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Natural and artificial approaches are the mainly management strategy used in
degraded lands restoration, while few studies examine the effect of the two
strategies on soil nutrient properties in an earthquake-triggered degraded
ecosystem. We compared soil chemical traits and major nutrient stoichiometry
from areas following landslides that had undergone natural restoration (D. NR.)
and artificial restoration (D. AR.), as well as neighboring undisturbed areas (Und.),
following the 2017 magnitude 7.0 earthquake in Jiuzhaigou, eastern Qinghai-
Tibet Plateau. The results showed that soil organic carbon (C), total nitrogen (N),
available nitrogen (AN), available phosphorus (AP), exchangeable calcium (eCa),
exchangeable magnesium (eMg), C/P, C/K, N/P, N/K, P/K, cation exchange
capacity, and vegetation cover in landslides of D. NR. and D. AR. were lower
than those in Und. land, while their pH and total potassium (K) concentration were
higher. Compared to D. NR., most of these traits were higher in D. AR., except for
the C/N, which was reduced in D. AR. Soil C was positively related to AN, C/K, N/P,
N/K, P/K in each land type, while in D. NR., it was not related to N, AP, AK, eCa, eMg,
C/N, although it was negatively related to P and K concentration. The findings
demonstrated that vegetation restoration strategies could affect not only soil
nutrient content but also the macronutrient stoichiometry (N, P, K). Furthermore,
artificial restoration projects can enhance soil nutrient concentration and facilitate
vegetation recovery more quickly than natural restoration, which is primarily
driven by soil N rather than P or K.
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Introduction

Soil nutrients play a crucial role in plant growth and development, and are essential
components of the terrestrial ecosystem. Soil organic carbon, for instance, is an indicator of
soil quality, influencing the soil biochemical cycle (Duval et al., 2013; Nie et al., 2023). Soil
nitrogen, phosphorus, and potassium directly impact leaf photosynthesis and are critical
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determinants of forest productivity (Wright et al., 2011; Santiago
et al., 2012; Shen et al., 2020). In addition to soil nutrient content, the
stoichiometry of major elements has gained recognition as a crucial
ecological driver of plant growth, distribution, and ecosystem
structure and function (Sterner and Elser, 2002). For example,
ratios of carbon to nitrogen and carbon to phosphorus are used
as indicators of nutrient cycling and soil quality, while nitrogen to
phosphorus ratio has emerged as an indicator of plant growth
limitation (Fan et al., 2015; Scharler et al., 2015; Di-Palo and
Fornara, 2017; Liu et al., 2020). Additionally, exchangeable
cations (e.g., Ca2+, Mg2+, Na+) can impact soil carbon
accumulation and vegetation dynamics (Berthrong, et al., 2009;
Hu and Lan, 2020). Studies investigating soil nutrients and their
stoichiometry across different vegetation types can provide insights
into controlling vegetation dynamics, which can inform the
reconstruction of degraded terrestrial ecosystems (Wardle et al.,
2004; Di-Palo and Fornara, 2017; Guo et al., 2019; Su et al., 2019; Liu
et al., 2020).

Powerful earthquakes that occur in mountainous regions can
trigger mountain collapses and landslides, leading to vegetation
destruction and changes in soil conditions (Cui et al., 2012; Lin
et al., 2017; Lebrato et al., 2019). These disturbances often result in
the loss of nutrient-rich soil (Guo et al., 2013; Lin et al., 2017), which
may degrade ecosystem productivity and stability (Allen et al., 2020;
Thomsen et al., 2020). For instance, studies have shown that the
magnitude 7.0 Wenchuan earthquake in 2008 resulted in soil
organic carbon loss and ecological degradation (Cheng et al.,
2012; Cui et al., 2012; Wu et al., 2012; Zhang et al., 2014). The
co-degradation of the vegetation and soil system induced by the
earthquake increased the difficulty of ecosystem function restoration
(Cui et al., 2012). Although decreased nutrient contents in soils
following earthquake-induced landslides have been observed, fewer
studies have concurrently addressed soil nutrient and stoichiometry
changes in the post-earthquake period (Lin et al., 2017).

