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In the recent years, concentration of fine particulate matter that are 2.5 microns or
less in diameter (PM2.5) in Thailand has consistently exceeded the national ambient air
quality standard. Currently, the measurement of PM2.5 concentration relies on air
qualitymonitoring stationsoperatedby thePollutionControlDepartmentof Thailand
(PCD). However, these stations are insufficient, particularly in rural areas, where
agricultural open burning are major sources of pollution after harvesting period. This
study aims to enhance the monitoring of PM2.5 concentration by leveraging cost-
effective technologies. We propose the integration of satellite data, specifically
Aerosol Optical Depth (AOD) from Multi-Angle Atmospheric Correction (MAIAC)
product and Himawari-8 satellites, with the Weather Research and Forecasting
Model (WRF) data, to provide supplementary data to the ground-based
monitoring. Hourly 5 × 5 km2 AOD data from Himawari-8 were downscaled to a
high-resolution of 1 × 1 km2, leveraging the AOD distribution pattern of the
concurrent MAIAC product using eXtreme Gradient Boosting (XGBoost) model.
Notably, during Thailand’s rainy season (May to August), the study observed a
relative reduction in the training model’s R-square value. This phenomenon is
attributed to temporal discrepancies between Himawari-8 and the MAIAC
products during this period. The predictive models of PM2.5 concentrations with
the identification of pertinent variables through Pearson’s correlation analysis and
recursive feature elimination, driven by the robust XGBoostmodel. Subsequently, the
downscaled AOD, wind speed, temperature, and pressure were identified as
predictors for the estimation of hourly PM2.5 concentration. This comprehensive
approach enabled the projection of PM2.5 levels across Thailand, encompassing over
600,000 grids at 1 × 1 km2 resolution. The developed models, thus, offer a valuable
tool for robust and high-resolution PM2.5 concentration estimation, presenting
significant implications for air quality monitoring and management in Thailand.
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1 Introduction

In recent decades, the global community has experienced a growing concern over the
emission of air pollution resulting from human activities, such as transportation, industry,
biomass burning. The World Health Organization (WHO) reported in 2014 that air
pollution was accountable for approximately 7 million premature deaths worldwide
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(Amnuaylojaroen et al., 2020). Prolonged exposure to elevated levels
of air pollution poses diverse health risks, with a particular emphasis
on the impact of PM2.5 (fine particulate matter with a diameter of
2.5 micron or less), a significant air pollutant that profoundly affects
human health and wellbeing (Lelieveld et al., 2013; Amnuaylojaroen
et al., 2019). PM2.5 possesses the ability to deeply penetrate the
respiratory tract and enter the lungs, leading to impaired lung
function and the exacerbation of medical conditions such as
asthma and heart disease (Tsai et al., 2000; Vichit-Vadakan et al.,
2001; Jinsart et al., 2002).

Southeast Asia, notably during dry season, faces recurrent
annual air pollution problems predominantly attributed to
biomass combustion (Yin et al., 2019). The extensive burning
of biomass and other human activities have substantially
contributed to the deterioration of air quality in Southeast
Asia (Lee et al., 2018; Lee et al., 2019). Furthermore,
unfavorable meteorological and geographical conditions also
contribute to the air pollution challenges experienced in this
region. Northern Thailand, in particular, characterized by its
mountainous areas and surrounding rice fields, encounters
escalating issues compounded by traffic congestion and the
practice of burning stubble prior to the rainy season. As a
result, air pollution is accumulated in narrow valleys (Oanh
et al., 2006; Amnauylawjarurn et al., 2010; Oanh and
Leelasakultum, 2011; Lee et al., 2019).

To measure the concentration of fine particulate matter or
PM2.5, it commonly relies on ambient air quality monitoring
stations. However, these methods possess inherent limitations
(such as costs of the equipment, monitoring and maintenance,
availability of technical staffs) and may not provide
comprehensive coverage of air quality across all areas (Qu
et al., 2017). Consequently, estimating fine particulate matter
concentration in the area with limited monitoring stations has
emerged as a critical area of research. Estimation methods for
PM2.5 concentration can be broadly categorized into two types:
those based on ground-level monitors and those that utilize
satellite-based data. Ground-level monitor-based estimation
approaches encompass techniques, such as land use
regression models, generalized additive mixed models,
hierarchical models, and geostatistical interpolation. On
another hand, satellite-based estimation methods depend on
remote sensing techniques (Qu et al., 2017; Zhang G. et al.,
2018). Integrating remote sensing data from satellites, such as
AOD with local measurement of meteorological parameters is
increasingly being adopted in air quality monitoring practices
(Hoff and Christopher, 2009). Machine learning and statistical
models are frequently combined with satellite data to estimate
PM2.5 concentrations at a finer spatial resolution (Zhang T.
et al., 2018; Joharestani et al., 2019; Xie et al., 2019; Yao et al.,
2019; Yang et al., 2020). Previous studies have attempted to
capture the relationship between PM2.5 and satellite-retrieved
AOD data using regression models (Bai et al., 2016; Yao et al.,
2019). Random forest (RF) and XGBoost have been employed to
predict PM2.5 levels in many studies (Hu et al., 2017; Xiao
et al., 2018).

Previous studies have predominantly concentrated on
estimating ground-level PM2.5 concentrations using AOD
from different satellites. Specifically, a spatial resolution of

10 × 10 km2 MODIS AOD has conventionally been employed
to derive ambient concentrations of PM2.5 on regional scales
(Ma et al., 2014; Kong et al., 2016). Recently, a 3 × 3 km2 MODIS
AOD has been applied to delve into finer spatial details at urban
levels, contributing to population-based PM2.5 exposure and
health effect studies (Xie et al., 2015). Moreover, most PM2.5

estimations are typically presented at spatial resolutions of
3–10 km2 to provide air quality in the study areas
(Hongthong et al., 2022). The AOD from the MAIAC
product represents a cutting-edge technique that combines
pixel and image-based processing with time series analysis.
The high-resolution (1 × 1 km2) AOD dataset minimizes
spatiotemporal heterogeneities, thereby enhancing the overall
accuracy of ground-level PM concentration estimates
(Lyapustin et al., 2011). Another notable AOD product is
Himawari-8 AOD, providing a high temporal resolution
AOD product which is useful for investigating diurnal
variations in air pollution with a spatial-temporal resolution
of 5 × 5 km2. Recent research in China has started estimating
real-time hourly ground-level PM2.5 using the Himawari-8
AOD product (Chen J. et al., 2019; Sun et al., 2021; Xu et al.,
2021). However, few studies have been conducted in Thailand,
where air quality monitoring stations are limited (Peng-in
et al., 2022).

In Thailand, prior studies have predominantly focused on
estimating PM2.5 concentrations in specific regions, particularly
in Chiang Mai province and the Northern region. The
estimation of PM2.5 concentrations in Chiang Mai province
utilized AOD data from MODIS with a spatial resolution of 10 ×
10 km2 and meteorological data from Thailand’s Pollution
Control Department through a multiple linear regression
model. However, the study faced limitations related to low
spatial resolution and the constrained spatial distribution of
meteorological data from air quality monitoring stations
(Kanabkaew, 2013). Other studies have also centered on
estimating PM2.5 concentrations based on the AOD of the
MODIS-Terra platform, which provides a spatial resolution
of 10 × 10 km2. These studies employed multiple or
multivariate linear regression techniques for PM2.5

concentration estimation (Kanabkaew, 2013; Wei et al., 2019;
Amnuaylojaroen, 2022; Wongnakae et al., 2023). Another AOD
product used for estimating particulate matter is the MAIAC
product, offering a higher spatial resolution than other
products. Hongthong et al. (2023) utilized this product to
estimate PM10 concentration in some provinces of Northern
Thailand, using the data to assess the attributed respiratory
disease burden. However, this study identified limitations in
predicting PM10 concentration, attributed to the availability of
weather data only at monitoring stations and the MAIAC-AOD
being available only once per day (Hongthong et al.,
2023).Additionally, predicting PM2.5 is challenging as it is
influenced by different factors, including weather conditions
and environmental seasonality, all of which can significantly
affect the regression models used for prediction
(Amnuaylojaroen, 2022). In this study, our focus was to
develop the method to enhance the spatial and
temporal resolutions of AOD using products from two
satellites, and incorporating weather parameters from the
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WRF to improve ground-level PM2.5 estimation in Thailand.
This study holds significance not only in elucidating the high-
resolution spatial distribution of PM2.5 concentration on an
hourly basis, but also in its potential applications, such as solar
energy assessment (Luo et al., 2019), aerosol data assimilation
(Zhang et al., 2021).

