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Achieving “carbon neutrality” is an inevitable requirement for tackling global
warming. As one of the national ecological barriers, the southern hilly and
mountainous region (SHMR) shoulder the important mission of taking the lead
in achieving “carbon peak” and “carbon neutrality”. Thus, it has important scientific
significance to explore and analyze how to coordinate ecological development
under the background of “double carbon action”, and it is a key step to ensure that
the region achieves synergistic development of promoting economic
development and improving ecosystem health. Therefore, in this study, we
aimed to address these gaps by adopting a refined grid scale of 10 km × 10 km
to explore the spatial-temporal distribution characteristics of carbon emissions
and ecosystem health. Additionally, we established a coupling coordinationmodel
of carbon emissions intensity (CEI) and ecosystem health index (EHI) to assess the
impact of natural and socio-economic factors on the coupling coordination
degree (CCD) in different regions. Our findings are as follows: 1) In the SHMR
region, the EHI exhibited a progressive development trend, with spatially
increasing values from the south to the north. 2) The spatial discrepancy in CEI
has been on the rise, which assumed an increase of 4.69 times, and with an
increasingly pronounced pattern of spatial imbalance. Carbon emissions tend to
concentrate more in the eastern and northern areas, while they are comparatively
lower in the western and southern regions. 3) The R2 of geographical weighted
regression model (GWR) is all above 0.8, and the CCD between CEI and EHI
demonstrated a positive developmental state. However, most regions still
displayed an imbalanced development, albeit with a slight increase in areas
exhibiting a more balanced development state. 4) The driving forces of natural
and socio-economic factors had a dual-factor and non-linear enhancement
effect on the CCD. The influence of natural factors on CCD has gradually
diminished, whereas the influence of socio-economic factors has progressively
strengthened.
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1 Introduction

In the context of the 2030 Agenda for Sustainable Development,
the achievement of the Sustainable Development Goals (SDGs)
necessitates a comprehensive consideration of the social,
economic, and environmental dimensions (UNFCCC, 2015;
ICSU, 2017). Sustainable Development Goal number 11 aims to
promote the establishment of inclusive, secure, resilient, and
sustainable cities and human settlements. This implies the need
for harmonized progress in both economic development and
ecological environmental protection. Consequently, how to
mitigate the significant impact of rapid urbanization on the
ecological environment and achieve a green and sustainable path
of development is a pivotal concern demanding attention from all
nations during the process of urbanization (Ayre and Landis, 2012;
Bayliss et al., 2012; Awuah et al., 2020). China, with its rapid
urbanization and industrialization, has emerged as the largest
global emitter of carbon. The rapid economic growth has notably
influenced carbon emissions from ecosystems due to frequent land
use changes. Consequently, alterations in land use patterns exert
significant effects on ecosystems, which subsequently impact the
services they provide. It is important to note that land use changes
not only affect the spatial distribution, extent, and intensity of
carbon emissions but also modify ecosystem health by altering
the spatial distribution of biodiversity, regional resources, and
ecosystem types. Thus, achieving a balance between socio-
economic development and ecosystem health has become a
universal and critical challenge, particularly for China (Lin and
Christina, 2019). The Southern Hilly and Mountainous Region
(SHMR) represents a crucial component of China’s ecological
security, playing a fundamental role in regulating local and even
global climate, facilitating vegetation restoration, and conserving soil
and water resources (Tian et al., 2022). However, due to the
concentration of population, land resources in this region have
been excessively exploited over an extended period. The long-
standing irrational utilization of land resources has resulted in
both a low regional production level and a deterioration of the
ecological environment. Hence, investigating the spatiotemporal
interplay between carbon emissions and ecosystem health in the
SHMR holds immense significance for achieving green and
sustainable development within this region. Furthermore, it has
far-reaching implications for guiding the healthy and sustainable
green development of the national ecosystem as a whole.

Both domestic and international research has extensively
scrutinized the decoupling effects of carbon emissions and
economic growth across various scales, including national levels
(Liu et al., 2023), provincial (Zhang et al., 2019), urban (Mcgeeid and
York, 2019) and regional (Khan et al., 2020) carbon emissions
(Munir et al., 2020), an explanation of the mechanism of carbon
emissions from a single land class (Chen et al., 2019b), influencing
factors (Xie et al., 2020; Jia et al., 2023), change rules (Yu et al., 2018),
efficiency (Zhang et al., 2022), and the relationship between land
class change and carbon source/sink (Zhang et al., 2013). A large
number of studies have been conducted from the perspectives of
spatial differences and associations of carbon emissions (Zhao et al.,
2022).

As a crucial focus of macroecology research, the concept of
ecosystem health possesses distinct characteristics pertaining to

