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The Wind Erosion Equation, currently one of the primary methods for estimating
fugitive soil dust emission inventory, is influenced by several factors. Taking the
convergent areas of the Tibet Plateau, Loess Plateau, and Qinba Mountains in
Western China, we have optimized the climate factor using theWRFmodel driven
by ERA5 reanalysis data. Additionally, we have modified the vegetation cover
factors via normalized difference vegetation index and considered the impacts of
the land use and cover change. Subsequently, other factors were allocated
utilizing geographic information system, and the grid-based fugitive soil dust
emission inventory for the study area for 2019 was derived through calculation.
Based on the climate factor and vegetation cover factor, we have come up with
the monthly allocation coefficients. The study has revealed the following findings:
(1) Climate factors are unevenly distributed throughout the focused region, with
the Loess Plateau showing the highest value, followed by the Tibet Plateau and the
Qinba Mountains. There are also significant variations in the distribution of these
factors among municipalities and counties; (2) The order of vegetation cover
factor, primarily influenced by regional background as well as agricultural and
pastoral activities, in the Loess Plateau, Tibetan Plateau and Qinba Mountains, is
consistent with that of the wind erosion index; (3) In 2019, fugitive dust emissions
from total suspended particles, PM10, and PM2.5 reached 9835.9, 2950.8, and
491.8 kt/a, respectively. The Loess Plateau exhibited the highest emission intensity
due to factors such as low vegetation coverage, precipitation, highwind speed and
wind erosion index; (4) Climate factor and vegetation cover factor are the primary
factors influencing the monthly allocation coefficients. In 2019, the highest
monthly fugitive dust emissions were estimated in April, accounting for
approximately 36.21% of the total. The second and third-highest were found in
August and June, respectively. This phenomenon can be explained climatically, as
the Loess Plateau, semi-arid and arid regions, did not experience a significant
increase in rainfall corresponding to rising temperatures.
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1 Introduction

Particulate matter (PM) in the atmosphere has detrimental
effects on both human health and atmospheric visibility, with a
particular concern for PM2.5 (Apte et al., 2015; Liu et al., 2016; Ji
et al., 2020). To address these challenges, China introduced the “Air
Pollution Prevention and Control Action Plan” (The State Council,
2013) in 2013 and the “Three-Year Action Plan to Fight Air
Pollution” (The State Council, 2018) in 2018. These plans aim to
achieve targeted pollution control through pollution source
inventories, numerical modeling, and receptor models, to
continuously address PM10 and PM2.5 pollution and improve
urban air quality (Wang et al., 2014; Cheng et al., 2017; Zhang
et al., 2017; Shang et al., 2018; Asian Clean Air Center, 2021).
However, compiling emission inventories for certain atmospheric
pollution sources in complex terrains still presents challenges, such
as the fugitive soil dust (FSD) emission inventory. FSD refers to the
PM generated directly from exposed surfaces, including agricultural
fields, bare mountains, mudflats/tidal flats, dried river valleys, and
undeveloped or unvegetated lands, due to natural forces such as
wind erosion or anthropogenic activities (Ministry of
Environmental Protection, 2014). FSD represents a major source
of PM in the ambient air, particularly in the arid and semi-arid
regions of Northwestern China (Song et al., 2016).

Wind erosion, categorized as soil erosion, involves the
displacement of soil particles under the influence of certain wind
forces, including migration, creeping, and suspension. It primarily
encompasses fine dust in the form of aerosols, sand drifting, and
coarse particles displacing on the ground (Zhang et al., 2002). The
results of receptor models indicate that fugitive dust is responsible
for 10%–24% of ambient PM10 in cities such as Urumqi, Taiyuan,
Anyang, Tianjin, and Jinan. (Bi et al., 2007). However, due to the
uncertainties associated with FSD emission inventory compilation,
several regional emission inventory studies currently exclude FSD
(Zheng et al., 2009; Fu et al., 2013; Qi et al., 2017; Liu H. et al., 2018).

In the 1960s, Woodruff and Siddoway, (1965) and the U.S.
Department of Agriculture conduced extensive research on wind
erosion in farmlands, leading to development of the Wind Erosion
Equation (WEQ). This empirical model established relationships
between wind erosion rates and various influencing factors
(Skidmore and Woodruff, 1968). Subsequently, as the
understanding of wind erosion mechanisms improved, several
other models were subsequently developed, including the Revised
Wind Erosion Equation (Fryrear et al., 2000), the Texas Erosion
Analysis Model (Gregory et al., 2004), theWind Erosion Assessment
Model (Shao et al., 1996), and the Wind Erosion Prediction System
(Buschiazzo and Zobeck, 2008). Although these later models offer
more refined and accurate predictions compared with WEQ
(Buschiazzo and Zobeck, 2008; Zou et al., 2014; Liu et al., 2021),
they require more detailed input parameters and involve higher
technical complexity, making them unsuitable for large-scale
regional FSD emission inventory compilation. In contrast, the
WEQ is widely adopted due to its simplicity, operational
feasibility, and ease of implementation (Xuan et al., 2000;
Panebianco and Buschiazzo, 2008; Mandakh et al., 2016; Xu
et al., 2016; Liu A. B. et al., 2018). The WEQ has been endorsed
by the United States Environmental Protection Agency (Cowherd
et al., 1974; Jutze and Axetell, 1974) and the California Air Resources

Board (Countess Environmental, 2006). In 2014, the Ministry of
Ecology and Environment of the People’s Republic of China
officially designated the WEQ model as the recommended
calculation method for FSD emission inventory compilation
(Ministry of Environmental Protection, 2014).