In recent decades, both approaches by natural restoration (also
known as natural regeneration or passive restoration) and artificial
restoration (also known as planted restoration or active restoration)
have been used to restore severely degraded lands (Palmer et al.,
1997; Stokes et al., 2010; Wang et al., 2021). However, studies have
shown that outcomes of artificial restoration on soil quality and
nutrients can differ from those of natural restoration (Liu et al.,
2019; Zhang et al., 2019), as well as soil nutrient stoichiometry (Deng
et al., 2016). Although artificial restoration can confer advantages by
quickly improving soil quality and vegetation recovery compared to
natural restoration (Li et al., 2014; Zhang et al., 2014; Deng et al.,
2016; Jiang et al., 2021), it may result in less soil biodiversity than
natural restoration (Wang et al., 2019). However, these
discrepancies may be related to different site soils and
disturbance types. Therefore, understanding how changes in soil
nutrient properties respond to natural and artificial restorations
following earthquake-induced landslides remains an important area
of research (Lin et al., 2017).

Jiuzhaigou, located in the eastern Qinghai-Tibet plateau, is a
UNESCO World Heritage Site, a World Biosphere Reserve, and a
national park, recognized for its global biodiversity conservation
hotspot, including the endangered giant panda and golden snub-
nosed monkey, approximately 140 bird species, and valuable
ecotourism industry (Li et al., 2005; Wang et al., 2018). However,

the local landscape is a typical karst ecosystem with a rocky and thin
soil layer, and significant soil erosion has resulted in fragile karst
landscapes (Xu et al., 2016; Xia et al., 2020). On 8 August 2017, a
magnitude 7.0 earthquake in Jiuzhaigou County caused significant
landscape degradation and loss of life (Hu et al., 2019). The
earthquake triggered numerous landslides, destroying the original
vegetation and resulting in changes to soil physical and chemical
properties that caused a series of ecological and environmental
problems (Wang et al., 2018; Zhao et al., 2018). Therefore,
understanding how to restore vegetation following landsides is
essential for local vegetation, biodiversity conservation, and
ecosystem functioning. Zhang et al. (2019) found that vegetation
restoration practices could greatly influence soil quality in karst
landscapes. The Chinese government has conducted some landslide
restoration projects since 2018, but the efficacy of such projects on
recovery processes is rarely evaluated.

In this study, we aimed to compare the differences in soil
nutrient contents and C, N, P, K stoichiometry across different
land types (areas post-landslide with natural restoration and
artificial restoration, as well as nearby areas unaffected by the
landslide) to answer the following questions: 1) How do soil
nutrient content and major nutrient element stoichiometry in the
two types of post-landslide vegetation soil differ from undestroyed
vegetation soil? 2) Does artificial restoration benefit soil
accumulation more than natural restoration in Jiuzhaigou? 3)
How do correlations between soil nutrient contentsor
stoichiometry differ across land types in Jiuzhaigou? Our findings
can provide a guide for efficient decision-making and policy
planning for post-earthquake ecosystem management and recovery.

Material and methods

Study sites

The study was conducted in Jiuzhaigou National Nature Reserve
in August 2019 (Figure 1; Table 1). The sites located in the lower
middle of valley are the core of the natural reserves. The annual
average temperature is 7.1°C, and the annual average precipitation
ranges from 696.6 to 957.5 mm. The natural vegetation is a
secondary forest, which was from a restoration effort in the
1960s. The natural vegetation is temperate broadleaf and mixed
forest, and the dominant tree species are Picea asperata, Abies
ernestii, and Betula albosinensis (Xu et al., 2016). The main
surface soil of these sites is dark brown soil. The magnitude
7.0 earthquake triggered many landsides that removed much of
the local surface vegetation. In March 2018, several areas affected by
these landslides were included in artificial restoration programs that
used slope cutting, masonry retaining walls, bamboo fencing,
terraced sandbag engineering to reconstruct the landscape and
then planted native grass species (mainly Avena sativa), while
other affected areas were not restored (Figure 1).