spatial and temporal scales. Among the various scales considered
for the study of macro ecosystem management, the region emerges
as the most appropriate spatial scale for investigating and evaluating
ecosystem health. Regional ecosystem health refers to the capacity of
each regional ecosystem to consistently and sustainably provide
ecosystem service functions within a specific spatial and temporal
framework, while maintaining its own health (Yan et al., 2016).
Regional ecosystem health assessment has increasingly gained
importance as a research direction within the field of ecosystem
health assessment. It amalgamates the evaluation of type quality,
quantitative structure, and spatial pattern, with a central focus on
ecosystem service functions. Several studies have already been
conducted on ecosystem health assessment, encompassing
different spatial-temporal and regional scales (Chen et al., 2018),
such as provinces (Peng et al., 2017), urban agglomerations (Peng
et al., 2018), rivers (Zheng et al., 2008; Xia et al., 2019), and wetlands
(Wu and Ding, 2019). The evaluation index system for ecosystem
health comprises a set of interconnected and mutually constrained
indicators, necessitating the selection of indicators that are both
relevant and independent. These indicators should comprehensively
reflect the level of health and its changing trends in the ecosystem,
while accurately reflecting the objectives of ecosystem management
and evaluation. Two main models have been employed in
constructing the index system: the pressure-state-response (PSR)
model (Shear et al., 2003) and the vigor-organization-resilience
(VOR) model (Borja et al., 2006). Additionally, the vigor-
organization-resilience-ecosystem service (VORS) model has been
developed to address the limitations of the previous two models, as
they only measure the state of the ecosystem and external
disturbances, disregarding the ability to evaluate the provisioning
of ecosystem services (Shen et al., 2016; Chen et al., 2019a).
Consequently, this study establishes a comprehensive index
framework for evaluating ecosystem health in the SHMR region
based on the VORS model.

Few studies have explored the spatial relationship between
carbon emissions and ecosystem health. Coupling coordination
means that two or more systems interact with each other or
within the system and affect and restrict each other, and finally
reach a benign interaction of coordinated development relationship,
the basic premise of which is that there is a certain connection
between the factors coupled with each other (Tian et al., 2022). In
other words, carbon emission and ecosystem health form a closely
related complex coupled system in the competition and cooperation
of mutual support and mutual restriction. By regulating subsystems
that have a great influence on the overall evolution of the coupled
system, all subsystems are promoted to tolerate each other in the
unity of oppositions and eventually tend to coordinate development.
Thus, this study constructed a coupling coordination model based
on carbon emission and ecosystem health to explore the coupling
effect and coordination development level between carbon emission
intensity (CEI) and ecosystem health index (EHI) on a
spatiotemporal scale. What’s more, the heterogeneity or non-
stationarity of spatial data relationship is one of the research
hotspots in the field of spatial statistics and related applications,
and the development of local spatial statistical analysis technology is
the key link. Geographically weighted regression (GWR) analysis
method was used to solve the geographically weighted regression
analysis model, so as to quantitatively reflect the heterogeneity or
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non-stationary characteristics of spatial data relations by estimating
parameters that vary with different spatial locations. Thus, this study
further introduced GWR model to explore the spatial heterogeneity
of EHI and CEE. In addition, with SHMR ecosystem health as the
core, this study aims to propose a new method that can directly
verify the specific extent of carbon emission’s negative effects on
SHMR ecosystem. What’s more, the influencing factors of EHI and
CEI coupling systems are also discussed. Traditional methods such
as the regression model (Chi et al., 2018b), correlation analysis (Bae
et al., 2010) and principal component analysis (Cheng et al., 2018)
are usually used for this. However, due to the intricate nature of
geographical processes, it is not feasible to quantify the interaction
and interplay between influencing factors that contribute to spatial
differentiation of CCD using traditional statistical regression
analysis methods (Ye et al., 2012). In contrast, the geographical
detector model offers a unique analytical approach that not only
assesses the individual contribution of each factor to the coupled
system but also examines the interactive influence of multiple factors
on the coupled system (Wang et al., 2016). This interactive analysis
aspect is notably absent in other existing studies. Thus, building
upon these considerations, this study employed the geodetector
model to quantitatively analyze the influencing factors of the CEI
and EHI coupling system.

Within the mentioned context, this study primarily investigates
the following issues concerning carbon emission and ecosystem
health in the SHMR region: 1) What are the spatial-temporal
patterns of heterogeneity exhibited by the CEI and EHI within
the SHMR region? 2) How does the EHI respond to changes in the
CEI during the study period in the SHMR? 3) How does the state of
coupling and coordination between the CEI and EHI vary across
different regions within the SHMR during the study period? 4)What

are the primary drivers that influence the development of coupling
systems between the CEI and EHI during the study period? Are there
any regional disparities observed in this regard?

1.1 Study area

In Figure 1, the topography of the SHMR exhibits an undulating
terrain, complemented by a well-developed water system, numerous
rivers, and abundant water resources. This region boasts a wealth of
biological species and a diverse array of soil types. The SHMR
harbors a flourishing ecosystem, comprising forests, wetlands,
grasslands, and more. These ecosystems are characterized by
their remarkable biodiversity and impressive carbon storage
capacity, rendering them of paramount importance in the
context of land use carbon emissions. The SHMR encompasses a
diverse range of land use types, including farmland, woodland, and
urban areas. It stands out as a vital ecological sanctuary in China,
necessitating urgent measures for ecosystem preservation and the
attainment of sustainable development. Over the past two decades,
the SHMR has encountered significant transformations in land use
patterns and ecological landscapes due to intensified human
intervention. As a consequence, ecosystems have experienced a
precipitous decline, leading to the deterioration of their critical
functions pertaining to ecosystem services. These changes bear
profound implications for the overall wellbeing of the
ecosystems. Concurrently, the surge in carbon emissions has
engendered environmental predicaments that pose a substantial
threat to social productivity and introduce considerable risks to
the natural ecosystem within the SHMR region. The stark contrast
between ecological health and economic development has garnered

FIGURE 1
(A) Map of study area; (B) The DEM of the area; (C) The Land use and land cover in 2020.
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widespread attention. Therefore, enhancing the ecosystem health of
the SHMR and achieving carbon peaking and carbon neutrality
assume paramount significance in pursuit of green and sustainable
development.