Some researchers have utilized the WEQ and incorporated
normalized difference vegetation index (NDVI) data for
estimating vegetation cover and urban meteorological data for
calculating regional climate factor to compute FSD emission
inventory for the Beijing–Tianjin–Hebei region and the 2 +
26 cities across China (Li et al., 2020; Li et al., 2021; Song et al.,
2021). However, in complex terrains, meteorological factors
observed at national basic and general meteorological stations
cannot fully represent the distribution of meteorological factors
in administrative regions such as cities, counties, or districts, due to
the influence of atmospheric circulation, topography, latitude, solar
radiation, and water vapor conditions. Consequently, the climate
factor required for WEQ calculations, such as annual mean wind
speed, monthly precipitation, and monthly mean temperature,
exhibit heterogeneity within the same city, county, or district.

To address these limitations, we propose a method in this study
to further optimize the WEQ’s parameter and develop a high
spatiotemporal-resolution FSD emission inventory. Our approach
improves the accuracy ofWRF simulations using the ECMWF-ERA5
climate reanalysis dataset and calculates the climate factor of WEQ
based on the WRF simulation results. This approach reduces the
errors in calculating climate factor within theWEQmodel caused by
the uniform adoption of meteorological data from city, county, or
district meteorological stations. According to the land use and cover
change (LUCC) data, adjustments are made to the vegetation cover
factor for grids representing construction land, paddy fields, water
area, and areas with high vegetation coverage. Furthermore,
monthly allocation coefficients are proposed based on the
estimated annual mean fugitive soil dust emissions. We apply
this methodology to estimate the FSD emission inventory in the
convergence areas of the Tibet Plateau, Loess Plateau, and Qinba
Mountains in Western China, and investigate the variations among
different contributing factors.

2 Data and methods

2.1 Study area

The study area encompasses the eastern part of the Tibet
Plateau, the southwestern part of the Loess Plateau, and the
northwestern part of the Qinba Mountains in Western China. It
includes several prefecture-level regions across different provinces.
In Gansu Province, the cities of Tianshui, Longnan, Pingliang,
Qingyang, Baiyin, Lanzhou, Linxia, Gannan, and Wuwei are
within the study area. Qinghai Province is represented by Xining
city, Haidong, Huangnan, and Hainan prefecture. The Shaanxi
Province includes Xi’an, Xianyang, Yulin, Weinan, Hanzhong,
Yan’an, Tongchuan, Shangluo, and Ankang cities. Zhongwei,
Guyuan, and Wuzhong cities fall within the study area of
Ningxia Autonomous Region. Lastly, Sichuan Province
encompasses Guangyuan, Mianyang, Bazhong cities, and Aba
prefecture. The study area displays diverse topography, with the
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western region dominated by the Tibet Plateau, characterized by
high-altitude terrain. In the northern and northeastern parts, the
prominent feature is the Loess Plateau, characterized by relatively
higher elevations and a network of gullies. The southern region is
primarily occupied by the Qinba Mountains, featuring lower
elevations but more intricate terrain compared to the Loess
Plateau, as illustrated in Figure 1.

2.2 Introduction to the WEQ

The estimation model adopted in this paper is WEQ, which is
represented as follows:

W � EF× A (2.1)
EF � α × k × I × K × C × L × V (2.2)

Where W represents the FSD emission, and EF denotes the
annual emission intensity factor for wind-eroded FSD, measured in
t·(hm2·a)−1. A corresponds to the area of the study area (unit: hm2). α
is the dimensionless proportion coefficient of total suspended
particles (TSP) to the total loss induced by wind erosion, with a
reference value of 2.5% recommended by the United States

Environmental Protection Agency (USEPA). In this model, k
represents the PM percentage in FSD and it is dimensionless
whereas TSP, PM10, PM2.5 are set to be 1.0, 0.3, and 0.05,
respectively. (Chepil, 1958; Craig and Turelle, 1964; Jutze and
Axetell, 1976). I represents the wind erosion index, measured in
t·(hm2·a)−1; K represents the surface roughness factor
(dimensionless); C represents the climate factor (dimensionless),
as presented in Eqs 2.3, 2.4 respectively; L represents the unshielded
width factor (dimensionless). V represents the vegetation cover
factor, which indicates the proportion of bare soil area to the
total calculated area and is dimensionless (Jutze and Axetell,
1976; US. Environmental Protection Agency, 1977; Skidmore,
1986), as shown in Eq. 2.5.

C� 3.86 ×u3/ PE( )2 (2.3)

PE� 3.16 ×∑12
i�1

Pi

1.8Ti+22( )[ ]10/9 (2.4)

V � 1 − VC (2.5)
Where, u represents the annual mean wind speed, corresponding to
the annual mean 10-m wind speed in meteorology, (unit:m·s-1). PE
represents the Thornthwaite’s precipitation–evapotranspiration

FIGURE 1
Geographical elevation and weather stations of the study area in Western China.
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index (dimensionless), calculated using Eq. 2.4. Pi denotes the
monthly precipitation in month i (unit: mm), with a minimum
value of 12.7 mm for Pi < 12.7 mm. Ti stands for the monthly mean
temperature measured in °C, corresponding to monthly mean
ground temperature in meteorology, with a minimum value
of −1.7°C for Ti < −1.7°C (Lyles, 1983; Panebianco and
Buschiazzo, 2008). VC refers to the proportion of the area
covered by the vertical projection per unit area of the vegetation
and is dimensionless (Gitelson et al., 2002). VC was calculated using
the binary pixel model (Jia et al., 2013), as shown in Eq. 2.6.