2 Data and methods

2.1 Study area

The study was conducted to estimate hourly 1 × 1 km2 PM2.5

concentration over Thailand. Figure 1 illustrates the study area,

FIGURE 1
Study area and locations of air quality monitoring stations used in this study.
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including the locations of ambient air quality monitoring stations
used in this study. These ambient air quality monitoring stations are
operating by the Thailand Pollution Control Department (PCD).
Across the region, there are 73 monitoring stations that monitor
different air quality parameters, i.e., carbon monoxide, nitrogen
oxide, sulfur dioxide, ozone, and particulate matter (PM2.5 and
PM10), as well as weather parameters, including wind speed,
wind direction, relative humidity, and temperature from 2018 to
2021. However, it should be noted that not all pollutant and
meteorological parameters are measured at every station.

2.2 Data collection

Data in this study were collected from four sources as follows:
The first dataset used in this study was the AOD from the

Himawari-8 satellite, known for its remarkable ability to capture
full-disk observations at 10-min intervals. It is also renowned for its
precise detection and mapping of volcanic ash and aerosols, as
indicated in previous studies (Marchese et al., 2018; Gao et al., 2021;
Fu et al., 2023). The study used the spatial of 5 × 5 km2 and a
temporal resolution of 1 h, making them suitable for our research
purposes for hourly monitoring data.

The second dataset, Multi-Angle Atmospheric Correction
(MAIAC), derives its data from the Moderate Resolution
Imaging Spectroradiometer (MODIS). This algorithm relies on
time series analysis to determine spectral surface reflectance, a
critical factor in aerosol retrieval. MAIAC’s AOD retrievals have
played a pivotal role in estimating ground-level PM distributions
and supporting epidemiological studies on air pollution, as
highlighted in existing research (Xiao et al., 2017). For our study,
we utilized a spatial resolution of 1 × 1 km2 and a temporal
resolution of 1 day.

The third data was hourly average PM2.5 concentration from
2018 to 2021 which were collected from 69 ambient air quality
monitoring stations operated by PCD (69 stations from all
73 stations have PM2.5 monitoring equipment). From all
69 monitoring stations, 23 monitoring stations were in Bangkok
Metropolitan Region. There were 10 stations in central Thailand,

5 stations in northeast Thailand, 9 stations in east Thailand,
14 stations in north Thailand and 8 stations in south Thailand.

Lastly, meteorological data were extracted from the WRF model
provided by the Thai Meteorological Department (TMD). TheWRF
data includes weather parameters, such as air pressure, temperature,
wind speed, wind direction, accumulated rainfall. These parameters
were averaged on an hourly basis and had a spatial resolution of
6 × 6 km2.

In conclusion, data collected in this study are summarized
in Table 1.

2.3 Data processing

This study used Python programming to process the data. The
main workflow encompassed downscaling hourly Himawari-8 AOD
data from 5 × 5 km2 to 1 × 1 km2 resolution. Then, machine learning
models were employed to predict PM2.5 concentration using
downscaled AOD and meteorological parameters. Figure 2 shows
the workflow in this study.

2.3.1 Aerosol optical depth from Himawari-8
Aerosol Optical Depth from Himawari-8 with a spatial

resolution of 5 × 5 km2 and temporal resolution of 1 h from 9:
00 to 16:00 were downloaded in the format of netCDF. To process
the data, the rioxarray library in Python was employed to convert the
data format into a raster format. Additionally, the geopandas library
was used to extract the data and save it in a CSV file for
further analysis.

2.3.2 Aerosol optical depth from MAIAC
The MAIAC data, obtained from the MODIS sensors on Terra

and Aqua satellites. The product used in this study is MCD19A2,
which is provided in TIFF file format with a daily average and a
spatial resolution of 1 × 1 km2. To process the data, Python’s rasterio
library was utilized to extract the relevant information.
Subsequently, the geopandas library was employed to save the
extracted data in a CSV file format, enabling further analysis
of the data.

TABLE1 Summary of Data Collection in this Study.

Data sources Parameters Time period Resolution

Himawari-8 satellite AOD 2017–2021 (09:00–16:00) - Hourly average data

- Spatial resolution of 5 × 5 km2

MAIAC data (MODIS) AOD 2017–2021 - Daily average

- Spatial resolution of 1 × 1 km2

WRF model - Pressure (HPa) 2018–2021 - Hourly average data

- Temperature (°C) - Spatial resolution of 6 × 6 km2

- Wind speed (m/s)

- Cumulative rainfall (mm)

Ambient air quality monitoring station PM2.5 concentration (μg/m3) 2018–2021 - Hourly average data

- Point measurement
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2.3.3 WRF model data
The WRF model data, acquired from the Thai Meteorological

Department, is provided in CSV file format. In this study, the pandas
and geopandas libraries were employed to extract the data and save it
into a CSV file with a format consistent with the Himawari-8 and
MAIAC data. This standardized format allows seamless integration and
further analysis of the data, enabling efficient utilization in this study.

2.4 Machine learning models

In the course of this investigation, five distinct machine learning
algorithmswere scrutinized, with the optimalmodel subsequently chosen
for the downscaling of AOD and the formulation of a PM2.5 prediction
model. The five machine learning models under consideration include.

2.4.1 Recursive feature elimination
Recursive Feature Elimination (RFE) is a crucial feature selection

technique employed to identify and remove the weakest features within a
dataset. Its primary objective is to determine the optimal set of features for
a given dataset (Granitto et al., 2006; Yan and Zhang, 2015). RFE
iteratively eliminates features until the desired number of features

remains. The ranking of features is assessed by the RFE model, which
systematically removes features during each iteration to address issues like
collinearity and dependencies in the model (Ketu, 2022).

2.4.2 Multiple linear regression
Multiple Linear Regression (MLR) is a widely used statistical model

for investigating the relationship between a continuous response
variable and one or more predictor variables, which can be either
continuous or categorical. MLR is a parametric model that assumes a
normal distribution, constant variance, and a linear relationship
between the response and predictor variables (Buya et al., 2023).

2.4.3 Decision tree model
The decision tree algorithm is represented as a tree structure,

which can be binary or non-binary. Each non-leaf node corresponds
to an attribute test, and every branch represents an attribute’s possible
outcomes within specified boundaries. Leaf nodes contain categorical
values. The process of the decision tree involves classifying
characteristic attributes starting from the root node and evaluating
their values based on the selected output branches until a leaf node is
reached, which determines the final category (Srivastava et al., 1999).
To bring order to unstructured data and regularize the dataset, three

FIGURE 2
Overall methodology of the study.
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common methods are employed in support of decision trees:
information gain, gain ratio, and Gini impurity (Zuo et al., 2020).

