically simulate the productivity of cropland ecosystems
(Han et al., 2022). Currently, most process-based models ignore
dynamic changes in agricultural plants, which increases the
uncertainty of actual cropland NPP estimation. This limitation
makes it difficult to meet the requirements for rapid, large-scale,
and high-precision estimation of carbon components in cropland
ecosystems.

To produce a NPP estimation with high accuracy and high
confidence, we propose using machine learning (e.g., random forest)
to combine simulation results from process-based models and
observational large-scale remote sensing data to estimate
cropland NPP in China more accurately. Machine learning
methods can help to identify patterns and relationships in
complex datasets, which can improve our understanding of the
underlying processes governing terrestrial carbon dynamics (Pan
et al., 2020; Schlund et al., 2020; Han et al., 2022; Pravalie et al., 2023;
Yi and Wu, 2023; Zhang et al., 2021; Li et al., 2022; Peng et al., 2022;
Tuia et al., 2022). For example, the use of a learning ensemble of the
random forest model (LERFM) approach, leveraging multimodel
data results, can enhance simulation accuracy and facilitate the
precise estimation of carbon composition in terrestrial carbon
ensemble measurements (Li et al., 2022; Peng et al., 2022; Xu
et al., 2022; Pravalie et al., 2023; Wang et al., 2023; Yi and Wu,
2023). Better predictions of terrestrial ecosystem carbon can lead to
improved decision making, especially in areas such as climate
change mitigation (Cheong et al., 2022; Ladi et al., 2022),
agricultural planning, and natural resource management (Frey,
2020). These methods are also designed to handle complex and
large datasets, which is often the case in ecological modelling (Frey,
2020; Arellano-Garcia et al., 2021; Damgaard, 2021; Fan et al., 2021;
Wang et al., 2021; Whytock et al., 2021; Tuia et al., 2022; Phang et
al., 2023).

Notably, remote sensing vegetation observation data (e.g.,
NDVI) can provide accurate characterization information
regarding spatiotemporal growth dynamics (Liu et al., 2017;
Rodigheri et al., 2020; Yan et al., 2021; Xi et al., 2022; Xue et al.,
2022; Liu et al., 2022b) of agricultural plants on a national scale. The
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integration of observational data with process models has been
shown to improve the prediction accuracy compared to using
either approach alone. This information can address weaknesses
in process-based models and improve NPP estimation accuracy.
Therefore, we propose combining NDVI with prior information
from simulated MNPP (NPP of process-based model) and SNPP
(statistic-based NPP) data to build an integrated machine-learning
model to accurately estimate NPP in China’s cropland ecosystem
from 1982 to 2010.

2 Materials and methods

Currently, China’s cropland ecosystem is a significant
component of the global ecosystem carbon cycle, owing to its
extensive area and high carbon storage capacity. Rice, wheat, and
maize are the main crops in China. Figure 1 shows the spatial
distribution of croplands in China.

2.1 Statistic-based NPP (SNPP) data

To train the constructed learning ensemble model with high
accuracy, we used the statistic-based NPP (SNPP) of croplands
obtained from the National Bureau of Statistics of China in 2005 to
drive the LERFMmodel. The SNPP calculation formulas (Yan et al.,
2007; Huang et al., 2007; Xi et al., 2022; Xue et al., 2022) are
as follows:

SNPP � ∑N
i�1

yi × 1 −MCi( ) × 0.45 · gCg
0.9 ·HIi

×
1∑N
i�1Ai

(1)

where yi and MCi are the recorded yield and harvest moisture
content (mass water/harvested mass, g/g) value of crop i,
respectively; HIi is the harvest index (ratio of yield mass to

aboveground biomass) of crop i, and Ai is the harvest area of
crop i.We used the statistical harvest area and yield value of rice,
wheat, and maize (the three main crops in China) from
1244 countries (Figure 1) in 2005. Table 1 lists the values of the
key parameters (MC (moisture content) and HI (harvest index))
in Eq. 1.

2.2 Process-based model NPP data

We incorporated the NPP outputs of eight models (AVIM2
(Huang et al., 2007; Ji et al., 2008), CEVSA2 (Gu et al., 2010),
BIOME-BGC, CLASS-CTEM-N, CLM4, CLM4VIC, DLEM, ISAM,
and TEMP6) to implement the newNDVI-driven learning ensemble
model. The AVIM2 and CEVSA2 models provided 0.1-degree
gridded annual NPPs for Chinese croplands from 1982 to 2010.
The monthly NPP results for the other seven models were obtained
from the MsTMIP model outputs, which are available online
(https://doi.org/10.3334/ORNLDAAC/1225) (Huntzinger et al.,
2013). Table 2 provides a short introduction to these land-
process-based models.