VC � NDVI − NDVIsoil( )/ NDVIveg −NDVIsoil( ) (2.6)

Where, VC represents the vegetation cover of the pixel, where
NDVI and NDVIsoil denote the NDVI values of the pixel and non-
vegetated land, respectively, with the latter being the minimum
NDVI value. NDVIveg is the NDVI value of vegetated land, which
can be considered as the maximum NDVI value. In this study,
the upper and lower thresholds of NDVI were defined to
represent NDVIsoil and NDVIveg, respectively, at a 5%
confidence level.

2.3 Data sources and processing methods

ERA5 is the fifth generation European Centre for Medium-
Range Weather Forecasts (ECMWF) atmospheric reanalysis of the
global climate. The ECMWF-ERA5 reanalysis dataset has a
horizontal grid resolution of 0.25 × 0.25 and comprises
137 pressure levels in the vertical direction, with a temporal
resolution of 1 h. In this study, the ECMWF-ERA5 dataset is
used to provide initial boundary conditions for the WRF model
simulations. Surface observation data of the stations in Baiyin

(Baiyin station), Haidong (Ping’an station), Gannan (Hezuo
station), Xianyang (Qindu station), and Hanzhong (Hanzhong
station) for the year 2019 were obtained from the CMA
Meteorological Data Centre (http://data.cma.cn/data/detail/
dataCode/A.0012.0001.html), as presented in Figure 1. To
quantitatively analyze the performance of the WRF model
simulation, the model results will be assessed by using four
commonly used statistical metrics, namely, the correlation
coefficient (R), root mean square error (RMSE), mean fractional
bias (MFB), and mean fractional error (MFE) (Taylor, 2001).

R � ∑N
i�1 Pi − �P( ) Oi − �O( )�����������∑N

i�1 Pi − �P( )2√
×

������������∑N
i�1 Oi − �O( )2√ (2.7)

RMSE �
��������������
1
N

∑N

i�1 Pi − Oi( )2
√

(2.8)

MFB � 1
N

∑N

i

Pi − Oi

Oi + Pi/2
(2.9)

MFE � 1
N

∑N

i

Pi − Oi| |
Oi + Pi/2

(2.10)

Where, Pi and Oi represent the simulated and observed data,
respectively, N denotes the number of samples, and �P and �O
denote the mean of the stimulated and observed data,
respectively.

The NDVI data used are derived from MODIS (https://modis.
gsfc.nasa.gov/). The MODIS NDVI data product is identified as
MOD13Q1, which is generated every 16 days. In this study, we
used the 250 m spatial resolution NDVI values from the year 2019,
resulting in total 46 NDVI datasets covering the study area.
Regarding land use types, this study used the land use and cover
change (LUCC) of 2020 with a spatial resolution of 1 km × 1 km (Xu
et al., 2018).

TABLE 1 WRF model simulations correlation validation for representative stations in the study area from January to December of 2019.

Item Station R RMSE MFB MFE (%)

Monthly mean wind speed (m·s−1) Ping’an 0.316 0.302 −3.7% 9.8

Hezuo 0.628 0.205 −1.3% 6.5

Baiyin 0.662 0.554 11.5% 14.9

Qindu 0.569 0.360 −10.1% 12.6

Hanzhong 0.811 0.204 18.8% 10.0

Monthly mean temperature (°C) Ping’an 0.994 1.126 6.5% 7.6

Hezuo 0.874 4.187 11.7% 5.4

Baiyin 0.929 4.751 50.9% 19.5

Qindu 0.920 4.820 25.2% 39.8

Hanzhong 0.998 0.912 19.1% 6.1

Monthly precipitation (mm) Ping’an 0.906 14.451 8.1% 32.8

Hezuo 0.906 36.696 6.1% 37.4

Baiyin 0.800 21.564 25.7% 63

Qindu 0.883 30.826 0.1% 25.4

Hanzhong 0.886 67.693 12.7% 35.2
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The soil texture data used in this study are obtained from the
Chinese soil dataset from the “Harmonized World Soil Database
(v1.1)” provided by the National Cryosphere Desert Data Center
(http://www.ncdc.ac.cn) (Lu and Liu, 2019). This dataset, which has
a spatial resolution of 1 km × 1 km, includes information on the
percentage of sand, clay, and silt in the soil.

For data processing, the WRF simulation was initially
conducted using ERA5 reanalysis data as the initial field,
allowing for the computation of C at each grid point.
Subsequently, monthly and annual average VC for the study
area were derived using the NDVI data at a spatial resolution of
250 m. These data were further optimized by integrating 1 km-
resolution LUCC data with grids having VC values above 0.61,
resulting in a refined V with a 1 km resolution. This refined
dataset was then allocated to 5 km-resolution grids. Various
relevant parameters, including C, V, I, and other related
parameters were incorporated into a geographic information
system (GIS) to generate multiple data layers. Finally, the
annual FSD emissions were calculated utilizing the annual
data of various parameters from the 5 km × 5 km grid; in the
meantime, based on the monthly allocation coefficients proposed
in this study, the monthly FSD emissions were calculated to
derive the high spatiotemporal-resolution FSD emission
inventory for the study area.