2.4.4 Extra trees model
The Extra-trees model is also a tree-based ensemble learning

method based on the bagging technique and construct frommultiple
decision trees, where each tree is generated by bootstrap sampling
from the training dataset (Breiman, 2001; Hu et al., 2017; Chen et al.,
2018), but introduces additional randomness in selecting features
and splitting the points from all data samples in the tree-building
process (Geurts et al., 2006; Wei et al., 2020; Wei et al., 2021).

2.4.5 eXtreme gradient boosting model (XGBoost)
XGBoost is a gradient-boosting technique that improves

performance and speed using a tree-based ensemble machine
learning algorithm (Chen and Guestrin, 2016). Gradient boosting
minimizes the loss function by sequentially adding weak learners via
gradient descent optimization. This approach relies on three
fundamental components: a loss function to measure predictive
accuracy, a weak learner that may not classify perfectly but is better
than random guessing, and an additive model that progressively
integrates decision trees (Chen T. et al., 2019).

2.5 Development of high resolution AOD

In this study, machine learning models were utilized to merge
AOD data obtained from two satellites, Himawari-8 and MAIAC,
aiming to achieve AOD products with enhanced spatial and
temporal resolutions. The MAIAC data provides high spatial
resolution, but was available only once per day. Conversely, the
Himawari-8 data provides hourly AOD products, but low spatial
resolution of 5 × 5 km2. To reconcile these differences, the hourly
Himawari-8 AOD data from 9:00 to 16:00 was downscaled from 5 ×
5 km2 to 1 × 1 km2 using Python programming, aligned with the
center point of the MAIAC product.

2.6 Prediction of ground-based PM2.5
concentration

Hourly high spatial resolution AODs from two satellites
generated from the downscaling method (section 2.5) with
meteorological data from WRF model were used to develop
models to estimate hourly PM2.5 concentration during the study
period (2018–2021). The developed models were separated by
month. Machine learning models explored to predict PM2.5

concentration in this study were linear regression, decision tree
regressor, extra tree regressor, random forest regressor and extreme
gradient boosting regressor models. Available data were divided into
a 70% training set and a 30% validation set for model development
and evaluation, respectively.

2.6.1 Validation of the PM2.5 prediction models
This study utilized machine learning models to estimate PM2.5

concentrations in the study area during 2018–2021, incorporating
inputs from hourly AOD andWRF results. The performance of the
PM2.5 estimation models was assessed by comparing the model

outputs with the ground-based PM2.5 concentrations from PCD’s
monitoring stations using statistical parameters, including
r-square, mean absolute error, and root mean square error. The
evaluation criteria for each statistical parameter can be found
in Table 2.

2.7 Developing an hourly 1 × 1 km2 PM2.5
concentration for Thailand

The validated models were used with Python programming
libraries to estimate hourly PM2.5 concentration in a 1 × 1 km2

grid over Thailand.

3 Results

3.1 Data completeness analysis

Data completeness analysis was conducted for AOD data from
Himawari-8 and MAIAC, meteorological data from WRF model,
and PM2.5 concentration data from PCD. The results are
summarized in Table 3.

From Table 3, AOD data from MAIAC and Himawari were
available between 5% and 45% of the total data during
2017–2021 due to cloud cover. PM2.5 concentration data
obtained from air quality monitoring stations is available between
25% and 99% from 69 stations during 2018–2021 due to availability
of PM2.5 monitoring equipment, data screening, potential
equipment issues, etc. In contrast, meteorological data from WRF
model data show 100% completeness (air pressure, temperature,
wind speed, and accumulated rainfall) from 2018 to 2021. Therefore,
this study used the data available based on the hours that data were
complete to train the PM2.5 concentration estimation models.

3.2 Ground-based PM2.5 monitoring data

The hourly pattern of PM2.5 concentrations remained
remarkably consistent on an annual basis. From December to
April of every year, the hourly PM2.5 concentrations consistently
rise to very high levels. These cycles of elevated PM2.5

concentrations occur consistently on an annual basis, with the
specific duration of high concentrations varying slightly from one
region to another. Figure 2 shows hourly PM2.5 concentration
monitored by 69 air quality monitoring stations around Thailand
(average by region—BMR, central, north, northeast, east
and south).

TABLE 2 Statistical methods and criteria for checking model performance.

Statistics Equation Criteria

R-square R2 � 1 − ∑(yobserved−ypredicted )2∑(yobserved−ymean observed)2
Close to one

Mean absolute error MAE � 1
n∑ |yobserved − ypredicted| Low value

Root mean square error RMSE �
����������������������
1
n∑ (yobserved − ypredicted)2

√
Low value
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3.3 Weather Research and Forecasting
Model validation

The WRF data, sourced from the TMD, underwent rigorous
validation against hourly average meteorological data from each
air quality monitoring station operated by the PCD throughout
Thailand from 2018 to 2021. The received WRF data has a spatial
resolution of 6 × 6 km2 and a temporal resolution of 1 h. The
validation process for TMD-WRF revealed the following results:
a correlation coefficient (R) of 0.7 for temperature, 0.5 for wind
speed, and 0.1 for pressure and precipitation. While the
correlation coefficients for pressure and precipitation were
relatively low, our primary focus in this study lies on
developing the methodology based on the available data in
Thailand. Thus, with improvements in the WRF prediction
data provided by the TMD, the estimation of PM2.5

concentration is expected to enhance significantly.

3.4 Hourly 1 × 1 km2 AOD

This study employed various machine learning models,
including linear regression, decision tree, extra tree regression,
and extreme gradient boosting models, to downscaling 5 × 5 km2

AOD measurements from Himawari-8 to 1 × 1 km2 using AOD
pattern from MAIAC. The training dataset consisted of
approximately 8.5–250 million data points (differences based
on data availability in each month), while the testing dataset
contained around 3 to 102 million data points. The R2 values for
both training and testing ranged from 0.04 to 0.58 (Figure 3).
Notably, the R2 value was found to be lowest during the rainy
seasons (June to August) due to the time gap between Himawari-
8 and MAIAC data, which the satellite path time changes during
this period. Additionally, number of available data for training
and testing during rainy season was lower compared to other
seasons. However, the results demonstrated that the three
models, excluding linear regression, exhibited similar
performance in downscaling the AOD data to 1 × 1 km2. In
this study, the extreme gradient boosting regressor model
(XGBRegressor) was chosen to downscale AOD due to its less
resource requirement (processing time). Moreover, the
XGBRegressor is the ensemble learning technique that was
developed based on many models including the decision tree
model to help reducing overfitting that can lead to more stable

and accurate predictions. Moreover, XGB has outperformed
various statistical models in previous studies (Gupta and
Christopher, 2009; Xiao et al., 2018).

After obtaining the downscaling models, the Python
programming was used to downscale AOD, as presented
in Figure 4.

In Figure 4, a noteworthy observation is that the AOD values
from MAIAC and Himawari-8 exceed those obtained through the
downscaled AOD within the middle part of Thailand. This
divergence can be attributed to the comprehensive
spatiotemporal scope of the model developed for this study,
which encompasses data from 2017 to 2021, providing a
holistic perspective on AOD dynamics throughout Thailand. A
key contributor to the relatively lower AOD values in this specific
region is the pronounced presence of very high AOD, primarily
due to the influence of anthropogenic aerosols (Luo et al., 2019)
where this area is correspond to regions with extensive
agricultural land use. This influence is particularly significant
during December, coinciding with Thailand’s harvest season,
marked by various agricultural activities that release elevated
aerosols into the atmosphere. Incorporating this information
enriches our understanding of the complex interplay of factors
affecting AOD, encompassing both natural and human-
induced elements.