It is noteworthy that, in comparison to certain urban
conglomerations, the SHMR exhibits a more intricate interplay of
topographic and geomorphic features, thereby endowing its
ecosystem with complexity and diversity. Moreover, the SHMR’s
warm and humid climate, abundant vegetation, and diverse land use
types distinguish it from grasslands and plateaus, which tend to
possess relatively homogenous ecosystems. Consequently, the
SHMR exerts a more pronounced influence on land use carbon
emissions. In summary, the SHMR presents an ideal milieu for
investigating the correlation between ecosystem health and carbon
emissions.

1.2 Data sources and processing

The spatial datasets employed in this investigation were
primarily sourced from the esteemed Resources and
Environmental Science Data Centre and National Academy of
Sciences of China, accessible at the URL http://www.resdc.cn.
These datasets encompassed a comprehensive land use
classification framework, delineated into six distinct categories,
namely cultivated land, forest land, grassland, water bodies,
construction land, and unused land. The resolution of these
datasets was finely delineated at 1 km × 1 km, ensuring a
meticulous and granular analysis. Furthermore, the study also
integrated climate data of equally impressive resolution (1 km ×
1 km), encapsulating average annual precipitation and average
annual temperature. Additionally, datasets pertaining to net
primary productivity (NPP), digital elevation model (DEM),
population density (PD), and gross domestic product density
(GDPD) were also included, all meticulously resolved at the
spatial resolution of 1 km × 1 km. To augment the
comprehensive analysis, various statistical metrics were culled
from the esteemed Statistical Yearbook of the SHMR provinces,
spanning the time frame from 1990 to 2020. These encompassed
vital aspects such as food production, energy consumption, and
other pertinent variables, thereby enriching the comprehensiveness
and robustness of the investigation.

1.3 Methods

1.3.1 Quantifying carbon emission efficiency (CEI)
The calculation of carbon emission is to multiply the area of each

land use type with its corresponding carbon emission coefficient,
and then carry out the sum calculation. The calculation formula is
below (Zhang et al., 2014):

EK � ∑ei� ∑Si × δi (1)

In this equation, the variable EK represents the direct carbon
emissions, while ei signifies the carbon emissions associated with
each land use type. Moreover, Si and δi represent the area and
carbon emission coefficient of land use type i, respectively,

indicating the carbon emission coefficient specific to each land-
use type. To establish the carbon emission coefficients for each land
use type, relevant literature and the specific conditions of the study
area were meticulously examined. The carbon emission coefficients
were determined as follows: cultivated land (0.422), forest land
(−0.644), grassland (−0.022), water bodies (−0.253), and unused
land (−0.005) (Cai et al., 2005). The carbon emissions attributed to
build-up land were calculated based on fossil energy consumption
and subsequently divided by the area to derive the carbon emission
intensity of such land. The estimation of carbon emissions from
build-up land was accomplished through an indirect estimation
method, wherein data from the China Energy Statistical Yearbook
were integrated along with various energy consumption patterns
and corresponding carbon emission coefficients (Table 1) (Lai et al.,
2016).

Carbon emission calculation formula of build-up land (Wu
et al., 2022):

Eη � ∑ei� ∑Ei × μi × εi (2)

In this equation, the variable Eη represents the carbon emission
emanating from built-up land, whereas ei signifies the carbon
emission generated by the consumption of energy i. Furthermore,
Ei denotes the consumption of energy i, while μi represents the
conversion coefficient of energy i consumption into standard coal.
Additionally, the carbon emission coefficient of energy i is signified
by εi.

The CEI of land use is established by considering both the area
and carbon emission coefficient associated with each land use type
within a grid. Consequently, a higher carbon emission intensity
implies a greater carbon emission within the cell (Friedlingstein
et al., 2010).

Clucc � ∑n
i�1

SiPi

S
(3)

In this equation, denoted by Clucc, the CEI is calculated. The
variables Si and Pi correspond to the area and carbon emission
coefficient, respectively, of land use type i within the grid.
Additionally, the total area of the grid is represented by the
variable S. The CEI of build-up land is the value of carbon
emissions of build-up land within each grid.

1.3.2 Constructing the ecosystem health
assessment framework

An ecologically robust regional ecosystem should uphold its
integrity, exhibit inherent self-regulatory capabilities, and offer
consistent and sustainable ecosystem services to humanity.
Drawing upon a comprehensive review of existing research
findings, the vigor-organization-resilience-services (VORS) model
has been chosen as the foundation for developing the EHI evaluation
framework within the context of the SHMR. The EHI is expressed as
(He et al., 2019):

EHI � ��������
V*O*R*S4

√
(4)

Wherein, EHI denotes the ecosystem health index, while V, O, R,
and S represent ecosystem vigor, ecosystem organization, ecosystem
resilience, and ecosystem service, respectively. Employing the range
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standardization method, the EHI, V, O, R, and S were standardized
on a scale of 0–1 (Mingde et al., 2010).

Ai � Xi −min Xi( )
max Xi( ) −min X′

i( ) (5)

In this equation, Ai represents the dimensionless value of the ith
indicator, and max (Xi) signifies the maximum value of the ith
indicator.

1) Ecosystem vigor is a vital ecosystem function, representing a key
manifestation of system metabolism or primary productivity.
The Normalized Vegetation Index (NDVI) serves as a valuable
indicator of vegetation’s productive capacity. Moreover, the
strong correlation between NDVI and Net Primary
Productivity (NPP) means that NPP serves as an ideal metric
for characterizing ecosystem vigor in the present study.