Sampling design

In September 2019, two growing seasons following the
artificial restoration, we selected four areas that were affected
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by the landslides (D. AR. that received artificial restoration and
D. NR. that were left untouched and therefore underwent natural
restoration), as well as five neighboring areas that were
unaffected by the landslides in 2017 (Figure 1; Table 1). These
unaffected sites served as controls. The average slope of all sites
was about 40° (the difference of the landside slope was less than
5°) and the aspect of land in each site was less than 10° to

minimize potential slope and aspect effects on soil nutrients
(Jiang et al., 2021). At each site, we conducted a 10 m by 10 m
sample at the middle of slope and estimated the coverage of
vegetation by digital images according to Zhou et al. (Zhou et al.,
1998).

Five soil samples were collected from each 10 m by 10 m sample
plot. Each soil sample from surface soil (0–10 cm) collected at least

FIGURE 1
Sample sites in Jiuzhaigou. Und.: undestroyed land; D. NR: destroyed land with natural restoration; D. AR: destroyed land with artificial restoration.

TABLE 1 Site information in Jiuzhaigou

Land type Longitude (°) Latitude (°) Elevation (m) Slope (°) Dominant plant species

Und 103.92 33.07 2,850 38 Betula albo-sinensis; Sorbus pohuashanensis

Und 103.92 33.09 2,840 39 Abies fabri; Picea asperata

Und 103.87 33.12 2,700 41 Picea asperata; Betula albo-sinensis

Und 103.89 33.20 2,300 42 Picea asperata; Betula albo-sinensis

Und 103.88 33.16 2,510 37 Picea asperata; Betula albo-sinensis

D. NR. 103.92 33.07 2,880 41 -

D. NR. 103.92 33.09 2,990 37 Betula albo-sinensis

D. NR. 103.89 33.20 2,440 40 Sorbus pohuashanensis

D. NR. 103.92 33.07 2,935 42 Salix cupularis

D. AR. 103.87 33.12 2,675 42 Avena sativa; Aster tataricus

D. AR. 103.88 33.16 2,670 37 Avena sativa; Rubus spp.

D. AR. 103.89 33.19 2,385 39 Avena sativa; Salix cupularis; Spiraea salicifolia

D. AR. 103.92 33.10 3,060 42 Avena sativa; Sorbus pohuashanensis

“-”, no dominat plant species.
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four soil subsamples across the whole plot and mixed well. Leaf litter
was excluded before each soil collection.

Soil analyses

The collected mineral soil samples were air-dried, ground, and
passed through a 2-mm sieve. Soil pH value was measured at a 1:
2.5 soil: solution ratio (in deionized water) by using a pH electrode.
Soil organic carbon (C) was analyzed following wet digestion with
H2SO4–K2Cr2O7 solution; total nitrogen (N), total phosphorus (P),
available nitrogen (AN), and available phosphorus (AP) were
determined using by Auto Discrete Analyzers (Cleverchem200,
Dechem-Tech Germany). Total potassium (K) and available
potassium (AK) were determined in flame atomic absorption
spectrometry (F-AAS, Shimadzu AA-7000, Japan). We
determined the potential cation exchange capacity (CEC) and
exchangeable calcium (eCa) and exchangeable magnesium (eMg)
by using the leaching method with 1 M ammonium acetate at pH 7.
We followed the method details of these nutrient measurements as
de-scribed by Bao (2000). The soil stoichiometric ratios (C/N, C/P,
C/K, N/P and N/K) were represented as mass ratios.