These NPP outputs have been previously used to investigate
terrestrial carbon cycle processes (Liu et al., 2019; Schwalm et al.,
2020; Fer et al., 2021). The available period covered by the
MsTMIP data is 1900–2010. There are no recent data from
2011 to 2022. Globally available NDVI data began in 1982.
For these two reasons, this study used process model data
from 1982 to 2010. Because the MsTMIP data do not have
data products from 2011 to the present, this study cannot
simulate and evaluate the cropland NPP from 2011 to the
present. We extracted the annual NPP datasets from 1982 to
2010 over China using the CDO (Climate Data Operator, Version
1.9.9, available at https://code.mpimet.mpg.de/projects/cdo)
software and then re-gridded them to a 0.1-degree spatial
resolution using bilinear interpolation.

2.3 Normalized difference vegetation
index (NDVI)

To minimize the uncertainty of NPP resulting from the
modelling process using a static vegetation-driven physical
process-based model, we utilized key spatiotemporal and
growth information of crop vegetation from the NDVI
between 1982–2010 to improve the accuracy of the national-
scale cropland NPP estimation. We used the GIMMS
NDVI3g.v1 dataset (https://iridl.ldeo.columbia.edu/SOURCES/.
NASA/.ARC/.ECOCAST/.GIMmaximumvvaluendvi/) to

FIGURE 1
Geographical distribution of croplands in China. The solid dots
show the locations of the 1244 statistic countries for NPP. The
cropland distribution data were obtained from the Data Center for
Resources and Environmental Sciences (http://www.resdc.cn).

TABLE 1 The harvest moisture content (MC) and harvest index (HI) of three
main crops. The two values were given in the Refs (Yan et al., 2021; Xue et al.,
2022).

Crop type Moisture content (MC) (%) Harvest index (HI)

Rice 14 0.45

Wheat 12.5 0.37

Maize 13.5 0.49
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produce monthly NDVI datasets–MVC (Maximum Value
Compositing) method (Holben, 1986) for the period between
1982–2010. We then interpolated the NDVIs from 0.833-degree
to 0.1-degree on the raster surface. In this study, we used a 12-
month average annual NDVI value greater than 0.1. As NDVI
describes the growth dynamics of agricultural vegetation, based
on the cropland distribution data in Figure 1, we extracted
cropland NDVI data from 1982 to 2010 as important auxiliary
information for the estimation of cropland NPP.

2.4 A learning ensemble method for remap
cropland NPP in China

By combining annual NDVI and SNPP values with MsTMIP
cropland NPPs over China, we utilized the LERFM to re-estimate
Chinese cropland NPP. Scikit-learn (version 1.2.2, https://scikit-learn.
org/stable/modules/ensemble.html#forests-of-randomized-trees) was
used to build and train LERFM. Here, we propose a theoretical
model (see Eq. 2 for details) to describe this method. The formula
for the LERFM is as follows:

YMNPP � f NDVI,XM1,NPP ,XM2,NPP , ....,/XM8,NPP ,XM9,NPP , SNPP( )
(2)

where XMi,NPP (i = 1,2,3 . . . ,9) is the annual NPP value from a
process-based model, and YMNPP is the LERFM annual NPP value.
All of the SNPP was used to train the LERFM model.

The LERFM is an ensemble learning algorithm of random
forest that improves the generalization ability of a model by
constructing multiple decision trees and combining their
prediction results. It consists of multiple decision trees, each
of which is trained on a random sample of the original data.
During the training process, for each decision tree, the algorithm
randomly selects a subset of features for training, rather than
using all features. This method of randomly selecting features
helps to increase the randomness of the decision tree, reduce the
variance of the model, and improve the overall generalization
ability of the model. After obtaining the prediction results of each
decision tree, the random forest votes or averages these results to

obtain the final prediction class (classification problem) or
average prediction value (regression problem). Since random
forest contains multiple decision trees, it can reduce the
overfitting problem of individual decision trees and improve
the stability and accuracy of the model.