2) Ecosystem organization is the interaction between various
components of a system, reflecting the stability and
complexity of the system structure. The more complex the
structure, the healthier the ecosystem. Furthermore, this index
layer is subject to the influence of landscape heterogeneity, the
configuration of the landscape, and the degree of landscape
connectivity. The utilization of the Shannon Diversity Index
(SHDI) and Shannon Evenness Index (SHEI) was employed to
effectively capture and elucidate the intricate patterns of spatial
heterogeneity. That is, the higher the spatial heterogeneity, the
more stable the landscape structure, the stronger the landscape
organization ability. To encapsulate the landscape connectivity,
the Interspersion and Juxtaposition Index (IJI), Division Index
(DIVISION), and Contagion Index (CONTAG) were employed
as insightful metrics. The higher the landscape connectivity, the
more favorable the inter-species migration and the
communication between different patches, the stronger the
landscape organization. The index of perimeter-area fractal
dimension (PAFRAC) was used to express the landscape
shape. Thus, the formula is as follows (Chi et al., 2018a):

O � 0.4*LH + 0.4*LC + 0.2*IC� 0.2*LC1 + 0.2*LC2( )
+ 0.1*LC3 + 0.15*LC4 + 0.15*LC5( ) + 0.2*PAFRA (6)

Where LH alludes to the intricate landscape heterogeneity, LC
signifies the profound landscape connectivity, and IC pertains to
the captivating landscape shape. Additionally, LC1 and LC2

correspond to the succinct acronyms “SHDI” and “SHEI”
respectively, while LC3, LC4, and LC5 elegantly represent the
metrics of Interspersion and Juxtaposition Index (IJI), Division

Index (DIVISION), and Contagion Index (CONTAG) in that
order.

3) Ecosystem resilience epitomizes the inherent ability of an
ecological system to uphold its structural equilibrium in the
face of perturbations caused by human activities. Past
investigations have established that land utilization can serve
as a reliable gauge of ecosystem resilience. To quantify this
resilience, we assign Resilience Coefficients based on the
distinct land use categories. The comprehensive measure of
ecosystem resilience is then computed through the weighted
aggregation of both the spatial extent and ecological resilience
coefficients associated with diverse land use classifications within
the given region, as delineated below (Kang et al., 2018):

R � ∑n
i�1

Ai

AI
× RCi (7)

In this equation, R symbolizes the resilience of the urban ecosystem
within the district under examination. AI corresponds to the total land
area encompassed by the study region, whereas Ai represents the
specific area occupied by the respective land use types. Furthermore,
RCi denotes the ecological restoration coefficient associated with the ith
land use classification. Drawing upon prior research findings, the
ecological resilience coefficients for cultivated land, forest land,
grassland, water bodies, built-up land, and unused land are
documented as 0.3, 0.8, 0.7, 0.8, 0.2, and 1, respectively.

4) Ecosystem services encompass an array of invaluable products
and advantages bestowed upon human society by the natural
ecological environment. These services are quantified through
the measure of ecosystem service power, which highlights the
monetized value attributed to said services. In this study, the
revised calculation of ecosystem services per unit area was
undertaken by integrating the land use types specific to the
SHMR region, utilizing Xie Gaodi’s refined scale of ecological
services in Chinese ecosystems. Incorporating the ESV per unit
area scale proposed and updated in 2017, the economic value
corresponding to grain production per unit area of farmland was
adopted as the benchmark ESV, representing a standard
equivalent factor of 1.

ESV � ∑n
i�1
Ai × VCi (8)

In the equation, ESV represents the total value of ecosystem
services analyzed in this study, Ai denotes the area (in hectares) of

TABLE 1 Standard coal coefficient and carbon emission coefficient of different energy source.

Energy types Standard coal
coefficient

Carbon emission
coefficient

Energy
types

Standard coal
coefficient

Carbon emission
coefficient

Raw coal 0.7143 0.7559 Diesel oil 1.4571 0.5921

Hard coke 0.9714 0.8550 Fuel oil 1.4286 0.6185

Natural gas 1.2143 0.4483 Kerosene 1.4714 0.5714

Crude oil 1.4286 0.5857 Electricity 0.4040 0.7935

Gasoline 1.4714 0.5538 — — —
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the ith type of land use, and VCi represents the ecosystem service
value coefficient for the ith type of land use.

1.3.3 Geographically weighted regression model
Based on the fact that random distribution of variables in the

classical OLS model does not have independent spatial
characteristics, also required a high degree of mutual
independence between regions. Thus, the classical model is
modified by introducing spatial differences and spatial
correlations. That is, geographical weighted regression (GWR)
introduced the spatial attributes of data, and explores the
heterogeneity of spatial data through the estimation of different
spatial relations of geographic space and regional parameters with
spatial dependency (Chris et al., 1996). In the pursuit of investigating
the spatial heterogeneity of the CEI on the EHI from a global
standpoint, this study employed a GWR model. The formulation
utilized in this analysis can be expressed as follows (Sciences et al.,
2017):

Yi � β0 μi, vi( ) +∑
k

βk μi,vi( )Xik + εi (9)

In this equation, we denote Yi as the dependent variable,
representing the observed values of interest. The explanatory
variable, Xik, signifies the covariates considered in the analysis.
The position function, (μi, vi), captures the spatial coordinates of
each observation i. The constant term of regression, β0, represents
the intercept, while βk denotes the vector of parameters to be
estimated. Lastly, εi represents the random error term accounting
for unobserved factors.