Statistical analysis

We used one-way analysis of variance (ANOVA) to test the
effects of restoration type (natural, artificial, unaffected) on
vegetation coverage and soil, and Tukey’s honestly significant
difference (HSD) test was conducted if the differences in the
effects were significant (p < 0.05). Principal component analysis
(PCA) was also undertaken to examine the associations among soil
chemical properties in three restoration type lands. The Pearson’s
correlation analysis was used to correlate among soil physical
properties in the three type lands or between soil organic carbon
and the other nutrient properties in each type land. ANOVA and

Pearson coefficients were analyzed with SPSS (Chicago, IL,
United States) version 16.0, and PCA was performed with
Canoco 5 (Microcomputer Power, NY, United States).

Results

We found a significant difference in vegetation coverage
between D. NR. and D. AR. (p < 0.001) after two growing
seasons following the 7.0 magnitude earthquake (Figure 1). There
was still an decrease (−59.7%) in vegetation coverage in destroyed
landsides with different restoration approaches compared to
undestroyed lands, and vegetation coverage from artificial
restoration lands showed a significant increase (about +130.2%)
compared to vegetation coverage in natural restoration areas
(Figure 2).

Soil pH, CEC, contents of C, N, P, K, AN, AP, AK, eCa and eMg
were significantly different among the three types of land
(Figures 3A–K). Compared to the unaffected land areas, both
soils from areas with natural restoration and with artificial
restoration increased in pH and K content, but decreased their
values of CEC, C, N, AN, AP, AK, eCa and eMg. Additionally, areas
with artificial restoration exhibited a significant higher soil CEC
(+178.8%), C (+58.0%), N (+32.2%), P (+62.9%), AN (+138.8%), AK
(+14.5%) and eCa (+278.4%) compared to areas with natural
restoration.

Soil C, N, P and K stoichiometry were also significantly affected
by earthquake-induced land types (Figures 4A–F). Besides C/N,
areas affected by landslides following the earthquake exhibited
decreased C/P, C/K, N/P, N/K and P/K. The artificial restoration
treatment did not significantly influence C/P or C/K, but increased
N/P, N/K or P/K compared to those measurements from the natural
restoration.

The PCA showed clear delineation based on soil pH, CEC,
nutrient content and C, N, P, K stoichiometry trait combinations in
the different lands (Figure 5). These traits among natural
restoration, artificial restoration and undestroyed lands were well
separated from each other. The two-component PCA models
explained 83.19% of the observed total variance. PC1 explained
67.78% was strongly influenced by most of the traits in pH, C, N/K,
eMg, N/P, P/K, AN, N, CEC, eCa and AK, and PC2 explained
15.41% was mainly influenced by C/P.

Across all samples, pHwas positively related with K and C/N, while
was negatively related with the other soil chemical content and C, N, P,
K stoichiometry (Table 2). Soil organic carbon was positively correlated
with most of the nutrient contents and their stoichiometry (except K
and C/N). N was positively correlated with P, AN, AP, AK, eCa and
eMg, but was negatively correlated with total K and C/N. Moreover, K
was negatively correlated with AN, AK, eCa, eMg, C/P, C/K, N/P, N/K
and P/K. In addition, C/N was negatively related with most of soil
chemical properties, while C/P, C/K, N/P or P/Kwere negatively related
with most of soil chemical properties.

Soil organic carbon was positively correlated with AN, C/K, N/P
and N/K in each type of land, while the relationship between soil
organic carbon and the other nutrient content or stoichiometry was
related to land type (Table 3). In unaffected and artificial restoration
slopes, C was positively related with N, eMg and P/K, but no
significant relationship of these traits was found in the areas with

FIGURE 2
Difference in vegetation coverage under different type lands in
Jiuzhaigou. Und.: undestroyed land; D. NR.: destroyed land with
natural restoration; D. AR.: destroyed land with artificial restoration.
Bars represent mean ± standard error (n = 4–5); different letters
mean statistical differences (p < 0.05) among slope types according to
Turkey’s HSD test.
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natural restoration. Additionally, there was a negative relationship
between C and P or K in the areas with natural restoration.