3.5 Hourly PM2.5 concentration estimation

In this study, Pearson’s coefficient was used to assess the
correlation among meteorological parameters, downscaled AOD
and PM2.5 concentration from air quality monitoring data.
Additionally, RFE was employed for the XGBRegressor and other
models to identify key important variables for predicting PM2.5

concentration.
The analysis using Pearson’s coefficient (Figure 5) revealed

that the highest correlation with PM2.5 concentration was found
with the downscaled AOD, followed by wind speed, pressure,
precipitation, and temperature. However, the RFE analysis
indicated that the important variables were the downscaled
AOD, wind speed, temperature, pressure, and precipitation, in
this order. Interestingly, when the precipitation data was excluded
in predicting PM2.5 concentrations, there was no significant
difference in the model performance. Thus, this study decided
to use four variables, namely, downscaled AOD (Himawari_xgb),

TABLE 3 Completeness of AOD, meteorological and PM2.5 concentration data.

Data type Parameters Data
completeness (%)

Time
period

MAIAC data AOD 13–19 2017–2021

Himawari-8 data AOD 5–45 2017–2021

WRF data Air pressure at sea level, temperature at ground level, wind speed at 10 m above the ground,
precipitation

100 2018–2021

Air quality monitoring
data

PM2.5 concentration 25–99 2018–2021
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wind speed, temperature, and pressure, for predicting PM2.5

concentration.

3.6 Performance of the PM2.5
estimation model

The performance evaluation of monthly PM2.5

concentration estimation models using XGBRegressor
revealed that the R2 of the testing set ranges from 0.20 to
0.91. Moreover, the RMSE indicated that the prediction
models had an error range of 7.07–36.93 μg/m³. Figure 6

presents monthly performances of PM2.5 estimation model
using XGBRegressor.

3.7 Comparison of PM2.5 concentration from
monitoring station and model estimation

PM2.5 concentration estimated from models in this study
were compared with those from monitoring stations in Thailand
on the corresponding grids where the monitoring stations were
located. In total, this study compared 7,583 hourly data points
from 2018 to 2021. The regression coefficient, based on the

FIGURE 3
Model Performances of the Downscaling AODs: (A) Number of training data (B) Number of testing data (C) R2 of training models (D) R2 of testing
models (E) RMSE of testing data (F) MAE of testing data.
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Pearson’s coefficient method, was found to be approximately
0.80. However, the results indicated that the estimated PM2.5

concentration were generally higher than the monitored PM2.5

concentration (Figure 7).
Figure 8 displays the timeseries comparison between PM2.5

concentration from monitoring stations and model estimation. It is
evident that the estimated values consistently exceeded the monitored
values during March to April. This disparity can be attributed to the
influence of elevated ambient temperatures, which can affect the AOD

data due to increased photochemical reactions. Additionally, during
this period, there was a significant incidence of open burning of
agricultural residues in the study area (Figure 9), further contributing
to this observed difference. These effects contribute to higher AOD
than other periods (Shen et al., 2018; Xian et al., 2022). Moreover, it is
important to acknowledge that open burning has a direct impact on
PM2.5 concentrations since it also emits gaseous pollutants, such as
SO2, NO2, CO, all of which are correlated with both PM2.5

concentration and AOD (Amnuaylojaroen, 2022).

FIGURE 5
(A) Pearson’s Correlation and (B) Feature Importance of Auxiliary Variables in Predicting PM2.5 Concentration (WS-Wind speed, TEM-Temperature,
PCT-Precipitation, PRE-Pressure, and HI_XGB-Himawari_XGB).

FIGURE 4
Comparison of AODs from (A) Himawari-8, (B) AODs from MAIAC, and (C) Downscaled AODs on 11 December 2019 at 10:00 a.m.
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3.8 High spatial and temporal resolution
PM2.5 concentration map for Thailand

PM2.5 concentration maps of Thailand were generated using a
1 × 1 km2 grid based on MAIAC cells (625,057 grids covering
Thailand). After model estimation was made for each grid, PM2.5

concentrations were computed by averaging the data on an hourly,
daily, monthly, and yearly basis (Figure 10). The spatial distribution
of PM2.5 concentrations revealed that a significant number of grids
had missing data due to cloud interference, particularly data in the
hourly-average format (Figure 10A). However, by aggregating the

data on a daily, monthly, and yearly basis, more data are available,
providing a more comprehensive view of the PM2.5 concentrations
over Thailand.

Figure 10C monthly average (December 2019) PM2.5

concentration: Significant increase in PM2.5 concentration
during the dry season, particularly in the northern region of
Thailand, was observed. This temporal pattern aligns with the
findings presented in Figure 11 during December 2019. During
the dry season, multiple sources contribute to elevate PM2.5

levels, including open burning and forest fires. While open
burning and forest fire are widely recognized as the primary

FIGURE 6
Monthly Performances of PM2.5 Estimation Models using Extreme Gradient Boosting Regressor: (A) Number of training data (B) Number of testing
data (C) R2 of training models (D) R2 of testing models (E) RMSE of testing data (F) MAE of testing data.
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sources to dry-season PM2.5 concentration, it is important to note
that traffic and other emissions are consistent year-round sources
of PM2.5. Despite biomass burning accounting for 25%–79% of
PM2.5 during this period (Hu et al., 2017), traffic emissions also
play a significant role in contributing to haze pollution (Fu
et al., 2023).

Figure 10D yearly average of PM2.5 concentration: The
northern and western regions of Thailand exhibited higher
PM2.5 levels compared to other areas. This observation is
consistent with the spatial distribution of active fires in
Figure 9, indicating a correlation between high PM2.5 levels
and the occurrence of active fire hotspots in the northern and
western regions.

4 Discussion and conclusion

In this study, relationship between AOD of Himawari-8 and
MAIAC, WRF model parameters (wind speed, precipitation,

pressure, and temperature) and PM2.5 concentrations in Thailand
during 2018–2021 has been investigated. The hourly 5 × 5 km2 AOD
from Himawari-8 was downscaled to 1 × 1 km2 using the AOD
distribution pattern of the MAIAC product on the same day. More
than 250 million data points for training and testing were employed
during the downscaling process to enhance the model’s accuracy by
XGBoost model. However, our findings revealed that the R-square
value of the training model was relatively low during rainy season in
Thailand (May to August). This can be attributed to the time gap
between Himawari-8 and MAIAC-product passing over the study
area. Additionally, the presence of cloud interference during the
rainy season contributed to the availability of the data during this
period. Nonetheless, it is important to note that our study utilized
training and testing data encompassing all regions of Thailand. One
potential factor contributing to the observed lower accuracy may be
the presence of anthropogenic aerosols concentrated in urban and
agricultural areas, exerting a substantial influence on the scattering
and absorption of solar radiation (Luo et al., 2019). Nevertheless, our
study has developed a downscaling AOD methodology that

FIGURE 7
Scatter Plot of Hourly Average PM2.5 Concentrations: Model Estimation vs. Monitoring (2018–2021).
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optimizes the impact of anthropogenic factors and significantly
improves spatial and temporal resolution. Furthermore, AOD
accuracies are influenced by various factors, including
topography, seasonally changing surface characterization (e.g.,
vegetation cover, surface reflectance), aerosol type, size
distribution, and vertical distribution of aerosols in the
atmospheric column, along with sensor and solar viewing
geometry (Gupta et al., 2021). Despite the multifaceted nature of
these influences, this study specifically examined AOD as the most
critical factor in predicting PM2.5 concentrations. Consequently,
AOD emerges as a primary source of error in PM2.5 concentration
predictions, particularly as we aimed to estimate concentrations
across all regions in Thailand. Many previous studies have revealed
that regression model with the MODIS AOD measurement can be
used as a predictor variable to estimate the spatial ground-level
PM2.5 concentrations, taking into account many potential
confounders (Hu et al., 2014; Zheng et al., 2016; Wang et al.,
2019; Guo et al., 2021). This method would benefit for exposure
assessment for epidemiological research, especially in the areas with
no monitoring station network that is commonly used to explore the
association of PM2.5 with morbidity and mortality (Peng-in et al.,
2022). The prediction of PM2.5 concentrations commenced by
identifying relevant variables through the Pearson’s correlation
and recursive feature elimination based on the XGBoost model.
Following the testing phase, the downscaled AOD, wind speed,
temperature, and pressure were selected as the predicting variables
for hourly PM2.5 concentration estimation. Utilizing the downscaled
AOD with meteorological data, this study predicted PM2.5

concentrations over Thailand, encompassing over 600,000 grids
at a 1 × 1 km2 resolution.