Figure 2 outlines the technical schemes used in this study.
First, the NDVI and MNPP values for 2005 were extracted at the
same coordinate points as the SNPP. Second, NDVI and eight
MNPP variables were the new model input driving parameters,
and SNPP was the target constraint value of the model to build
the LERFM model. We employed a bootstrap sample and a
hyperparameter optimization method to optimize the model.
Third, we use the key parameter with the lowest prediction
error to identify and select the optimal LERFM. Finally, the
preferred LERFM was used to estimate the NPP of the
Chinese croplands from 1982 to 2010.

2.5 An important model comparisonmethod

We used the Taylor diagram statistical method to evaluate the
performance of the LERFM (Taylor, 2001). We calculated three
important metrics (r (correlation coefficient, see Eq. 3), root-mean-
square difference (RMSD, see Eq. 5), and standard deviation (SD, see
Eq. 4)) and plotted these variations to depict how well patterns
match between the model results and observed data. The three
metrics were calculated as follows:

r �
1
n∑N

n�1 MNPPn −MNPPn( ) SNPPn − SNPPn( )
SDMNPPSDSNPP

(3)

SDX � 1
N

����������∑N
n�1

X − �X( )2√√
X � MNPP or SNPP( ) (4)

RMSD � 1
N

∑N
n�1

MNPPn −MNPPn( ) SNPPn − SNPPn( )[ ]2⎛⎝ ⎞⎠0.5

(5)
Where MNPP and SNPP are the models and observations,
respectively.

TABLE 2 Short introduction for process-based models.

Land model name Spatial resolution Country Site Climate forcing N deposition Atmospheric CO2

AVIM2 0.1° × 0.1° China China CMA Constant Time-varying

CEVSA2 0.1° × 0.1° China China CMA Constant Time-varying

BIOME-BGC 0.5° × 0.5° USA global CRU + NCEP Time-varying Time-varying

CLASS-CTEM-N 0.5° × 0.5° Canada global CRU + NCEP Time-varying Time-varying

CLM4 0.5° × 0.5° USA global CRU + NCEP Time-varying Time-varying

CLM4VIC 0.5° × 0.5° USA global CRU + NCEP Time-varying Time-varying

DLEM 0.5° × 0.5° USA global CRU + NCEP Time-varying Time-varying

ISAM 0.5° × 0.5° USA global CRU + NCEP Time-varying Time-varying

TEMP6 0.5° × 0.5° USA global CRU + NCEP Time-varying Time-varying

Note: CMA is China meteorological data.
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3 Results

3.1 Spatial discrepancy between SNPP
and MNPP

We investigated the spatial distribution characteristics of SNPP
and MNPP in 2005 (Figures 3, 4). The spatial distribution of SNPP
showed that high and low SNPP values were mainly distributed in
East and Northwest China, respectively (Figure 3A). Compared with
SNPP, Figures 3B–J, Supplementary Figure S1, and Table 3 show the
differences in the spatial distribution characteristics of NPP
simulated by the nine models. For example, the average coverage
area of NPP overestimated by the nine models accounted for 36.25%
of the total cropland area, and the first three models with a large
overestimation area were CEVSA2 (61.49%), CLM4 (58.45%), and
DLEM (40.58%). In contrast, the average coverage area of NPP
overestimated by the nine models accounted for 63.75% of the total
area, and the first three models with large areas of underestimation
were ClASS-CTEM-N (97.83%), ISAM (81.06%), and BIOME-BGC
(67.23%). In addition, the probability distribution of NPP values
(Figure 4) showed that the regional-average SNPP is 549 g C m−2,
but the values from the raw models ranged from 86 to 646 g C m−2,
the 9-model average NPP is 461 g C m−2 with a standard deviation of
165.8 g C m−2 (which is a 36.0% of the 9-model average NPP).
Compared to the SNPP value, CEVSA2 and CLM4 were
overestimated by 17.67% and 16.39%, respectively. Table 3 also
shows that the underestimated magnitudes of NPP values of the

remaining models range −84.34% to −9.47%. The first two
magnitudes of CLASS-CTEM-N and ISAM are − −84.34%
and −33.88%, respectively.