Discussion

Our results indicate that restoration approaches after
earthquake-induced landslides in Jiuzhaigou not only affect soil
nutrient contents but also the balance between nutrients, consistent
with previous studies on forest recovery following earthquakes (Guo
et al., 2013; Lin et al., 2017). Moreover, our findings suggest that
most values of soil nutrient accumulation and vegetation coverage in
areas affected by landslides with an artificial restoration project were
higher than in areas that underwent natural restoration. This
suggests that artificial restoration projects were more beneficial
for the recovery of local vegetation in Jiuzhaigou than natural
restoration.

Earthquake-induced landslides affect soil
nutrient content and stoichiometry

We found that most nutrient content from areas that experience
landslides were significantly lower than that on unaffected lands.
These findings are similar to the results from previous studies
addressing the outcomes of earthquake-induced landsides (Wu
et al., 2012; Guo et al., 2013; Morgenroth et al., 2014). The lower
nutrient contents are likely caused by the surface soil loss during the
magnitude 7.0 earthquake in 2017, as soil macronutrients

abundance in forests depend on vegetation (Guo et al., 2013; Qi
et al., 2020). Landslides in Jiuzhaigou decimated the landscape,
stripping away the vegetation and surface soil, which resulted in soil
nutrient decrement. The results that most nutrient traits are
positively related to soil organic carbon (Table 2; Figure 5) also
support this conclusion.

Our study found that destroyed vegetation resulted a more
decrease in nitrogen (including N and AN) than phosphorus
(including P and AP), which may be related to different
biogeochemical processes for nitrogen and phosphorus in karst
ecosystems (Li et al., 2020; Shen et al., 2020). In areas affected by
landslides, soil organic carbon was likely the major limiting factor
for soil formation and biological processes, as indicated by the
significant decrease in soil organic carbon content (Dialynas
et al., 2016). Moreover, K, Ca and Mg are macronutrient
elements that play crucial roles in plant nutrient uptake and
ecosystem functions, such as maintaining organism osmosis
balance, improving water use efficiency, and decreasing water
loss (Sardans and Penuelas, 2015; Tang et al., 2019; Hu and Lan,
2020; Wu et al., 2022). Our results revealed that the lower contents
of AK, eCa, and eMg in areas affected by landslides than in
unaffected areas suggested that earthquake-induced landslides
might have influenced water balance in the plant-soil system.
Interestingly, we also found that total potassium concerntration
increased in the post-landslide areas in Jiuzhaigou. Since K is
mostly derived from the residues of soluble carbonate from
nearby rock outcrops and from organic decomposition.
Therefore, the high K in the post-landslide areas, where have
low organic matter, imply that rock outcrops process much more

FIGURE 3
Differences in soil pH, cation exchange capacity (CEC) and nutrient content under different types of slope in Jiuzhaigou. C represents soil organic
carbon; N represents total nitrogen; P represents total phosphorus; K represents total potassium; AN represents available nitrogen; AP represents
available phosphorus; AK represents available potassium; eCa represents exchangeable calcium; eMg represents exchangeable magnesium. Und.:
undestroyed land; D. NR.: destroyed land with natural restoration; D. AR.: destroyed land with artificial restoration. Bars represent mean ± standard
error (n = 20–25); different letters mean statistical differences (p < 0.05) among slope types according to Turkey’s HSD test.
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important role biogeochemical cycle than expected, more studies
are need to investigate the role of K in forest restoration in karst
geology.