1.3.4 Coupling coordination analysis of carbon
emission and ecosystem health

“Coupling” is a physical concept that means the phenomenon in
which two (or more) systems or forms of motion affect each other
through various interactions. The phenomenon of “coupling” exists
in all fields of society and has universal significance. In economics,
coupling refers to the phenomenon that two or more economic
subsystems influence each other and even cooperate through various
interactions. The concept of coupling degree pertains to the extent of
interaction and interconnectivity within a system or its constituent
elements. Specifically, coupling coordination degree (CCD) serves as
an indicator of the level of interaction and interdependence among
subsystems, underpinned by the underlying coupling degree.
Therefore, the CCD model of CEI and EHI coupling
development is constructed based on the following formulas (He
et al., 2017):

C � U α( ) × U β( )
U α( )+U β( )

2[ ]2
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎫⎪⎪⎪⎬⎪⎪⎪⎭

1
2

(10)

T � aU α( ) + bU β( ) (11)
CCD � �����

C × T
√

(12)
In the given equation, the variable D represents the value of CCD,
where U(α) denotes the value of EHI and U(β) signifies the value of
CEI. The variable C signifies the coupling degree of the
aforementioned subsystems, while T represents the

comprehensive level of coordination between these subsystems.
Lastly, the variables a and b refer to the respective contributions
made by the two subsystems.

The study recognizes the paramount significance of both
economic development and ecological protection. Hence, the CEI
and EHI subsystems were accorded equal importance, with the
values of a and b being set at 0.5 each.

To enhance the evaluation of the coupling development state
between CEI and EHI in SHMR, the classification criteria and types
of CCD were established, drawing upon earlier research works
(Table 2) (Cui et al., 2019).

1.3.5 Geographical detector model (GDM)
As a statistical method used to reveal the driving factors of

spatial differentiation, geographic detector is an important new
method to detect the spatial pattern and causes of geographical
elements, and has been gradually applied to the research in various
fields such as urban development. This study mainly adopted factor
detection and interaction detection to measure the effect intensity of
driving factors on CCD in SHMR. The formula is as follows (Wang
et al., 2020):

q � 1 − ∑L
h�1Nhσ2

h

N2
σ

(13)

In the given equation, the q value, ranging from 0 to 1, serves to
unveil the degree of contribution of independent variable factors to
dependent variable factors, thereby enabling the identification of the
dominant factor of CCD in this study. A higher q value suggests a
greater influence of the independent variable on the dependent
variable. L represents the layer of independent variable. Nh and N
denote the number of unit grids of layer h and the entire region,
respectively. σ2h and σ2 represent the variance of CCD in layer h and
the entire region, respectively.

The level of economic development exerts a substantial impact
on regional land use carbon emissions, necessitating a heightened
focus on ecological preservation during urban land expansion. The
intricate operation mechanism of ecosystems is influenced by a
multitude of natural and socio-economic factors, thereby shaping
ecosystem health. Consequently, this study aims to elucidate the
influencing factors within the coupling coordination system of
carbon emissions and ecosystem health, as illustrated in Table 3.
Natural influencing factors were characterized through the
selection of climate, topographic factors, geology, and resource
endowments. Climatic conditions were specified by indicators
such as annual average temperature, annual average humidity,
and annual average precipitation. Topographic conditions were
represented by elevation and relief degree of the land surface.
Resource endowment was assessed through the selection of
indicators such as net primary productivity (NPP), forest
coverage, and biological abundance index. Human activities and
the level of economic development primarily characterized socio-
economic factors. To be more precise, the level of human activity
was gauged through the human disturbances index, GDP density,
and population density.

The computation methodology for determining the relief degree
of the land surface in this study draws upon established and pertinent
research in the field. The formula is below (Qiao et al., 2018):
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RDLS � Max H( ) −Min H( )[ ] × 1 − P A( )/A[ ]{ }/500 (14)
In the above equation, the relief degree of the land surface (RDLS) is
computed using the following parameters: Max(H) and Min(H)
represent the uppermost and lowermost elevations within the
region, respectively. P(A) denotes the extent of flat land area in
square kilometers (km2), whileA encompasses the overall area of the
research unit, measuring 64 km2. For the purpose of this
investigation, we have classified any land area with a slope equal
to or less than 2° as flat terrain.

The computation methodology for the biodiversity index in this
investigation aligns with established and pertinent scholarly
inquiries. The formula is below (Fitter, 2012):

BI � Abio × 0.11 × A1 + 0.35 × A2 + 0.21 × A3 + 0.28 × A4(
+0.04 × A5 + 0.01 × A6)/Atotal (15)

Abio � 100/MAX � 100/0.35 � 285.71 (16)
Here, the biodiversity index (BI) is determined by the normalized
coefficient (Abio) derived from the areas of cultivated land,
forestland, grassland, water body, build-up land, and unused land
(A1 − A6), all within the confines of the research unit. The total area
of the research unit is denoted as Atotal.

The calculation model of human disturbances index is established
based on a large amount of data of human disturbances and land use,
thereby the quantitative description of human disturbance in a certain
area was realized. To reflect the spatial characteristics of human

TABLE 2 The coupling coordination types and characteristic of CEI and EHI.

CCD range CCD level Subsystem characteristic Coordinated characteristic Type

0<CCD≤ 0.2 Seriously unbalanced development f(α) − f(β)> 0.1 EHI significantly lagged 11

f(β) − f(α)> 0.1 CEI significantly lagged 12

|f(α) − f(β)|≤ 0.1 Synchronously development 13

0.2<CCD≤ 0.4 Slightly unbalanced development f(α) − f(β)> 0.1 EHI significantly lagged 21

f(β) − f(α)> 0.1 CEI significantly lagged 22

|f(α) − f(β)|≤ 0.1 Synchronously development 23

0.4<CCD≤ 0.6 Slightly balanced development f(α) − f(β)> 0.1 EHI significantly lagged 31

f(β) − f(α)> 0.1 CEI significantly lagged 32

|f(α) − f(β)|≤ 0.1 Synchronously development 33

0.6<CCD≤ 0.8 Moderately balanced development f(α) − f(β)> 0.1 EHI significantly lagged 41

f(β) − f(α)> 0.1 CEI significantly lagged 42

|f(α) − f(β)|≤ 0.1 Synchronously development 43

0.8<CCD≤ 1.0 Highly balanced development f(α) − f(β)> 0.1 EHI significantly lagged 51

f(β) − f(α)> 0.1 CEI significantly lagged 52

|f(α) − f(β)|≤ 0.1 Synchronously development 53

TABLE 3 Index system of influencing factors.