3 Results and discussion

3.1 Key parameter values

3.1.1 Climate factor
3.1.1.1 WRF simulation setup and parameterization scheme

In this study, ECMWF-ERA5 data were used to provide initial
boundary conditions for the WRF model. The simulation area was
centered at 105.66°E and 34.62°N. The horizontal domain consisted
of two nested model domains: the first nested domain had a grid size
of 80 × 64 and a spacing of 25 km, while the second nested domain
had a grid size of 160 × 120 and a spacing of 5 km. The ERA5 data
was divided into 39 vertically non-equidistant layers. In this study,
simulations were conducted for each month of the year 2019. The
simulation period started from 00:00 on the 25th day of the previous
month and continued until 00:00 on the first day of the following
month. The analysis period covered the entire month, starting from
0:00 on the first day of the month and ending at 23:00 on the last day
of the month. The integration time step for the simulations was set as
180 s, and the WRF model output was recorded at hourly intervals.

Parameterization Scheme: For microphysics processes, the
Single-Moment 6-class scheme was employed in this study. The
Betts–Miller–Janjic, RRTM, and Dudhia schemes were used for
cumulus convection parameterization, longwave radiation, and

FIGURE 2
5 km × 5 km annual mean 10-m wind speed in the study area in 2019.
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shortwave radiation, respectively. The Noah and MYJ schemes were
employed for land surface processes and boundary layer
parameterization, respectively. Additionally, the Monin–Obukhov
scheme was applied for the near-surface layer.

3.1.1.2 WRF model correlation validation
To verify the effectiveness of the ECMWF-ERA5 dataset as the

initial boundary conditions for simulating meteorological fields in
the study area, several representative stations were selected for
validation. These stations included Gannan in the western part of
the study area, Baiyin, Haidong, and Xianyang, which recorded
relatively greater FSD emissions, as well as Hanzhong in the
southern part of the study area. Monthly observed data from
January to December of 2019 were used to calculate ui (monthly
mean 10-m wind speed), Ti (monthly mean ground temperature),
and Pj (monthly precipitation), which were required as inputs for the
C in the WEQ model. The results of the WRF model simulations
were then compared and validated against the observed data, as
presented in Table 1.

As indicated in Table 1, the simulated ui, Ti, Pi for the five
stations in the study area from January to December exhibited
desirable correlation with the observed values. The overall
correlation followed the order Ti > Pi > ui, suggesting that the
WRF model’s monthly time series simulation results correlate

well with the actual data in the context of complex terrains.
Concerning RMSE, the performance of each station varied across
different meteorological factors. Baiyin Station exhibited the
highest RMSE for ui. This is mainly because all five stations
are located within basin terrains, In which the observed ui tends
to be relatively lower owing to terrain obstruction. But, the
simulated ui tends to be overestimated to varying degrees
during most months, with Baiyin Station being overestimated
the most. The RMSE of Ti followed the order: Qindu > Baiyin >
Hezuo > Ping’an > Hanzhong. The simulated Ti was generally
overestimated in most months. The RMSE of Pi followed the
order: Hanzhong > Hezuo > Qindu > Baiyin > Ping’an. This is
primarily owing to the relatively larger annual precipitation in
Hanzhong, Hezuo, and Qindu compared with Baiyin and
Ping’an, and the model’s tendency to overestimate
precipitation during the flood season. With regard to the MFB
and MFE, aside from the Ti and Pi at Baiyin, the MFB of
remaining factors are bigger than-30% and smaller than 30%,
and the MFE of them are lower than 50%, suggesting that the
simulation results are acceptable for Baiyin and outstanding for
the other stations (Taylor, 2001). Based on the aforementioned
evaluation, It is fair to conclude that the WRF model’s
meteorological simulation results for the study area can be
used for calculating C of the WEQ model.

FIGURE 3
5 km × 5 km annual mean ground temperature in the study area in 2019.
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3.1.1.3 Climate factor Calculation
In previous studies, the calculation of C in the WEQ model has

been primarily based on meteorological data from representative
weather stations within the cities or counties in the study area. These
data include u (annual mean 10-m wind speed), Ti, and Pi (Li et al.,
2020; Song et al., 2021). However, because of the complex terrain
and significant elevation differences in the study area, along with
varying VC, most cities are situated in valleys or basins, making it
challenging for the observed data from urban meteorological
stations to accurately represent the meteorological conditions
within the cities, prefectures, and counties (districts). Therefore,
in this study, we used theWRF simulation results for each month in
2019 to extract the values of u, Ti, and Pi, for each grid cell and each
month. We found that the distribution of 10-m wind speed,
temperature and precipitation in the study area was extremely
uneven, as shown in Figures 2–4.

Figure 2 clearly shows that the Loess Plateau has the highest u,
particularly in areas around Baiyin, Zhongwei, andWuzhong. The u
is relatively lower on the Tibet Plateau and lowest on the Qinba
Mountains. Figure 3 indicates that the annual mean temperature in
the study area has an east-west and south-north gradient, with
higher temperatures observed in the eastern and southern regions
and lower temperatures in the western and northern areas. Owing to
the “heat island effect,” the highest temperatures are concentrated in

urban built-up areas. As depicted in Figure 4, the annual
precipitation gradually decreases from south to north within the
study area. The Qinba Mountains receive the most annual
precipitation, followed by the Tibet Plateau, while the lowest
precipitation is found on the Loess Plateau.