3.2 A static analysis on the LERFM
performance in cropland NPP

We used the model constructed by the method described in
Section 2 to simulated and estimate the NPP of cropland in China
in 2005, and compared the effectiveness of the results. Here, using
the SNPP value as a target constraint value, we employed the SD,
RMSD, and r values of the classical Taylor diagram method to
validate the LERFM model by analyzing the three important
metrics of the 12 model MNPPs (Figure 5; Table 4). The Taylor
statistical results in Figure 5 and Table 4 show that the LERFM
exhibited the best NPP simulation performance among the
12 models. Compared with the SNPP, the LERFM had a
smaller SD (3.08 g C m−2). Meanwhile, among 12 models, the
LERFM model had the smallest RMSD (2.00 g C m−2) and the
highest r values (0.58) of the MNPP for cropland. Furthermore, in
Figure 6, we compared the probability distributions of LERFM
NPP and SNPP, and the results show that they have highly similar
peak-to-peak and valley-to-valley probability distributions. The
LERFM NPP was only 0.36% lower than the SNPP at the national
scale. This important statistical information further suggests that
LERFM is the best model. Notably, the 2nd best model in Figure 5

FIGURE 2
Flowchart of the method used in this study. MMEM is a simple multi-model arithmetic average method. MNPP is the NPP output of the process-
based model.
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and Table 4 is the MMEM, which suggests that its performance in
NPP is not optimal.

Compared to the other results, Table 5 shows that LERFM NPP
had 95% confidence interval (550.8 ± 52.3 g C m−2), which is close to
the average of these results. These results suggest that the LERFM
model exhibits strong simulation performance in estimating cropland
NPP across China. For example, ignoring the synchrony of time, the

LERFM NPP (547 g C m−2) in 2005 is only −0.69% less than the
average value (550.8 g C m−2) of the other results in Table 5. And
during 1982–2010 the LERFM NPP was only 4.3% less than that in
Table 5. The LERFM model can integrate multiple data sources to
improve the accuracy of NPP estimates compared with traditional
statistical or process-based models. In summary, the LERFM can
better simulate the NPP of cropland ecosystems in China.

FIGURE 3
(A) Cropland SNPP (Statistic-based NPP) map of China for 2005. (B–J) for the spatial distribution of the difference in values of the MNPP-SNPP in
2005. The formula for the difference is MNPP-SNPP

SNPP × 100%, its units are %.
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FIGURE 4
(A) Probability distribution of SNPP, but (B–J) for MNPP of AVIM2, CEVSA2, BIOME-BGC, CLASS-CTEM-N, CLM4, CLM4VIC, DLEM, ISAM, and
TEMP6 models in 2005. The “SD” is a standard deviation of variation. The formula for Diff is MeanMNPP-MeanSNPP

MeanSNPP
× 100%, its units are %.
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TABLE 3 Comparison of differences in NPP results from process models in 2005.

Model Regions of overestimation (%) Regions of underestimation (%)

Area ratio Mean Median Area ratio Mean Median

AVIM2 36.59 27.11 37.67 63.41 −28.87 −24.67

CEVSA2 61.49 28.32 39.88 38.51 −31.14 −18.98

BIOME-BGC 32.77 30.17 40.00 67.23 −39.19 −38.07

CLASS-CTEM-N 2.18 30.95 40.00 97.83 −77.14 −84.00

CLM4 58.45 30.94 40.00 41.55 −44.86 −43.57

CLM4VIC 36.99 27.52 33.67 63.01 −46.71 −47.04

DLEM 40.58 27.69 35.63 59.43 −33.70 −30.18

ISAM 18.94 25.03 27.33 81.06 −43.49 −43.71

TEMP6 38.31 27.69 35.17 61.69 −40.53 −36.08

Note: The difference is the value of MNPP-SNPP in 2005. The formula for the difference was MNPP-SNPP
SNPP × 100%, its unit was %). The “overestimation” is a difference value greater than zero. The

“underestimation” is a difference of less than zero.

FIGURE 5
Taylor diagram of the crop NPP validation (MNPPs versus SNPP data) across China in 2005. The ‘Observed’ is SNPP value.MODIS NPP from
http://ftp.ntsg.umt.edu/.autofs/MODIS/Mirror/MOD17_Science_2010/ (last accessed 14 January 2014) is also used to compare and validate the
LEFRM model.
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3.3 A spatial and temporal dynamic analysis
on performance of the LERFM NPP

To test the simulation performance of the LERFM in national-
scale NPP estimation, both the LERFM and MMEM were used to
separately re-estimate the Chinese cropland NPP from 1982 to 2010.
Compared to the spatial distribution of the SNPP (see Figure 7), the
regional average values for the LERFM and MMEM MNPP were
547 and 464 g C m−2, respectively, which were slightly 0.36% andTA
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FIGURE 6
Probability distribution of LERFM NPP (dark-green color) and
SNPP (“Obs,” orange color) in 2005. A positive or negative value
represents only the probability of deviation from the NPP mean
value.SD is the standard deviation. The units are g C m−2. The
number of bins was set to 100.