Influencing factor Factors Code Indicators

Natural factors Climatic conditions X1 Annual mean temperature

X2 Annual average humidity

X3 Annual mean precipitation

Topographic and geological conditions X4 Elevation

X5 Relief degree of land surface

Resource endowments X6 NPP

X7 Biodiversity index

X8 Forest coverage

Human factors Human activities X9 Human disturbances index

X10 GDP density

X11 Population density
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disturbances, the human disturbances values were divided into 5 levels
by Jenks natural breaks method. The human disturbances index
formula is as follows (Chen et al., 2010):

HD � ∑m
i�1Wi × Si

S
(17)

Here, the human disturbances value (HD) for each grid is
determined by the human disturbances index (Wi) associated
with each land use type (i), as established in prior research. The
area of each land use type (i) is denoted as Si, while the total area of
the grid is represented by S.

2 Results

2.1 Dynamic changes of carbon emission
intensity

The CEI in SHMR exhibited a consistent upward trajectory from
1990 to 2020, as depicted in Figure 2. Throughout the duration of the
study, the CEI demonstrated a remarkable degree of stability, with
minimal drastic fluctuations. From 1990 to 2020, CEI in the northern
region of SHMR showed a gradual upward trend. For each region, the
CEI decreases fromnorth to south. The overall economic strength of the
northern region is increasing at the same time, the CEI is also
increasing. The low value of CEI is mostly distributed in the south,
showing an overall increase. The maximum carbon emission intensity
increases from 3.61 t/hm2 in 1990 to 101.42 t/hm2 in 2020, an increase
of 4.69 times. The number of grids falling in the Ⅰ region decreased year
by year, especially from 2000 to 2005 decreased by 78.3%, and there was
a shift to the Ⅱ region. The grids in the second zone increased first and
then decreased, and the southern region, where the land use type is
mainly cultivated land, has been stable in this zone since 2010. The
growth rate of grid number in the Ⅲ region is the highest, accounting
for 46.36% of the total grid number in 2020, which is mostly consistent

with the distribution range of cultivated land. The grids in the Sections
4, 5 increased year by year and were in clumps, mainly concentrated in
the construction land with active human activities.

2.2 Dynamics of ecosystem health

Figure 3 depicted the spatial-temporal distribution of indicators
that represent the health of ecosystems in SHMR. These indicators
encompass ecosystem vigor (EV), ecosystem organization (EO),
ecosystem resilience (ER), and ecosystem services (ES). Notably,
the regions exhibiting the most pronounced changes in EV were
predominantly situated in the northwestern part of SHMR,
displaying a gradual decline in magnitude from north to south.
In terms of temporal progression, EV demonstrated an upward
trend from 1990 to 2005, followed by a gradual decline from 2005 to
2020. Regarding EO, the regions with notable variations were
primarily concentrated in the northwestern part of SHMR,
although discernible changes were also evident in the southern
region. Over the course of the study period, SHMR as a whole
exhibited an increasing trend in EO from 1990 to 2020. However,
from 2000 to 2020, the southeastern region experienced a declining
trend in EO. In terms of spatial scale, both ER and ES exhibited a
comparable distribution pattern. The values of ER and ES were
notably higher in regions characterized by abundant forest coverage,
whereas regions encompassing vast areas of construction land and
unused land demonstrated lower levels of ER and ES. Considering
the temporal dimension, ER and ES displayed a gradual decline
throughout the SHMR from 1990 to 2020. However, a noteworthy
decrease in ER and ES was observed from 2005 to 2020, particularly
in the northern and northeastern regions of SHMR.

The spatiotemporal distribution of EHI in the SHMR region was
shown in Figure 4. Specifically, in spatial scale, EHI showed a trend
of increasing gradually from north to south. The distribution area of
high EHI value areas showed an increasing trend, mainly distributed

FIGURE 2
The spatial-temporal distribution of carbon emission intensity (CEI) in SHMR, 1990–2020.
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in the southern region with high forest coverage and wide water
distribution. The distribution area of high EHI value area showed a
decreasing trend, mainly distributed in the northern build-up land

and unused land distribution area. In terms of time scale, the overall
EHI of SHMR showed a significant increase trend from 1990 to
2005, but showed a gradually decreasing trend after 2005 to 2020.

FIGURE 3
The ecosystem health index (EHI) at grid scale, 1990–2020. EV is ecosystem vigor, EO is ecosystem organization, ER is ecosystem resilience, and ES
is ecosystem service.
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2.3 Spatial correlation analysis between
carbon emission and ecosystem health

In this study, geographical weighted regression model (GWR)
was selected to analyze the spatial impacts of carbon emissions on
ecosystem health in SHMR (Figure 5), which with the consideration
of spatial spillover effects between the above subsystem. Table 4
listed the parameters in the GWR model, we found that R2 is all
above 0.8, which indicated that GWRmodel has a good fitting effect,
and EHI and CEI both showed obvious clustering phenomenon.