Because the three factors are overestimated to varying degrees,
and the MFB of monthly precipitation is larger, part of the
overestimation will be offset in the calculation of climate factors.
The value ofC for each grid cell in the study area can be calculated by
Eqs 2.3, 2.4. Figure 5 illustrates the range of the C, which spans from
a minimum of 0.0001 to a maximum of 1.227, with a mean value of
0.0586. These findings align closely with that of the magnitudes
reported by Li et al. (2020) for different districts across Beijing. The
distribution of C in the study area is uneven, with the highest values
being found for the Loess Plateau, particularly in the northern areas
around Baiyin, Zhongwei, andWuzhong. The Tibet Plateau follows,
exhibiting relatively higher C values, primarily in areas such as
Haidong, Hainan, and Huangnan prefectures. Conversely, the
lowest C values are observed in the Qinba Mountains. The
primary factors contributing to the variation in the distribution
of C are the 10-m wind speed and precipitation. In the northern part
of the Loess Plateau, the terrain is relatively flat, resulting in higher
10-m wind speed. However, this region falls within a semi-arid and
arid zone, resulting in relatively lower precipitation. Furthermore,

FIGURE 4
5 km × 5 km precipitation in the study area in 2019.
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Figure 5 indicates that even within the same city or county-level
administrative area, there are certain variations in C among grid
cells, with high values typically absent in urban built-up areas.

3.1.2 Vegetation cover factor
In this study, we used the 2019 MODIS MCD12Q1 product to

calculate the spatial distribution ofVC values for each month, as well as
the distribution of annual mean VC values. Figure 6 illustrates the VC
values for representativemonths and the overall year. Different land use
types, such as forests, grasslands, deserts, and croplands (including
crops), feature diverse vegetation types. Natural vegetation has different
growth cycles, and agricultural crops have varying periods for planting,
growth, and harvesting. Consequently, the VC values vary each month
for different land use types. As depicted in Figure 6, the VC values
exhibit variations across months, regions, and grid points. On the Loess
Plateau, the VC values are the lowest among the three regions, with the
minimum values occurring in July and August. This decline may be
primarily attributed to winter wheat harvesting (Qi et al., 2022). The
Tibet Plateau exhibits intermediate VC values, with the lowest value
being observed in March, when grasses wither till April (Zhuo et al.,
2018). In contrast, the Qinba Mountains exhibit the highest VC values,
with the lowest value being observed in June, possibly associated with
the harvest of economic crops such as rapeseed (oil crop) and vegetables
(Xiao, 2022; Chen et al., 2023).

In areas of urban construction, fugitive dust emissions mainly
arise from road and construction activities, while stockpile dust
appear around industries and mining facilities, and FSD outside
urban built-up areas. FSD regions are typically located outside urban
built-up areas, and water areas and rice paddies are generally
considered non-FSD regions (Ministry of Environmental
Protection, 2014). Therefore, construction areas, water areas, and
paddy fields are categorized as non-sources for FSD in this study
using the LUCC data (Xu et al., 2018).

Furthermore, Zhao, (2006) conducted wind tunnel experiments
on the Inner Mongolia grassland and reported that on places whose
VC are above 40%, wind erosion does not occur even when the wind
speed arrives at 10 m s−1. Additionally, on high-VC grasslands where
the VC reaches 60%–80%, wind erosion is effectively suppressed
even when wind speed increases to 14–18 m s−1. Furthermore, other
Chinese researchers have suggested that when the NDVI exceeds
0.61, FSD emissions are considered negligible (Song et al., 2021).
Accordingly, areas with VC values greater than 0.61 are also
classified as non-sources for FSD. Having been optimized by GIS,
the mean VC value in the study region comes to 0.5. Figure 7
provides a visual representation of the VC at a resolution of 1 km.
Additionally, the mean V values, which represents the absence of
vegetation, is calculated to be 0.33. As depicted in Figure 8, the
distribution of V values at a 5-km resolution is opposite to that of

FIGURE 5
5 km × 5 km climate factor of the study area in 2019.
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VC, indicating areas with lower vegetation cover tend to have higher
soil bareness.

3.1.3 Wind erosion index
The Wind Erosion Index hinges on the soil texture type. In this

study, we have cited the soil texture from the Chinese soil dataset
(V1.1) provided by the Scientific Data Center for Cold and Arid
Regions (http://westdc.Westgis.ac.cn), and referenced the I of many

types from the “Technical Guidelines for the Compilation of
Fugitive Dust Emission Inventories” (http://www.zhb.gov.cn/gkml/
hbb/qt/201407/t20140714_276127.htm), thereby eliciting the
distribution of soil texture and I in the whole area, as
demonstrated in Table 2 and Figure 9.

The study area encompasses nine soil typesl, with loam being the
most widely distributed, especially on the Loess Plateau, and
exhibiting the highest wind erosion index, accounting for 75.34%

FIGURE 6
Monthly mean VC (250 m × 250 m) in the study area of Western China in2019.
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of the whole. Sandy loam constitutes 9.58% of the study area and is
distributed across various regions, notablyWuzhong City in Ningxia
Autonomous Region, Qingyang City, and Gannan Prefecture in
Gansu Province, as well as Huangnan Prefecture in Qinghai
Province. Loamy sandy soil represents 5.74% of the area and is
primarily distributed on the Qinba Mountains. Silty loam occupies
3.78% and is primarily concentrated in Xi’an and Weinan cities in
Shaanxi Province. Sandy clay loam, characterized by high wind
erosion index, is less prevalent and primarily concentrated in the
QinbaMountains. Additionally, small water areas account for 0.09%
of the study area, as indicated in Table 2 and Figure 9.