The PM2.5 estimation models (developed for each month in
Thailand) yielded a diverse range of R2 results for the training
dataset, but, in overall, exhibited consistently high accuracy. The R2

values for the testing dataset varied from 0.20 to 0.91, with

corresponding root mean square errors ranging from 7.07 to
36.93 μg/m³. Then, the PM2.5 concentration from the model
estimation were compared with those from ambient air
monitoring stations at the corresponding grid and time. The
model’s performance shows R2 value of 0.64 and an RMSE of
10.33 μg/m³. The accuracy result of estimating PM2.5

concentration was similar to the previous studies in Thailand and
other countries (Ma et al., 2014; Zheng et al., 2016; Guo et al., 2021;
Xu et al., 2021; Buya et al., 2023). However, the estimated PM2.5

concentration from March to April was higher than the monitoring
data due to the significant of open burning of agricultural residues in
the study area. These effects contribute to higher AOD than other
periods and are related to PM2.5, AOD and other pollutants
(Amnuaylojaroen, 2022). Thus, the developed models can be
used to estimate PM2.5 concentration on an hourly basis with a
resolution of 1 × 1 km2 covering Thailand.

The accuracy of our PM2.5 estimations was subject to the
influence of several pivotal factors. The AOD-PM2.5 relationship
proved sensitive to variables, such as aerosol concentrations, relative
humidity, cloud cover, boundary layer height (Gupta and
Christopher, 2009; Chitranshi et al., 2015). However, our analysis
encountered limitations, notably the restricted scope of
meteorological data from the available WRF model output from
TMD. Additionally, our reliance on an AOD inversion algorithm
introduced limitations that affected our ability to estimate PM2.5

concentrations across all regions. Notably, the current AOD inversion
algorithm struggles with cloud recognition, often mistaking haze for
clouds, potentially resulting in the absence of aerosol products under
heavy pollution conditions (Bilal et al., 2017). As a potential solution
to these limitations, we suggest exploring multisource data inversion
algorithms to enhance spatial coverage (Shi et al., 2018). The
complexity of PM2.5 prediction is further compounded by the
influence of various variables, including weather conditions and
environmental seasonality (Amnuaylojaroen, 2022). In particular,

FIGURE 8
Time-series Comparison of Hourly Average PM2.5 Concentrations: Model vs. Monitoring (2018–2021).
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Buya et al. (2023) enhanced the accuracy of PM2.5 estimation by
incorporating additional factors, such as Normalized Difference
Vegetation Index (NDVI), Elevation, Week of the Year, and year
in Thailand. The resulting model, based on the XGBoost algorithm,
achieved an R-squared value of 0.45 and an RMSE of 12.12 μg/m³.
Furthermore, Luo et al. (2019) conducted a study that explored the

influence of surface solar radiation on AOD. This relationship arises
from solar radiation affecting the scattering and absorption of
aerosols, which, in turn, impacts AOD. Higher solar radiation
levels can intensify photochemical reactions that result in the
formation of secondary aerosols, subsequently elevating AOD
(Luo et al., 2019).

FIGURE 9
Spatial distribution of active fires and PM2.5 monitoring stations in Thailand (2018–2021).
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Despite the valuable insights gained from our study, it is crucial
to acknowledge that we primarily relied on AOD data for PM2.5

estimation, introducing variability across different regions and
potentially affecting the overall accuracy of our findings, given

the utilization of two AOD products from Himawari-8 and
MAIAC. In future research, it is crucial to consider incorporating
additional factors into AOD downscaling, such as land use data,
solar radiation, week of the year.

FIGURE 10
Spatial distribution (1 × 1 km2) of PM2.5 concentration (µg/m3) in Thailand frommodel estimation: (A) hourly average (11 December 2019 at 10:00am),
(B) daily average (11 December 2019), (C) monthly average (December 2019) and (D) yearly average (year 2019).

Frontiers in Environmental Science frontiersin.org14

Punpukdee et al. 10.3389/fenvs.2023.1303152

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1303152


Data availability statement

The original contributions presented in the study are included in
the article/Supplementary material, further inquiries can be directed
to the corresponding author.

Author contributions

PP: Conceptualization, Methodology, Visualization, Formal
Analysis, Writing–original draft. EW: Conceptualization,
Methodology, Visualization, Project administration, Writing–review
and editing. PK: Conceptualization, Writing–review and editing. SV:
Writing–review and editing. WX: Writing–review and editing. TN:
Writing–review and editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This research
was funded by The National Research Council of Thailand, grant
number (วช.อว.(ก)(กบท2)186/25).

Acknowledgments

The authors would like to acknowledge Thailand Pollution
Control Department for providing the PM2.5 air quality
monitoring data, and Thai Meteorological Department for
providing the WRF model outputs (meteorological data).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Amnauylawjarurn, T., Kreasuwun, J., Towta, S., and Siriwitayakorn, K. (2010).
Dispersion of particulate matter (PM10) from forest fires in Chiang Mai province,
Thailand. Chiang Mai J. Sci. 37 (1), 39–47.

Amnuaylojaroen, T. (2022). Prediction of PM2.5 in an urban Area of northern
Thailand using multivariate linear regression model. Adv. Meteorology 2022, 1–9.
doi:10.1155/2022/3190484

Amnuaylojaroen, T., Inkom, J., Janta, R., and Surapipith, V. (2020). Long range
transport of southeast asian PM2.5 pollution to northern Thailand during high biomass
burning episodes. Sustainability 12 (23), 10049. doi:10.3390/su122310049

Amnuaylojaroen, T., Macatangay, R. C., and Khodmanee, S. (2019). Modeling the
effect of VOCs from biomass burning emissions on ozone pollution in upper Southeast
Asia. Heliyon 5 (10), e02661. doi:10.1016/j.heliyon.2019.e02661

FIGURE 11
Hourly average PM2.5 concentration by region in Thailand (2018–2021).

Frontiers in Environmental Science frontiersin.org15

Punpukdee et al. 10.3389/fenvs.2023.1303152

https://doi.org/10.1155/2022/3190484
https://doi.org/10.3390/su122310049
https://doi.org/10.1016/j.heliyon.2019.e02661
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1303152


Bai, Y., Wu, L., Qin, K., Zhang, Y., Shen, Y., and Zhou, Y. (2016). A
geographically and temporally weighted regression model for ground-level PM2.5

estimation from satellite-derived 500 m resolution AOD. Remote Sens. 8 (3), 262.
doi:10.3390/rs8030262

Bilal, M., Nichol, J. E., and Wang, L. (2017). New customized methods for
improvement of the MODIS C6 Dark Target and Deep Blue merged aerosol
product. Remote Sens. Environ. 197, 115–124. doi:10.1016/j.rse.2017.05.028

Breiman, L. (2001). Random forests.Mach. Learn. 45, 5–32. doi:10.1023/a:1010933404324

Buya, S., Usanavasin, S., Gokon, H., and Karnjana, J. (2023). An Estimation of daily
PM2.5 Concentration in Thailand using satellite Data at 1-kilometer resolution.
Sustainability 15 (13), 10024. doi:10.3390/su151310024

Chen, G., Li, S., Knibbs, L. D., Hamm, N., Cao, W., Li, T., et al. (2018). A machine
learning method to estimate PM2.5 concentrations across China with remote sensing,
meteorological and land use information. Sci. Total Environ. 636, 52–60. doi:10.1016/j.
scitotenv.2018.04.251

Chen, J., Yin, J., Zang, L., Zhang, T., and Zhao, M. (2019a). Stacking machine learning
model for estimating hourly PM2.5 in China based on Himawari 8 aerosol optical depth
data. Sci. Total Environ. 697, 134021. doi:10.1016/j.scitotenv.2019.134021

Chen, T., He, T., Benesty, M., Khotilovich, V., et al. (2019b). Package ‘xgboost’, 90.
New York: R version, 1–66. Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining.