In this study, the soil C: N and C:P ratios were used to
represent the supply capacity of nitrogen and phosphorus,
respectively, as well as the decomposition ability of organic

FIGURE 4
Differences in soil organic carbon, nitrogen, phosphorus, potassium stoichiometry under different type lands in Jiuzhaigou. Und.: undestroyed land;
D. NR.: destroyed land with natural restoration; D. AR.: destroyed land with artificial restoration. Bars represent mean ± standard error (n = 20–25);
different letters mean statistical differences (p < 0.05) among slope types according to Turkey’s HSD test.

FIGURE 5
Results of a principal components analysis of soil chemical properties among the three type lands in Jiuzhaigou. Und.: undestroyed land; D. NR.:
destroyed land with natural restoration; D. AR.: destroyed land with artificial restoration; Chemical property abbreviations are defined in Figure 3.
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TABLE 2 Pearson’s correlation coefficients for soil chemical properties among the three type lands in Jiuzhaigou

pH CEC C N P K AN AP AK eCa eMg C/N C/P C/K N/P N/K

CEC −0.754**

C −0.723** 0.830**

N −0.780** 0.942** 0.919**

P −0.594** 0.701** 0.549** 0.707**

K 0.311* −0.447** −0.651** −0.527** 0.069

AN −0.791** 0.927** 0.896** 0.971** 0.683** −0.519**

AP −0.326** 0.493** 0.467** 0.528** 0.543** −0.049 0.487**

AK −0.618** 0.671** 0.641** 0.740** 0.708** −0.253* 0.683** 0.463**

eCa −0.563** 0.875** 0.729** 0.820** 0.613** −0.451** 0.776** 0.429** 0.639**

eMg −0.761** 0.762** 0.858** 0.851** 0.424** −0.610** 0.839** 0.357** 0.633** 0.733**

C/N 0.690** −0.830** −0.518** −0.715** −0.714** 0.103 −0.710** −0.384** −0.655** −0.701** −0.528**

C/P −0.278* 0.309* 0.626** 0.381** −0.267* −0.798** 0.380** 0.020 0.072 0.283* 0.555** 0.075

C/K −0.614** 0.693** 0.918** 0.815** 0.389** −0.764** 0.784** 0.290* 0.590** 0.629** 0.816** −0.396** 0.667**

N/P −0.783** 0.905** 0.881** 0.920** 0.438** −0.639** 0.902** 0.391** 0.621** 0.776** 0.878** −0.682** 0.592** 0.810**

N/K −0.682** 0.792** 0.896** 0.908** 0.527** −0.694** 0.870** 0.369** 0.696** 0.718** 0.852** −0.537** 0.509** 0.954** 0.865**

P/K −0.622** 0.770** 0.839** 0.873** 0.683** −0.607** 0.836** 0.407** 0.740** 0.723** 0.748** −0.562** 0.311* 0.885** 0.732** 0.946**

p < 0.05; **p < 0.01. Chemical property abbreviations are defined in Figure 3.

Fro
n
tie

rs
in

E
n
viro

n
m
e
n
tal

Scie
n
ce

fro
n
tie

rsin
.o
rg

0
7

H
u
an

g
e
t
al.

10
.3
3
8
9
/fe

n
vs.2

0
2
3
.12

9
6
18

7

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1296187


matter (Jiang et al., 2019; Qi et al., 2020). We found that the soil
C:N ratio in the landslide-affected areas undergoing natural
restoration (with an average value of 62.96) was higher than
in the unaffected lands and higher than the average value of
China’s soil (12.30) (Tian et al., 2010). This suggests that the
nitrogen deficiency in the affected areas was greater than the
decrease in soil organic carbon. A C:N ratio above 25 indicates
nitrogen deficiency, which causes slow organic carbon
conversion by microbes (Bui and Henderson, 2013). The
average value of C:N in the unaffected land (17.76) was also
higher than the average values in China soil, indicating nitrogen
deficiency in the study region, and the earthquake disturbance
worsened the nitrogen deficiency.