The reference values for wind erosion index provided by the
“Technical Guidelines for the Compilation of Fugitive Dust
Emission Inventories” show a consistent ratio of 1:0.3:0.05 for TSP,
PM10, and PM2.5 across various soil types, respectively. Therefore, the
distribution of I value for TSP, PM10, and PM2.5 in the study area is
consistent. In this study, the I value is assigned to the 1 km × 1 km
resolution soil types, and GIS geometric calculations are conducted to
derive the distribution of I for TSP at a resolution of 5 km × 5 km, as
detailed in Figure 10. In this study, TSP has been analyzed as an
example. The wind erosion index of the Loess Plateau is the highest in
the study area, reaching 911t·(hm2•a)−1, primarily found in regions
with loam distribution. The Tibet Plateau followed, and the Qinba
Mountain has the lowest, as low as 6.4t·(hm2•a)−1.

3.1.4 Remaining parameters setup
In addition to the parameters motioned above, there are two

remaining parameters in theWEQmodel: K and L. K represents the
surface roughness factor and has a value of 0.5. However, in coastal,
island, lakeside, and desert regions, the value of K is set at 1. This
adjustment accounts for the different surface characteristics and
their influence on wind erosion.

The parameter L denotes the unshielded width factor, representing
themaximumdistance without significant barriers (such as buildings or
tall trees). The value of L depends on the width of the unshielded area.
In the model, three categories are defined based on the unshielded
width: (1) When the unshielded width is ≤ 300 m, L = 0.7. (2) For
unshielded width between 300 m and 600 m, L = 0.85. (3) When the
unshielded width is ≥ 600 m, L = 1.0.

In this study, the croplands in the western region included in this
study are primarily dry lands and are predominantly flat. They are
surrounded by protective forests; therefore, the K value was set at
0.5 and the L value at 0.7. For grasslands with medium and low VC,
the K value is also set at 0.5, and the L value is considered as the
intermediate value of 0.85, indicating a wider unshielded width
compared to croplands. In sandy areas, deserts, saline-alkali lands,
bare soil, and rocky terrain, both K and L values are set at 1.0. This
reflects the high surface roughness and the absence of significant
barriers, as these areas are more prone to wind erosion.

FIGURE 7
Optimized annual mean VC (1 km × 1 km) in the study area in 2019.
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3.2 Spatial distribution

Based on calculations, the annual TSP emissions in the study
area for the year 2019 amounted to 983.59 kt/a, PM10 emissions
totaled 2950.8 kt/a, and PM2.5 emissions were recorded as 491.8 kt/a.
As TSP, PM10, and PM2.5 have the same scale factor, their spatial
distribution patterns in the study area are consistent. For the
purpose of spatial distribution analysis, PM2.5 has been selected
as an example. A 5 km-resolution grid-based FSD emission
inventory for PM2.5 was generated for the year 2019, based on
the corresponding parameters, as depicted in Figure 11 and Table 3.

The results reveal that the regions with the highest PM2.5

emissions from FSD and emission intensity in the study area are
primarily located in the Loess Plateau. In 2019, the PM2.5 emissions
in this area amounted to 474.72 kt, accounting for 96.53% of the
entire study area. The FSD-source areas covered approximately
191,304.4 km2, resulting in an emission intensity of 2.48 t/km2.
Notably, the key emission hotspots are concentrated in the
northern part of the study area, including Baiyin City of Gansu
Province and Zhongwei and Wuzhong cities of Ningxia
Autonomous Region. Moreover, the maximum emission in a
5 km × 5 km grid reached 1,182.04 t.

The FSD emissions in the Tibet Plateau ranked second, with
total PM2.5 emissions of 35.75 kt in 2019, constituting 7.27% of the
entire study area. The FSD-source areas covered approximately

FIGURE 8
Annual mean V (5 km × 5 km) in the study area in 2019.

TABLE 2 Proportion of soil types in the study area.

Serial number Soil type Area (km2) Proportion (%)

1 Water area 392.47 0.09

2 Silty clay 80.59 0.02

3 Clay 11918.41 2.61

4 Clay loam 1633.08 0.36

5 Silty loam 17235.79 3.78

6 Loam 343783.19 75.34

7 Sandy clay loam 9795.83 2.15

8 Sandy loam 43720.27 9.58

9 Loamy sandy soil 26203.15 5.74

10 Sandy soil 1537.22 0.34

Total 456300.00 100.00
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98,993.1 km2, resulting in an emission intensity of 0.36 t/km2. The
key emission hotspots were identified in the northwestern part of the
study area, specifically in Huangnan and Haidong prefectures of
Qinghai Province. In a 5 km × 5 km grid, the maximum emission of
Tibet Plateau reached 331.2t.