What’s more, in SHMR from 1990 to 2005, the regression
coefficients of CEI and EHI were negative on the whole, and the

negative effect between CEI and EHI was dominant. This revealed that
with the increase of CEI value, there was a large negative impact in
SHMR regional ecosystem. In other words, with the acceleration of
regional urbanization, a higher CEI value has been generated, which has
a more significant interference with EHI value and a more prominent
damage to ecosystem health. It is worth noting that the regression
coefficient began to show a positive value from 2010, indicating that the
spatial spillover effect of CEI on EHI began to show a positive effect.
Moreover, the positive distribution area of the regression coefficient
showed an increasing trend from 2010 to 2020, and it was mainly
distributed in the areas with more distribution of forest land and water
body. Although these regions have higher CEI value, the spatial spillover

FIGURE 4
The ecosystem health index (EHI) in SHMR, 1990–2020.

FIGURE 5
Spatial distribution of regression coefficients for the carbon emission intensity (CEI) and ecosystem health index (EHI), 1990–2020.
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effect of CEI on EHI began to show a positive effect. But at the same
time, forest land and water body can provide higher EHI value, so CEI
and EHI will have a positive relationship.

2.4 Quantification of the coupling
coordination degree between carbon
emission and ecosystem health

2.4.1 Temporal changes of coupling coordination
degree levels

Against the backdrop of rapid globalization, the relentless
expansion of urban land and the accelerated surge in carbon
emissions have exerted immense pressure on the local ecological
milieu. Consequently, for the realization of regional green and
sustainable development, it becomes imperative to attain a
harmonious and symbiotic relationship between carbon emissions
and ecological health while striving for high-caliber economic

progress. To this end, the CCD model is employed to
quantitatively analyze the coupling and coordination levels and
patterns of CEI and EHI across spatial and temporal dimensions
(Figure 6). Specifically, a higher CCD value signifies a more robust
coupling degree between the two subsystems of carbon emission and
ecosystem health, thereby facilitating the emergence of a novel,
organized structure. Conversely, a lower CCD value indicates a less
desirable state of coordination. In this regard, within the context of
advanced carbon emission development, it becomes crucial to
curtail the level of EHI to the utmost extent. Thus, the “EHI
significantly lagged” CCD type represents the optimal state of
coordination. Significantly, as outlined in Table 2, it is imperative
for the CCD value to exceed 0.4 to achieve a somewhat balanced
equilibrium between ecosystem services and carbon emissions.

2.4.2 Spatial distribution of coupling coordination
degree types

Figure 7 showed the CCD values and types from 1990 to 2020 in
SHMR. As can be seen from Figure 7, CCD types in SHMR present
obvious differences in spatial-temporal distribution. From 1990 to
1995, the main types of CCDwere “21” and “22”, that is, the CEI and
EHI of SHMR showed a slightly unbalanced development state.
Specifically, during 1990–1995, CEI lagged behind in most southern
regions of SHMR, while EHI lagged behind in most northern
regions. This is consistent with the spatial-temporal distribution
of CEI and EHI described above, in the northern region of SHMR,
the level of economic development in the northern region is more
advanced, whereas the southern region lags behind in comparison.
Moreover, from 1990 to 1995, there were more “32” type of CCD,
and the distribution area of “22” type showed a decreasing trend,
which indicates that CEI and EHI showed a slightly balanced
development state in the development process of SHMR. In
2000, the distribution of CCD types changed significantly, the
distribution area of “21” and “22” types were greatly reduced,
and a new CCD distribution type “31” appeared, that is, in the

TABLE 4 Estimation parameters for GWR models, 1990–2020.

Year Parameters

Residual
squares

Sigma AICc R2 Adjusted
R2

1990 313.766 0.403 3714.890 0.873 0.823

1995 346.075 0.431 3872.901 0.883 0.865

2000 387.903 0.423 3903.092 0.892 0.872

2005 398.092 0.401 4012.764 0.883 0.863

2010 414.783 0.523 4298.903 0.891 0.871

2015 463.903 0.521 4382.342 0.902 0.892

2020 488.563 0.515 4450.092 0.912 0.899

FIGURE 6
The Spatial-temporal characteristic of coupling coordination degree (CCD), 1990–2020.
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state of CEI and EHI slightly balanced development, EHI showed a
lagging development state. Moreover, from 2000 to 2020, the
distribution area of “31” type showed an obvious trend of
increase, indicating that during this period, SHMR paid more
attention to economic development, and the development of EHI
was significantly affected, showing a significant lag state. We must
ardently foster the advancement of ecological civilization, enhance
the quality and resilience of the ecosystem, and propel the SHMR
regions towards a trajectory of green and sustainable development.

2.5 Driving factors of regional differences in
coupling coordination degree

2.5.1 Single factor detector analysis of coupling
coordination degree

The q value, as gauged by the geographic detector, serves as a
metric for quantifying the impact of each influencing factor.
Notably, a higher q value corresponds to a greater degree of
influence exerted by the factor on the spatial differentiation of
CCD, as elucidated in Table 5. Furthermore, statistical analysis
reveals significant disparities among the factors, affirming the
relative soundness of the factors chosen for this study. Moreover,
discernible discrepancies emerge in terms of the influence various
factors wield on the spatial differentiation of CCD between
1990 and 2020.