Chen, T., and Guestrin, C. (2016). “Xgboost: a scalable tree boosting system,” in
Proceedings of the 22nd acm sigkdd international conference on knowledge discovery
and data mining.

Chitranshi, S., Sharma, S. P., and Dey, S. (2015). Satellite-based estimates of outdoor
particulate pollution (PM10) for Agra City in northern India. Air Qual. Atmos. Health 8
(1), 55–65. doi:10.1007/s11869-014-0271-x

Fu, D., Gueymard, C. A., Yang, D., Zheng, Y., Xia, X., and Bian, J. (2023). Improving
aerosol optical depth retrievals from Himawari-8 with ensemble learning enhancement:
validation over Asia. Atmos. Res. 284, 106624. doi:10.1016/j.atmosres.2023.106624

Gao, L., Chen, L., Li, J., and Zhu, L. (2021). An improved dark target method for
aerosol optical depth retrieval over China from Himawari-8. Atmos. Res. 250, 105399.
doi:10.1016/j.atmosres.2020.105399

Geurts, P., Ernst, D., and Wehenkel, L. (2006). Extremely randomized trees. Mach.
Learn. 63, 3–42. doi:10.1007/s10994-006-6226-1

Granitto, P. M., Furlanello, C., Biasioli, F., and Gasperi, F. (2006). Recursive feature
elimination with random forest for PTR-MS analysis of agroindustrial products.
Chemom. intelligent laboratory Syst. 83 (2), 83–90. doi:10.1016/j.chemolab.2006.
01.007

Guo, W., Zhang, B., Wei, Q., Guo, Y., Yin, X., Li, F., et al. (2021). Estimating ground-
level PM2.5 concentrations using two-stage model in Beijing-Tianjin-Hebei, China.
Atmos. Pollut. Res. 12 (9), 101154. doi:10.1016/j.apr.2021.101154

Gupta, P., and Christopher, S. A. (2009). Particulate matter air quality assessment
using integrated surface, satellite, and meteorological products: multiple regression
approach. J. Geophys. Res. Atmos. 114 (D14). doi:10.1029/2008jd011496

Gupta, P., Zhan, S., Mishra, V., Aekakkararungroj, A., Markert, A., Paibong, S., et al.
(2021). Machine learning Algorithm for estimating surface PM2.5 in Thailand. Aerosol
Air Qual. Res. 21 (11), 210105. doi:10.4209/aaqr.210105

Hoff, R. M., and Christopher, S. A. (2009). Remote sensing of particulate pollution
from space: have we reached the promised land? J. Air and Waste Manag. Assoc. 59 (6),
645–675. doi:10.3155/1047-3289.59.6.645

Hongthong, A., Nanthapong, K., and Kanabkaew, T. (2022). Estimates of disease
burden attributed to particulate matter in northern part of Thailand. Thammasat
University, Thailand.

Hongthong, A., Nanthapong, K., and Kanabkaew, T. (2023). Estimation of respiratory
disease burden attributed to particulate matter from biomass burning in northern
Thailand using 1-km resolutionMAIAC-AOD.Appl. Environ. Res. 45 (2). doi:10.35762/
aer.2023008

Hu, X., Belle, J. H., Meng, X., Wildani, A., Waller, L. A., Strickland, M. J., et al.
(2017). Estimating PM2.5 concentrations in the conterminous United States using the
random forest approach. Environ. Sci. Technol. 51 (12), 6936–6944. doi:10.1021/acs.
est.7b01210

Hu, X., Waller, L. A., Lyapustin, A., Wang, Y., Al-Hamdan, M. Z., Crosson, W. L.,
et al. (2014). Estimating ground-level PM2.5 concentrations in the Southeastern
United States using MAIAC AOD retrievals and a two-stage model. Remote Sens.
Environ. 140, 220–232. doi:10.1016/j.rse.2013.08.032

Jinsart, W., Tamura, K., Loetkamonwit, S., Thepanondh, S., Karita, K., and Yano, E.
(2002). Roadside particulate air pollution in Bangkok. J. Air and Waste Manag. Assoc.
52 (9), 1102–1110. doi:10.1080/10473289.2002.10470845

Joharestani, M. Z., Ni, X., Bashir, B., and Talebiesfandarani, S. (2019).
“PM2.5 prediction based on random forest, XGBoost, and deep learning using
multisource remote sensing data”. Atmosphere 10, 373. doi:10.3390/atmos10070373

Kanabkaew, T. (2013). Prediction of hourly particulate matter concentrations in
chiangmai, Thailand using MODIS aerosol optical depth and ground-based
meteorological data. EnvironmentAsia 6 (2).

Ketu, S. (2022). Spatial air quality Index and air pollutant concentration prediction
using linear regression based recursive feature elimination with random forest
regression (RFERF): a case study in India. Nat. Hazards 114 (2), 2109–2138. doi:10.
1007/s11069-022-05463-z

Kong, L., Xin, J., Zhang, W., and Wang, Y. (2016). The empirical correlations between
PM2.5, PM10 and AOD in the Beijing metropolitan region and the PM2.5, PM10 distributions
retrieved by MODIS. Environ. Pollut. 216, 350–360. doi:10.1016/j.envpol.2016.05.085

Lee, H.-H., Iraqui, O., Gu, Y., Yim, S. H. L., Chulakadabba, A., Tonks, A. Y. M., et al.
(2018). Impacts of air pollutants from fire and non-fire emissions on the regional air quality
in Southeast Asia. Atmos. Chem. Phys. 18 (9), 6141–6156. doi:10.5194/acp-18-6141-2018

Lee, H.-H., Iraqui, O., and Wang, C. (2019). The impact of future fuel consumption
on regional air quality in Southeast Asia. Sci. Rep. 9 (1), 2648. doi:10.1038/s41598-019-
39131-3

Lelieveld, J., Barlas, C., Giannadaki, D., and Pozzer, A. (2013). Model calculated
global, regional and megacity premature mortality due to air pollution. Atmos. Chem.
Phys. 13 (14), 7023–7037. doi:10.5194/acp-13-7023-2013

Luo, H., Han, Y., Lu, C., Yang, J., and Wu, Y. (2019). Characteristics of surface solar
radiation under different air pollution conditions over Nanjing, China: observation and
simulation. Adv. Atmos. Sci. 36, 1047–1059. doi:10.1007/s00376-019-9010-4

Lyapustin, A., Wang, Y., Laszlo, I., Kahn, R., Korkin, S., Remer, L., et al. (2011).
Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm.
J. Geophys. Res. Atmos. 116 (D3), D03211. doi:10.1029/2010jd014986