On the other hand, the FSD emissions in the Qinba Mountains
were relatively lower than the former two regions, with total PM2.5

emissions of 11.94 kt in 2019, accounting for 2.43% of the entire
study area. The FSD-source areas covered approximately
35,977.51 km2, resulting in an emission intensity of 0.33 t/km2.
The highest emission intensity was observed in the northeastern
part of Xi’an City and the southern part of Weinan City of Shaanxi
Province. For Qinba Mountains, its maximum emission in a 5 km ×
5 km grid in 2019 was 72.82t. The total emissions from the Tibet
Plateau, Loess Plateau, and Qinba Mountains are higher than the
total emissions in the study area owing to a few overlapping areas.

Moreover, a comparison was conducted between the soil dust
emissions in the study area and other regions in China using PM2.5

as a reference. The comparison considered emissions quantity, FSD-
source areas, and emission intensity, as presented in Table 3. From
Table 3, it can be observed that the emission intensity of PM2.5 in the
Beijing–Tianjin–Hebei region and Hebei Province is relatively
consistent. Surprisingly, in the study area, the emission intensity
of PM2.5 from FSD exceeds that of Beijing–Tianjin–Hebei and Hebei

Province by three times. This significant difference is primarily
attributed to the high emission intensity of 2.48 t/km2 on the Loess
Plateau, which is approximately five times that of the
Beijing–Tianjin–Hebei region, resulting in elevated emission
intensity levels in the study area. Meanwhile, the Tibet Plateau
and Qinba Mountains exhibit lower FSD emission intensities of only
0.36 and 0.33 t/km2, respectively, owing to their higher VC and
precipitation levels. Both these values are lower than those estimated
in the Beijing–Tianjin–Hebei region. The higher FSD emission
intensity in the study area, particularly on the Loess Plateau,
compared with the Beijing–Tianjin–Hebei region, to factors such
as lower VC and precipitation levels, higher wind speed and wind
erosion index, all of which are prevalent in the study area because of
its comparable latitude and similar annual mean temperature
variations with the Beijing–Tianjin–Hebei region.

3.3 Temporal distribution characteristics

In the WEQ model, the estimation of wind erosion is typically
based on annual mean statistics, which may not account for
variations in wind erosion potential across different months of
the year. However, in this study, it was observed that the
variations between different months are primarily influenced by

FIGURE 9
Soil types in the study area in Western China.
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climate factors and vegetation cover, which are also the main drivers
of fluctuations in FSD emissions throughout the year. Additionally,
Skidmore and Woodruff (1968) suggested using the annual PE to
compute monthly climate factor. Therefore, To address this
limitation and capture the monthly variations in wind erosion
potential, we proposed to calculate the monthly allocation
coefficients using the V and C values for each grid and each
month, as presented in Eq. 2.11.

kij � Vij × u3ij/ Pi/ 1.8Tij+22( )[ ]10/9{ }2

(2.11)

Where, kij represents the distribution coefficient for grid i in month
j. Vij represents the V value for grid i in month j. uij is the monthly
mean 10-m wind speed for grid i in month j. Pij is the cumulative
precipitation for grid i in month j. Tij is the monthly mean ground
temperature for grid i in month j.

By using Eq. 2.7 we calculated the allocation coefficients for each
grid within the study area for the year 2019. These coefficients were
then normalized and combined with the annual emission
distribution to determine the monthly emissions of PM2.5 from
FSD in each grid during that year, as shown in Table 6. In our study,
we computed the values for each grid separately due to the variations
in C and V across different months. Figure 12 illustrates the monthly

distribution of PM2.5 emissions from FSD, highlighting the
variations observed for each grid.

Based on the results presented in Table 4, the PM2.5 emissions
from FSD in the study area exhibits significant non-linear monthly
variations. The highest emissions occur in April, accounting for
36.21% of the total annual emissions. The second and third highest
emissions are in August and June, respectively. These variations are
primarily because the northern region of the study area is part of the
Loess Plateau and located in a semi-arid zone. During the summer
months, the ground temperature increases without a significant
increase in precipitation, leading to higher emissions. On the other
hand, the lowest emissions are observed in July.

When considering the seasonal distribution, spring
demonstrates the most significant PM2.5 emissions from FSD in
the study area, accounting for 51.32% of the total annual emissions.
Summer follows with 22.67%, and autumn with 15.64%. Winter
exhibits the lowest emissions, accounting for only 10.37% of the total
annual emissions. Overall, the emission pattern exhibits a seasonal
trend of spring > summer > autumn > winter. The high emissions
observed during spring, summer, and autumn primarily occur on
the Loess Plateau, influenced by low precipitation and poor VC in
the region. Conversely, emissions from the Tibet Plateau increase
proportionately during winter.

FIGURE 10
Wind erosion index (TSP) of the study area in Western China.
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Based on Figure 12, the primary areas for PM2.5 emissions from
FSD in the study area are identified as Baiyin City in Gansu Province,
and Zhongwei and Wuzhong cities in the Ningxia Autonomous
Region. These areas consistently exhibit high emissions throughout
the months in 2019, primarily due to factors such as high wind
speed, poor vegetation coverage, and low precipitation. These
conditions contribute to increased wind erosion and subsequent
PM2.5 emissions from FSD.

Xianyang and Weinan cities of Shaanxi Province represent
the secondary emission source areas on the Loess Plateau. The

PM2.5 emissions from FSD exhibit a gradually increasing trend
from January to April, followed by a fluctuant decrease from
April to September, reaching its lowest level in September, and
then a subsequent increase from October to December. This
pattern aligns with local agricultural activities, as described in Qi
et al. (2022).