Additionally, we found that the average values of soil C:P in the
post-landslide areas (30.93) were lower than in the unaffected areas
(40.92) and lower than the average values of China soil (52.70) (Tian
et al., 2010), indicating low effectiveness of phosphorus utilization in
Jiuzhaigou. Furthermore, N:P ratios have been widely used to
diagnose nutrient limitations of N or P (Gusewell, 2004;
Cleveland and Liptzin, 2007; Qi et al., 2020). We found that the
average values of soil N:P (0.51) in the post-landslide areas were
lower than in the unaffected areas (2.35), and both were lower than
the average values of China’s soil (3.90) (Tian et al., 2010). These
results suggest that nitrogen is more deficient than phosphorus in
Jiuzhaigou forest surface soil, especially in areas affected by
landslides. Our findings are consistent with previous research
that indicates that nitrogen is the most limiting nutrient in
temperate forests (Vitousek and Howarth, 1991) and in the early
stage of vegetation restoration in karst rocky desertification regions
(Zhang et al., 2018; Liu et al., 2019; Lan et al., 2020). Therefore, these
results suggest that nitrogen limitation is critical for post-landslide
restoration.

The lower values in C:K, N:K, and P:K in the areas affected by
landslides than the unaffected areas likely caused by the decrease
in soil organic carbon, nitrogen, or phosphorus rather than K. As
the total K concentration increased in the affected areas.
However, despite the increase in total K concerntration in the
post-landslide areas, the available K was still lower than that
available in the unaffected areas. These findings suggest that local
K is mainly non-available K, and the transformation process of K
availability is limited by soil leaching, which is common in karst
geology with a montane climate (Shen et al., 2020). Although K is
the most abundant cation in plant cells and is beneficial for stress
tolerance (Sardans and Penuelas, 2015), relatively less attention
has been paid to K-related stoichiometry compared to N or P.
The balance of K and N or P may be crucial for biogeochemical
processes in montane climates (Shen et al., 2020). Our results
show that total K was negatively related to N, AN, eCa, eMg, and

CEC (Table 2), which suggests that rich soil K in Jiuzhaigou may
inhibit soil other cation cycles, especially the nitrogen cycle. The
rich soil K stocks may hamper vegetation recovery in Jiuzhaigou,
as a recent study has confirmed that soil K stocks correlated
negatively with biomass accumulation in the karst forest (Shen
et al., 2020). Until recently, the role of K, especially on the
stoichiometry of K and the other macronutrient element, in
degraded ecosystems remained largely unexplored. Therefore,
additional studies should be conducted on K-related
stoichiometry during vegetation succession in the monsoon
climate (Sardans and Penuelas, 2015; Qiu et al., 2018; Shen
et al., 2020).

Difference of soil nutrient properties
between artificial restoration and natural
restoration areas

The elevated soil nutrient levels in artificial restoration areas are
most likely due to the planted vegetation, which can effectively
prevent soil erosion, stabilize soil aggregates, and enhance soil
organic matter through root exudation and leaf litter (Li et al.,
2020). Increased soil organic matter generally results in greater
microbial diversity, which, in turn, benefits soil nutrient
accumulation through various rhizosphere processes (Liu et al.,
2019). Moreover, we observed a positive correlation between
most soil nutrients and soil organic carbon across all three land
types (Figure 5; Table 2), as well as an increase in vegetation cover in
artificial restoration areas (Figure 2). Thus, soil organic matter and
nutrients may be the primary limiting factors affecting vegetation
recovery in Jiuzhaigou following landslides. Similar results have
been observed in natural succession studies following landslides
(Dialynas et al., 2016; Blonska et al., 2018).