Ma, Z., Hu, X., Huang, L., Bi, J., and Liu, Y. (2014). Estimating ground-level PM2.5 in
China using satellite remote sensing. Environ. Sci. Technol. 48 (13), 7436–7444. doi:10.
1021/es5009399

Marchese, F., Falconieri, A., Pergola, N., and Tramutoli, V. (2018). Monitoring the
Agung (Indonesia) ash plume of November 2017 by means of infrared Himawari 8 data.
Remote Sens. 10 (6), 919. doi:10.3390/rs10060919

Oanh, N. K., Upadhyay, N., Zhuang, Y. H., Hao, Z. P., Murthy, D., Lestari, P., et al.
(2006). Particulate air pollution in six Asian cities: spatial and temporal distributions,
and associated sources. Atmos. Environ. 40 (18), 3367–3380. doi:10.1016/j.atmosenv.
2006.01.050

Oanh, N. T. K., and Leelasakultum, K. (2011). Analysis of meteorology and emission
in haze episode prevalence over mountain-bounded region for early warning. Sci. Total
Environ. 409 (11), 2261–2271. doi:10.1016/j.scitotenv.2011.02.022

Peng-in, B., Sanitluea, P., Monjatturat, P., Boonkerd, P., and Phosri, A. (2022).
Estimating ground-level PM2.5 over Bangkok Metropolitan Region in Thailand using
aerosol optical depth retrieved by MODIS. Air Qual. Atmos. Health 15 (11), 2091–2102.
doi:10.1007/s11869-022-01238-4

Qu, L., Xiao, H., Zheng, N., Zhang, Z., and Xu, Y. (2017). Comparison of four methods
for spatial interpolation of estimated atmospheric nitrogen deposition in South China.
Environ. Sci. Pollut. Res. 24, 2578–2588. doi:10.1007/s11356-016-7995-0

Shen, Y., Zhang, L., Fang, X., Zhao, Z., Li, X., Wang, J., et al. (2018). Long-term
analysis of aerosol optical depth over the Huaihai Economic Region (HER): possible
causes and implications. Atmosphere 9 (3), 93. doi:10.3390/atmos9030093

Shi, S., Cheng, T., Gu, X., Letu, H., Guo, H., Chen, H., et al. (2018). Synergistic
retrieval of multitemporal aerosol optical depth over north China plain using
geostationary satellite data of himawari-8. J. Geophys. Res. Atmos. 123 (10),
5525–5537. doi:10.1029/2017jd027963

Srivastava, A., Sam Han, E.-H., Singh, V., and Kumar, V. (1999). “Parallel
formulations of decision-tree classification algorithms,” in High performance data
mining (Boston: Springer).

Sun, J., Gong, J., and Zhou, J. (2021). Estimating hourly PM2.5 concentrations in
Beijing with satellite aerosol optical depth and a random forest approach. Sci. Total
Environ. 762, 144502. doi:10.1016/j.scitotenv.2020.144502

Tsai, F. C., Smith, K. R., Vichit-Vadakan, N., Ostro, B. D., Chestnut, L. G., and
Kungskulniti, N. (2000). Indoor/outdoor PM10 and PM2.5 in Bangkok, Thailand. J. Expo.
Sci. Environ. Epidemiol. 10 (1), 15–26. doi:10.1038/sj.jea.7500071

Vichit-Vadakan, N., Ostro, B. D., Chestnut, L. G., Mills, D. M., Aekplakorn, W.,
Wangwongwatana, S., et al. (2001). Air pollution and respiratory symptoms: results
from three panel studies in Bangkok, Thailand. Environ. Health Perspect. 109 (3),
381–387. doi:10.1289/ehp.01109s3381

Wang, Q., Zeng, Q., Tao, J., Sun, L., Zhang, L., Gu, T., et al. (2019). Estimating PM2.5

concentrations Based on MODIS AOD and NAQPMS Data over beijing–tianjin–hebei.
Sensors 19 (5), 1207. doi:10.3390/s19051207

Wei, J., Huang, W., Li, Z., Xue, W., Peng, Y., Sun, L., et al. (2019). Estimating 1-km-
resolution PM2.5 concentrations across China using the space-time random forest
approach. Remote Sens. Environ. 231, 111221. doi:10.1016/j.rse.2019.111221

Wei, J., Li, Z., Cribb, M., Huang, W., Xue, W., Sun, L., et al. (2020). Improved 1 km
resolution PM2.5 estimates across China using enhanced space–time extremely randomized
trees. Atmos. Chem. Phys. 20 (6), 3273–3289. doi:10.5194/acp-20-3273-2020

Wei, J., Li, Z., Lyapustin, A., Sun, L., Peng, Y., Xue, W., et al. (2021). Reconstructing 1-
km-resolution high-quality PM2.5 data records from 2000 to 2018 in China:
spatiotemporal variations and policy implications. Remote Sens. Environ. 252,
112136. doi:10.1016/j.rse.2020.112136

Frontiers in Environmental Science frontiersin.org16

Punpukdee et al. 10.3389/fenvs.2023.1303152

https://doi.org/10.3390/rs8030262
https://doi.org/10.1016/j.rse.2017.05.028
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.3390/su151310024
https://doi.org/10.1016/j.scitotenv.2018.04.251
https://doi.org/10.1016/j.scitotenv.2018.04.251
https://doi.org/10.1016/j.scitotenv.2019.134021
https://doi.org/10.1007/s11869-014-0271-x
https://doi.org/10.1016/j.atmosres.2023.106624
https://doi.org/10.1016/j.atmosres.2020.105399
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1016/j.chemolab.2006.01.007
https://doi.org/10.1016/j.chemolab.2006.01.007
https://doi.org/10.1016/j.apr.2021.101154
https://doi.org/10.1029/2008jd011496
https://doi.org/10.4209/aaqr.210105
https://doi.org/10.3155/1047-3289.59.6.645
https://doi.org/10.35762/aer.2023008
https://doi.org/10.35762/aer.2023008
https://doi.org/10.1021/acs.est.7b01210
https://doi.org/10.1021/acs.est.7b01210
https://doi.org/10.1016/j.rse.2013.08.032
https://doi.org/10.1080/10473289.2002.10470845
https://doi.org/10.3390/atmos10070373
https://doi.org/10.1007/s11069-022-05463-z
https://doi.org/10.1007/s11069-022-05463-z
https://doi.org/10.1016/j.envpol.2016.05.085
https://doi.org/10.5194/acp-18-6141-2018
https://doi.org/10.1038/s41598-019-39131-3
https://doi.org/10.1038/s41598-019-39131-3
https://doi.org/10.5194/acp-13-7023-2013
https://doi.org/10.1007/s00376-019-9010-4
https://doi.org/10.1029/2010jd014986
https://doi.org/10.1021/es5009399
https://doi.org/10.1021/es5009399
https://doi.org/10.3390/rs10060919
https://doi.org/10.1016/j.atmosenv.2006.01.050
https://doi.org/10.1016/j.atmosenv.2006.01.050
https://doi.org/10.1016/j.scitotenv.2011.02.022
https://doi.org/10.1007/s11869-022-01238-4
https://doi.org/10.1007/s11356-016-7995-0
https://doi.org/10.3390/atmos9030093
https://doi.org/10.1029/2017jd027963
https://doi.org/10.1016/j.scitotenv.2020.144502
https://doi.org/10.1038/sj.jea.7500071
https://doi.org/10.1289/ehp.01109s3381
https://doi.org/10.3390/s19051207
https://doi.org/10.1016/j.rse.2019.111221
https://doi.org/10.5194/acp-20-3273-2020
https://doi.org/10.1016/j.rse.2020.112136
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1303152