In parts of the Tibet Plateau, PM2.5 emissions from
FSD remain relatively constant in January and February,
decrease in March, increase in April, gradually decline
from April to September, and start to rise again from

FIGURE 11
PM2.5 from FSD in the study area in Western China in 2019.

TABLE 3 Comparison of FSD emission intensity between the study area and other regions.

Region Year PM2.5 emission (t) FSD-source area (km2) Mean emission intensity (t/km2) Literature

Study Area 2019 491796.44 279525 1.76 This study

Specifically
Tibet Plateau

2019 35754.61 98993.1 0.36

Loess Plateau 2019 474722.53 191304.4 2.48

Qinba Mountains 2019 11941.49 35977.51 0.33

Beijing–Tianjin–Hebei Region 2017 65000 116630 0.56 Song et al. (2021)

Hebei Province 2015 39699 77627 0.51 Guo et al. (2017)
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October to December These emission patterns are closely
associated with agricultural and pastoral practices in the
region, as mentioned in Zhuo et al. (2018). The overall

emission levels on the Qinba Mountains are low, with the
primary emission areas situated in the southern parts of
Xi’an and Weinan cities.

FIGURE 12
Fugitive Soil dust levels in the study area in Western China in 2019.

TABLE 4 Overview of PM2.5 emissions from FSD in the study area for January to December in 2019 Unit: t.

Month 3 4 5 6 7 8 9 10 11 12 1 2

Season Spring Summer Autumn Winter

TSP 71.41 320.63 62.33 82.02 24.36 94.34 54.35 27.02 56.99 29.99 27.20 34.58

PM10 23.80 106.88 20.78 27.34 8.12 31.45 18.12 9.01 19.00 10.00 9.07 11.53

PM2.5 3.97 17.81 3.46 4.56 1.35 5.24 3.02 1.50 3.17 1.67 1.51 1.92
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3.4 Uncertainty analysis

The uncertainty in the emission inventories for certain
atmospheric pollution stems primarily from the calculation and
selection of activity levels and emission factors (Zhong et al., 2007).
In this study, the uncertainty involved in the FSD emission inventory
can be attributed primarily to the following factors: 1. The climate
factors were simulated using the WRF model, and the simulation
results may thus deviate from the actual conditions, causing the
uncertainty of the estimation results. 2. The MODIS MOD13Q1
product provides remote sensing image data at 16-day intervals. In
this study, the meanVC for a specific month was calculated using the
16-day images. However, this approach may introduce discrepancies
compared to the actual values. 3. The wind erosion index and
particle size multiplier were referenced from the “Technical
Guidelines for the Compilation of Fugitive Dust Emission
Inventories (Trial)”, without conducting specific particle size
sampling and analysis for different soil types, thereby introducing
certain uncertainties.

4 Conclusion

Compared to existing studies on Wind Erosion Quantity, our
research takes the convergent areas of the Loess Plateau, Tibet
Plateau, and Qinba Mountains as a case study to estimate FSD
emissions. We have introduced innovative approaches, such as
utilizing WRF simulated data to calculate climate factors,
optimizing the vegetation cover factor using NDVI and LUCC
data, and establishing improved criteria for calculating the
monthly allocation coefficients. The results of our study reveal
the following key findings:

1) The study area is located in the convergence areas of the Tibet
Plateau, Loess Plateau, and Qinba Mountains. Due to the
influence of topography and monsoons, meteorological
factors, including wind speed, precipitation, and temperature,
exhibit uneven distribution. Using weather station data to
calculate FSD emissions may introduce deviations from
reality. By employing ERA5 reanalysis data to drive the WRF
model, our study found that the maximum, minimum, and mean
climate factor values in the study area are 0.8601, 0.0000764, and
0.0388, respectively.

2) After the optimization process, which involved excluding
construction land, water areas, paddy fields, and regions with VC
values greater than 0.61 as FSD emissions, the mean soil bareness
(V) in the study area for 2019 was determined to be 0.33. Moreover,
VC andV values for different land use types across different months
exhibit non-linear variations due to the influence of regional
background and agricultural and pastoral activities.

3) In 2019, the annual TSP, PM10, and PM2.5 from FSD emissions
in the study area amounted to 9835.9, 2950.8, and 491.8 kt/a,
respectively. The highest FSD emissions and emission intensity
were observed on the Loess Plateau, particularly in the northern
part of the study area, including Baiyin City of Gansu Province,
and Zhongwei and Wuzhong cities of Ningxia Autonomous
Region. The Tibet Plateau had the second-highest FSD
emissions, primarily concentrated in the northwestern part of

Qinghai Province, particularly in Huangnan and Haidong
prefectures. The Qinba Mountains exhibited the lowest overall
FSD emissions.

4) The monthly allocation coefficients is mainly influenced by climate
factor and vegetation cover factor. Climate factor is determined by
meteorological conditions, while vegetation cover factor is
associated with agricultural and pastoral activities. The monthly
allocation coefficients, climate factor, and vegetation cover factor for
each grid demonstrate non-linear patterns. In the study area for
2019, April had the highest FSD emissions, accounting for 36.21%
of the total annual emissions. Following closely were August and
June, ranked as the second and third highest emission months,
respectively. These patterns can be attributed to the arid and semi-
arid conditions experienced in the primary emission source area, the
northern part of the Loess Plateau, during summer. During this
season, ground temperatures rise without significant increases in
precipitation and vegetation coverage, resulting in elevated FSD
emissions.
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