TABLE 5 Comparisons of cropland NPP in China.

NPP (g C.m-2) Period Resource

426.5 1989–1993 Liu et al. (2019)

436.2 2001 Holben (1986)

474 1981–2000 Taylor (2001)

577 1980–2000 Taylor (2001)

584 2000–2010 Zhu et al. (2007)

606 1981–1998 Feng et al. (2007)

585 1981–2000 Gao and Liu (2008)

741.9 2001 Liu (2013)

527 1982–2010 This study
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FIGURE 7
Spatial distribution of differences between LERFM (A) [or MMEM (B)] NPP and SNPP in 2005. The formula is LERFMNPP-SNPP

SNPP × 100% or
MMEMNPP-SNPP

SNPP × 100%, its unit is %.

FIGURE 8
Annual variations in the national average (A), maximum (B), and minimum (C) NPP values simulated by the LERFM (red) and MMEM (blue) model
during 1982–2010.The units are g C m−2. The shaded yellow line represents 95% confidence interval. This is based on calculations using multiple-
process-based model results.
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15.48% lower than the SNPP. Interestingly, the LERFM resulted in
an underestimation of −5%, covering 58.61% of the total crop cover
area, with only an overestimation of 14.65% for the remaining crop
cover area. However, for the MMEMmodel, 26.11% overestimation
and −30.91% underestimation covered 33.98% and 66.02% of the
total crop cover area, respectively. The results also suggest that the

spatial performance of the LERFM was better than that
of the MMEM.

By comparing the annual variation trend of NPP simulated by
the two models (see Figures 8, 9), we tested the performance of the
annual change in LERFM NPP. Figure 8 shows that during
1982–2010 the annual average (Figure 8A) and maximum

FIGURE 9
The spatial changes of slope in LERFM (A) and MMEM (B) NPP during 1982–2010.The units are g C m−2 y−1.

FIGURE 10
Annual variations in total NPP simulated by LERFM and MMEM. “576.57 ± 26.04” represents “the multi-year average ± standard deviation”. “r”
represents the correlation coefficient between LERFM andMMEMNPP. “slope” represents the annual trend of LERFM (or MMEM) NPP during 1982–2010.
SNPP is the statistic-based NPP.
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(Figure 8B) regional LERFM NPP values increased, whereas the
minimum value decreased (Figure 8C). These three NPP trends were
consistent with those of the MMEM. However, for the MMEM, the
average value also showed an insignificant increasing trend. This
indicates that the annual variation trends of the LERFM andMMEM
NPP were consistent, meaning that the LERFM model performed
better in simulating the annual variation trend of cropland NPP.

We further tested the consistency of the annual variation trends
of the two NPPs on a grid-to-grid basis (Figure 9). The statistical
results in Figure 9 show that the area-weighted average slopes of the
LERFM and MMEM NPP were both greater than zero (0.085 and
0.498 g C m−2 y−1, respectively), indicating that the annual variation
trends of LERFM and MMEM NPP in China were consistent.

We also investigated total NPP in China (see Figure 10).
Figure 10A shows that the annual variation of the total NPP
from LERFM and MMEM both showed a decreasing trend
during 1982–2010, with slopes of −1.72 and −0.22 Tg C.a−1,
respectively. Additionally, the year-to-year changes in the total
NPP were consistent, and the two NPP showed a significant
positive correlation (r = 0.795, p < 0.001). This indicates that the
LERFM can better simulate the annual variation characteristics of
the total NPP. Figure 10B also compares the total LERFM and
MMEM NPP for the year 2005. Compared with the total amount of
SNPP (572.49 Tg C), LERFM underestimates by only −0.37%, while
MMEM underestimates by −15.46%. Furthermore, the multi-year
average total LERFMNPP (576.57 ± 26.04 Tg C.a−1) was higher than
that of MMEM (497.48 ± 20.98 Tg C.a−1), proving that MMEM
greatly underestimated the total cropland NPP. The information
mentioned above suggests that the LERFM can better estimate total
cropland NPP.