Wongnakae, P., Chitchum, P., Sripramong, R., and Phosri, A. (2023). Application of
satellite remote sensing data and random forest approach to estimate ground-level PM2.5

concentration in Northern region of Thailand. Environ. Sci. Pollut. Res. 30 (38),
88905–88917. doi:10.1007/s11356-023-28698-0

Xian, P., Zhang, J., O’Neill, N. T., Reid, J. S., Toth, T. D., Sorenson, B., et al. (2022).
Arctic spring and summertime aerosol optical depth baseline from long-term
observations and model reanalyses–Part 2: statistics of extreme AOD events, and
implications for the impact of regional biomass burning processes. Atmos. Chem. Phys.
22 (15), 9949–9967. doi:10.5194/acp-22-9949-2022

Xiao, Q., Chang, H., Geng, G., and Liu, Y. (2018). An ensemble machine-learning
model to predict historical PM2.5 concentrations in China from satellite data. Environ.
Sci. Technol. 52 (22), 13260–13269. doi:10.1021/acs.est.8b02917

Xiao, Q., Wang, Y., Chang, H. H., Meng, X., Geng, G., Lyapustin, A., et al. (2017). Full-
coverage high-resolution daily PM2.5 estimation using MAIAC AOD in the Yangtze River
Delta of China. Remote Sens. Environ. 199, 437–446. doi:10.1016/j.rse.2017.07.023

Xie, Y., Wang, Y., Bilal, M., and Dong, W. (2019). Mapping daily PM2.5 at
500 m resolution over Beijing with improved hazy day performance. Sci. Total
Environ. 659, 410–418. doi:10.1016/j.scitotenv.2018.12.365

Xie, Y., Wang, Y., Zhang, K., Dong, W., Lv, B., and Bai, Y. (2015). Daily Estimation of
ground-level PM2.5 Concentrations over Beijing using 3 km resolution MODIS AOD.
Environ. Sci. Technol. 49 (20), 12280–12288. doi:10.1021/acs.est.5b01413

Xu, Q., Chen, X., Yang, S., Tang, L., and Dong, J. (2021). Spatiotemporal relationship
between Himawari-8 hourly columnar aerosol optical depth (AOD) and ground-level
PM2.5 mass concentration in mainland China. Sci. Total Environ. 765, 144241. doi:10.
1016/j.scitotenv.2020.144241

Yan, K., and Zhang, D. (2015). Feature selection and analysis on correlated gas sensor
data with recursive feature elimination. Sensors Actuators B Chem. 212, 353–363. doi:10.
1016/j.snb.2015.02.025

Yang, Q., Yuan, Q., Yue, L., Li, T., Shen, H., and Zhang, L. (2020). Mapping
PM2.5 concentration at a sub-km level resolution: a dual-scale retrieval approach.
ISPRS J. Photogrammetry Remote Sens. 165, 140–151. doi:10.1016/j.isprsjprs.
2020.05.018

Yao, F., Wu, J., Li, W., and Peng, J. (2019). Estimating daily PM2.5 concentrations in
Beijing using 750-M VIIRS IP AOD retrievals and a nested spatiotemporal statistical
model. Remote Sens. 11 (7), 841. doi:10.3390/rs11070841

Yin, S., Wang, X., Zhang, X., Guo, M., Miura, M., and Xiao, Y. (2019). Influence of
biomass burning on local air pollution in mainland Southeast Asia from 2001 to 2016.
Environ. Pollut. 254, 112949. doi:10.1016/j.envpol.2019.07.117

Zhang, G., Rui, X., and Fan, Y. (2018a). Critical review of methods to estimate PM2.5

concentrations within specified research region. ISPRS Int. J. Geo-Information 7 (9), 368.
doi:10.3390/ijgi7090368

Zhang, T., Zhu, Z., Gong, W., Zhu, Z., Sun, K., Wang, L., et al. (2018b). Estimation of
ultrahigh resolution PM2.5 concentrations in urban areas using 160 m Gaofen-1 AOD
retrievals. Remote Sens. Environ. 216, 91–104. doi:10.1016/j.rse.2018.06.030

Zhang, Z., Zang, Z., Cheng, X., Lu, C., Huang, S., Hu, Y., et al. (2021). Development of
three-dimensional variational data assimilation Method of Aerosol for the CMAQmodel:
an Application for PM2.5 and PM10 Forecasts in the sichuan basin. Earth Space Sci. 8 (5),
e2020EA001614. doi:10.1029/2020ea001614

Zheng, Y., Zhang, Q., Liu, Y., Geng, G., and He, K. (2016). Estimating ground-level
PM2.5 concentrations over three megalopolises in China using satellite-derived aerosol
optical depth measurements. Atmos. Environ. 124, 232–242. doi:10.1016/j.atmosenv.
2015.06.046

Zuo, X., Guo, H., Shi, S., and Zhang, X. (2020). Comparison of six machine learning
Methods for estimating PM2.5 concentration Using the himawari-8 aerosol optical
depth. J. Indian Soc. Remote Sens. 48 (9), 1277–1287. doi:10.1007/s12524-020-
01154-z

Frontiers in Environmental Science frontiersin.org17

Punpukdee et al. 10.3389/fenvs.2023.1303152

https://doi.org/10.1007/s11356-023-28698-0
https://doi.org/10.5194/acp-22-9949-2022
https://doi.org/10.1021/acs.est.8b02917
https://doi.org/10.1016/j.rse.2017.07.023
https://doi.org/10.1016/j.scitotenv.2018.12.365
https://doi.org/10.1021/acs.est.5b01413
https://doi.org/10.1016/j.scitotenv.2020.144241
https://doi.org/10.1016/j.scitotenv.2020.144241
https://doi.org/10.1016/j.snb.2015.02.025
https://doi.org/10.1016/j.snb.2015.02.025
https://doi.org/10.1016/j.isprsjprs.2020.05.018
https://doi.org/10.1016/j.isprsjprs.2020.05.018
https://doi.org/10.3390/rs11070841
https://doi.org/10.1016/j.envpol.2019.07.117
https://doi.org/10.3390/ijgi7090368
https://doi.org/10.1016/j.rse.2018.06.030
https://doi.org/10.1029/2020ea001614
https://doi.org/10.1016/j.atmosenv.2015.06.046
https://doi.org/10.1016/j.atmosenv.2015.06.046
https://doi.org/10.1007/s12524-020-01154-z
https://doi.org/10.1007/s12524-020-01154-z
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1303152

	Estimation of hourly one square kilometer fine particulate matter concentration over Thailand using aerosol optical depth
	1 Introduction
	2 Data and methods
	2.1 Study area
	2.2 Data collection
	2.3 Data processing
	2.3.1 Aerosol optical depth from Himawari-8
	2.3.2 Aerosol optical depth from MAIAC
	2.3.3 WRF model data

	2.4 Machine learning models
	2.4.1 Recursive feature elimination
	2.4.2 Multiple linear regression
	2.4.3 Decision tree model
	2.4.4 Extra trees model
	2.4.5 eXtreme gradient boosting model (XGBoost)

	2.5 Development of high resolution AOD
	2.6 Prediction of ground-based PM2.5 concentration
	2.6.1 Validation of the PM2.5 prediction models

	2.7 Developing an hourly 1 × 1 km2 PM2.5 concentration for Thailand

	3 Results
	3.1 Data completeness analysis
	3.2 Ground-based PM2.5 monitoring data
	3.3 Weather Research and Forecasting Model validation
	3.4 Hourly 1 × 1 km2 AOD
	3.5 Hourly PM2.5 concentration estimation
	3.6 Performance of the PM2.5 estimation model
	3.7 Comparison of PM2.5 concentration from monitoring station and model estimation
	3.8 High spatial and temporal resolution PM2.5 concentration map for Thailand

	4 Discussion and conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