Notably, we observed that in artificial restoration areas, soil
organic carbon was positively correlated with total N,
exchangeable Ca, and exchangeable Mg, while the opposite
was true in natural restoration areas, where total P or total K
was negatively related to soil organic carbon (Table 2). These
findings suggest that in the natural restoration areas, local soil P
and K may have been provided by other geological processes
rather than vegetation import. Overall, our results suggest that
natural restoration is an inefficient approach for vegetation
recovery following earthquake-induced landslides when
compared to artificial restoration. In artificial restoration land,
the soil nutrient cycle was limited by organic matter, which was
replenished by artificially planted plant species. Moreover, we
found that N, rather than P or K, is the major limiting
macronutrient in artificial restoration areas. The annual native

TABLE 3 Pearson’s correlation coefficients between soil organic carbon and the other nutrient properties in each type land in Jiuzhaigou

C/N C/P C/K N/P N/K P/K

CUnd 0.512** 0.739** 0.870** 0.609** 0.728** 0.616**

CD. NR. 0.319 0.797** 0.977** 0.701** 0.651** 0.252

CD. AR. −0.142 0.35 0.787** 0.629** 0.783** 0.598**

p < 0.05; **p < 0.01. Und.: undestroyed land; D. NR.: destroyed land with natural restoration; D. AR.: destroyed land with artificial restoration. Chemical property abbreviations are defined in

Figure 3.
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Poaceae species in the artificial restoration areas can quickly
provide organic matter through leaf litter, which can promote
microorganism colonization and provide nutrient elements to
some extent. Based on the positive relationship between total N
and organic carbon, we recommend the consideration of
nitrogen-fixing plant species in future artificial restoration
strategies in Jiuzhaigou.

Implications of vegetation restoration
approach on karst ecosystem
management

The rocky karst terrain is highly vulnerable to land
degradation, making natural recovery of vegetation
challenging (Xie et al., 2015). In eastern Qinghai-Tibet,
frequent earthquakes, steep slopes, and sensitive climate have
led to significant soil erosion (Guo et al., 2013; Xia et al., 2020; Nie
et al., 2022). Although our study has shown that artificial
restoration has advantages in terms of soil nutrient and rapid
vegetation recovery compared to natural restoration, its impact
on other ecosystem services (such as fertility maintenance, soil
erosion control, and biodiversity conservation) in the aftermath
of natural forest lands devastation remains unexplored. The role
of vegetation restoration in ecosystem services is essential for
ecosystem management, especially in this important area for
world biodiversity conservation (Liu et al., 2023; Jayachandran
et al., 2017; Zhang et al., 2018).

However, previous studies comparing natural restoration
with artificial restoration have revealed some limitations of the
latter. For instance, artificial restoration programs have resulted
in decreased soil nitrogen-cycling diversity in pine plantations, as
well as a narrower range of ecosystem functions (Wang et al.,
2019; Wang et al., 2020). Other studies have identified decreased
spatial heterogeneity of soil conditions, decreased cost-
effectiveness, and potential high-yield returns in ecosystem
services (Chazdon, 2008). To enhance the effectiveness and
benefits of artificial restoration, a comprehensive management
approach that combines natural and artificial restoration may
improve the ecological value of the forest and ensure long-term
ecosystem function (Nilsson et al., 2006; Wang et al., 2021). For
the fragile karst ecosystem in Jiuzhaigou, investigating the effects
of different restoration approaches, including their long-term
impacts on other ecosystem services, especially on biodiversity, is
still necessary.

Conclusion

The Jiuzhaigou earthquake with a magnitude of 7.0 triggered
numerous landslides, resulting in a significant reduction in
vegetation coverage and soil nutrients, particularly soil
organic carbon, nitrogen, exchangeable Ca and Mg, rather
than P and K. Our study showed that artificial restoration,
despite being implemented for only two growing seasons, led
to improved soil nutrient and vegetation coverage compared to
natural restoration. Furthermore, our findings suggest that the

soil in Jiuzhaigou is mainly limited by soil nitrogen rather than
P or K. These results indicate that incorporating native
nitrogen-fixing plant species in restoration strategies is
recommended to reduce nitrogen limitation and promote
restoration success in the future. Our results could provide
valuable insights for post-earthquake forest restoration in
karst regions worldwide.
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