4 Discussion

4.1 Possible causes of discrepancies among
multimodel estimations in the cropland NPP

Discrepancies among the NPPs from the multi-model caused
more difficulty in the accurate assessment of the cropland NPP.
Therefore, we further discuss the possible causes of discrepancies in
the multi-model simulation results. Figures 3, 4; Tables 3, 4 show
large differences between cropland NPPs from the multi-model
simulation. There are several main causes for this phenomenon.
First, a process-based model driven by different input data yields
different simulation results. For example, the AVIM2 (Ji et al., 2008)
and CEVSA2 (Gu et al., 2010) models were driven by observational
data from Chinese meteorological stations, whereas the process-
based models from the MsTMIP were driven by the CRU-NCEP
datasets (Huntzinger et al., 2013), and their NPPs showed large
discrepancies. Although the AVIM2 and CEVSA2models are driven
by the same set of weather-driven data, spatiotemporal differences
still exist in the NPPs. Discrepancies among the NPPs from the
CRU-NCEP data-driven MsTMIP models further demonstrate that
the difference in the input data is not the root cause of these
discrepancies (Wang et al., 2023). From the perspective of the
development framework structure of the model (ONeill and
Melnikov, 2008; Reyer et al., 2016; Bonan et al., 2019; Shi et al.,
2018; Arora et al., 2023), discrepancies in NPPs are mainly caused by

differences in the carbon component calculation modules and the
parametric scheme of these process-based models (Tao et al., 2003;
Wang, 2004; Huang, 2006; Briley et al., 2017; Bonan et al., 2019). For
instance, there are significant structural differences between
AVIM2 and CEVSA2 as well as structural differences between
the MsTMIP models (Bonan et al., 2019; Wang et al., 2023).
Third, the downscaling post-processing of the output data also
causes some differences (Wang et al., 2023; Bhunia et al., 2018)
in the NPPs. The raw MsTMIP output with a spatial resolution of
0.5° was interpolated to a grid surface of 0.1° using bilinear
interpolation, which caused an abnormal NPP value on the fine
grid to a certain extent. Simultaneously, the accuracy of the output
data is affected by the use of different validation data to calibrate the
process-based model. For example, AVIM2 and CEVSA2 used a
large amount of survey data from China to optimize the model;
however, the MsTMIP models lacked more detailed validation data
in China to calibrate the model, which caused cropland NPP
discrepancies with AVIM2 and CEVSA2. In summary, discrepancies
between the multi-model estimation results are inevitable. However,
these discrepancies do not imply that they were useless. Information
from multiple models can help to improve the accuracy of estimating
the carbon composition of terrestrial ecosystems.

4.2 Favorable conditions for the LERFM
model with strong simulation performance
in cropland NPP

We make full use of the useful prior information from
different models. For example, compared to the SNPP, Figures
2, 3 also show that although the NPPs from different models are
different, the results of these models are closer to the SNPP,
indicating that they have more useful prior information. In
addition, the LERFM method that we used can better explore
the relationship between the models, and their useful information
is highly concentrated (Liu et al., 2022b). These were subsequently
used to train the model. Notably, the process of training the model
belongs to supervised learning mode, which effectively reduces the
estimation loss of the model. For example, the spatial information
of the NDVI of cropland vegetation growth was used to optimize
the spatial simulation capability and improve the forecast
accuracy of the model. It helps refine the assumptions of the
model by providing valuable information on vegetation
productivity patterns and dynamics and calibrates the learning
ensemble model to improve the accuracy of model estimates of
NPP. For example, in terms of the spatial distribution of the
differences from the SNPP, Figure 7 shows that the LERFM NPP
exhibits a more detailed display of smaller differences from the
SNPP, whereas the MMEM NPP exhibits larger differences.
Simultaneously, additional inventory statistics were used to
calibrate the model and improve its accuracy. The LERFM
benefits from these favorable conditions, resulting in strong
simulation performance in simulating cropland NPP over
China. In Figure 5, LERFM NPP has the smallest RMSE,
largest r value, and smallest spatial differences from SNPP in
Figure 7A, which confirms that using high-spatial-resolution
NDVI and more detailed ground survey data can improve the
simulation accuracy of cropland NPP.
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4.3 Advances and limitations

Combining remote sensing observations and process-based
model data to drive a learning ensemble model provides a good
technique for near-realistic estimations of terrestrial ecosystem
carbon components. For example, LERFM provides a very low
underestimation of cropland NPP. As Earth observation
technology continues to improve, increasing amounts of high-
resolution data (such as NDVI, soil-adjusted vegetation index
(SAVI), vegetation optical depth (VOD), canopy aggregation
index, and hyperspectral data) are available to monitor crop
growth from various perspectives over longer periods. These data
provide accurate and timely information on crop growth. NDVI
data can also be used to guide management decisions aimed at
improving the NPP. By identifying areas with low vegetation
productivity, NDVI data can help target interventions that
promote ecosystem health and productivity (Lobell et al., 2002;
Zhang et al., 2015) such as fertilization, water management, and
restoration. In particular, high spatial resolution remote sensing data
provide real physical constraints, further improving the accuracy of
model estimation. Furthermore, this study not only helps to better
understand the strengths and weaknesses of different model
approaches, but has also been used to estimate carbon stock and
vegetation carbon density on a national or global scale (Reichstein et
al., 2019; Wang et al., 2023). In the future, more sophisticated
process models and advanced machine learning methods will be
available to deepen our understanding of crops and improve carbon
measurements in cropland ecosystems.

Notably, the LERFM has a significant ability to estimate
annual NPP trends. The average, maximum, and minimum
NPP values of the LERFM and MMEM in Figure 8 showed
consistent trends, but there were some differences in their
annual trends. For example, compared to the annual NPP
change rate of the MMEM, the LERFM had a relatively low
NPP increase rate. Furthermore, the LERFM NPP model
characterized the spatial heterogeneity of annual NPP trends
more accurately. For example, the Eastern China region in
Figure 9A shows a decreasing NPP trend, which is opposite to
the annual NPP trend of the MMEM in Figure 9B. As mentioned
above, the LERFM model method proposed in this study not only
helps to increase the accuracy of cropland NPP estimation but also
provides a new technology for reducing the uncertainty of multi-
model estimation of cropland NPP. However, these subtle
differences are related to the high spatial resolution NDVI-
driven LERFM model. However, the lack of a long-term
continuous inventory of cropland NPPs introduces uncertainty
into the time series of NPPs simulated using the LERFM. This
uncertainty may be due to possible convergence phenomena in the
LERFM or the process-based model itself, which could result in
anomalies in the NPP trend over longer timescales. This potential
anomaly has not yet been addressed, and, if it exists, future trends
in carbon sinks in terrestrial ecosystems may be underestimated.

However, in large-scale high-spatial-resolution simulation tasks,
it is easy to cause the random forest model to have too many
classification decision trees, which can lead to overfitting of the
learning model.Overfitting is an important issue in machine
learning. It usually occurs when a model performs too well on
training data and thus performs worse on testing data. This is mainly

because the model is too complex and “memorizes” the training data
instead of “learning” from it, resulting in poor performance on new,
unseen data. To solve the overfitting problem, multiple methods
should be considered, including increasing training data, data
preprocessing, simplifying the model, regularization, early
stopping, dropout, and ensemble methods. Random Forest is an
ensemble method that combines multiple decision trees to improve
prediction performance. Besides, we did not further consider the
uncertainty of simulation results caused by uneven spatial sample
distribution, which may cause instability in the simulation results.
This is also an important issue facing current unbalanced small-
sample spatial simulation.

5 Conclusion

Accurate estimation of cropland NPP remains a significant
challenge. We hypothesized that incorporating prior NPP
information simulated by a process-based model into NDVI data
would improve the accuracy of cropland ecosystem NPP estimation.
To test this assumption, we built an integrated machine learning
model using NDVI, MNPP simulated by nine process models, and
SNPP data estimated using yield statistics to estimate China’s
cropland NPP from 1982 to 2010. The MNPPs of the nine models
showed a large discrepancy compared with the SNPP, indicating that
different estimation models produce greater uncertainty. However,
after testing, the LERFMmodel underestimated NPP by only −0.37%,
while the average of the nine models underestimated by −15.46%. The
LERFM also had the highest simulation skill score, demonstrating its
effectiveness in improving the accuracy of cropland NPP estimation.
Additionally, the annual change trend of the LERFM NPP increase
was more consistent with the MMEM NPP trend, and there was a
significant positive correlation between the total NPP (r = 0.795, p <
0.001), indicating that the LERFM could better describe the
spatiotemporal dynamic change process of cropland NPP. These
results demonstrate that a prior information-driven integrated
machine learning model combining NDVI and process model
simulation results can effectively improve the accuracy of cropland
NPP estimation, leading to improved cropland carbon measurement
and management.
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