As depicted in Table 5, it is evident that the q value associated
with forest coverage consistently ranks highest between 1990 and
2010, underscoring its pivotal role in determining the spatial
distribution of CCD (Table 3). In fact, its explanatory power
with respect to the spatial pattern of CCD escalated to 61.8% by
2020. Notably, the q value linked to the human disturbances index
(X9) underwent substantial changes during the period spanning
from 1990 to 2020, surging from 0.225 to 0.423. This signifies a

bolstering influence of the human disturbances index in elucidating
the spatiotemporal characteristics of CCD, surpassing even the
significance of forest coverage. Additionally, the q values
associated with GDP density (X10) and population density (X11)
exhibited an upward trajectory, with explanatory powers of 55.34%
and 10.05% respectively, by 2020. Conversely, the q values
pertaining to annual average humidity and elevation remained
consistently low, signaling their limited capacity to explicate the
temporal and spatial dynamics of CCD, and thus their marginal role
in the observed changes.

2.5.2 Interaction detector analysis of coupling
coordination degree

The interaction detector allowed for the identification of
interactions between distinct influencing factors, X, and evaluated
whether their combined presence amplifies or diminishes the
explanatory capacity of the dependent variable, Y. It also
determined if the influence of these factors on Y was
independent of each other. The detection results were obtained
through a comparison of the individual q values and the interaction
q values [q (X1∩X2)]. These results can be broadly categorized into
three types: weakening, mutual enhancement, and nonlinear
enhancement (Figure 8).

The Figure 8 vividly depicted the enhanced interaction between
the two distinct influencing factors. This enhancement was
primarily characterized by the augmentation of the two factors,
as well as a nonlinear amplification. Notably, no weakening or
independent relationship was observed. Specifically, the period
spanning 1990–2020 has witnessed a diminishing effect of most
natural factors on CCD, while the influence of socio-economic
factors has steadily intensified. For example, annual mean
precipitation (X3) decreases from 0.341 to 0.280, and NPP (X6)
decreases from 0.419 to 0.367, and the influence on CCD shows a
weakening trend. Human disturbances index (X9) increased from

FIGURE 7
Spatial distribution pattern of the coupling coordination degree (CCD) type, 1990–2020 (Seriously unbalanced development: “11”, “12”, “13”; Slightly
unbalanced development: “21”, “22”, “23”; Slightly balanced development: “31”, “32”, “33”; Moderately balanced development: “41”, “42”, “43”).

Frontiers in Environmental Science frontiersin.org12

Qu et al. 10.3389/fenvs.2023.1289531

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1289531


0.225 to 0.423, and GDP density (X10) increased from 0.188 to
0.421, gradually becoming a high impact factor promoting the
coordinated development of CEI and EHI system coupling. It is
worth mentioning that forest coverage (X8) has maintained a
relatively significant effect from 1990 to 2020, which may be
related to the high forest coverage in SHMR. Further, in 2020,

the absolute value of interaction between NPP (X6) and human
disturbances index X9 reaches 0.653, higher than the single
interaction of X6 and X9; The absolute value of the interaction
between NPP (X6) and GDP density (X10) is 0.531, which is higher
than the single interaction of X6 and X10. The absolute value of the
interaction between annual mean temperature (X1) and population

TABLE 5 q statistic and p values of detection factors, 1990–2020.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

qs-1990 0.243 0.189 0.341 0.078 0.245 0.419 0.389 0.459 0.225 0.188 0.367

pv-1990 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

qs-2000 0.229 0.191 0.224 0.091 0.256 0.432 0.398 0.409 0.349 0.291 0.298

pv-2000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

qs-2010 0.201 0.203 0.309 0.089 0.257 0.388 0.409 0.411 0.493 0.389 0.311

pv-2010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

qs-2020 0.216 0.197 0.281 0.092 0.253 0.367 0.419 0.418 0.423 0.421 0.408

pv-2020 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Note: qs represents the statistical value of q, pv represents the value of p.

FIGURE 8
Interaction detection of factors, 1990–2020.
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density (X11) reached 0.413, which was higher than the single
interaction value of X1 and X11. This indicated that with the
rapid economic development, the influence and limitation of
natural conditions such as precipitation and humidity on CCD in
the SHMR region were gradually weakened.

3 Discussion

3.1 Staged response of ecosystem health to
carbon emission

The precise delineation of the spatial-temporal progression of
ecosystem health, along with a comprehensive comprehension of its
dynamic association with the carbon emission process, lies at the
crux of achieving a harmonious and sustainable nexus between
regional environmental preservation and the enhancement of
ecosystem wellbeing (Ran et al., 2021; Song et al., 2015).
Moreover, in order to assess the extent of the influence of carbon
emission on ecosystem health within the study area, as well as the
potential spatial spillover effects, the spatial-temporal response
characteristics of carbon emission to ecosystem health in the
SHMR region were ascertained through the utilization of the
GWR model (Table 6).

The urban agglomerations are undergoing a rapid and
transformative phase of social and economic development, where
frequent land use changes exert a direct influence on carbon
emission dynamics. Alterations in land use patterns, spatial
arrangements, and management strategies not only impact the
ecosystem, but also disrupt the delicate equilibrium of the carbon
cycle system, thereby affecting the CEI. During the initial stage of
carbon emission, specifically from 1990 to 2005, the CEI did not
exhibit a substantial impact on the EHI. Throughout this period, the
spatial distribution proportions of the “Low-high” and “High-low”
types experienced marginal shifts, increasing from 24.10% to
25.20% and from 7.89% to 8.90%, respectively. This gradual
progression suggests that higher CEI values gradually
demonstrate a more pronounced interference on EHI values.
From 2005 to 2015, the influence of CEI on EHI became notably
significant. The proportion of the “Low-high” spatial distribution
rose from 25.20% to 25.67%, while the proportion of the “High-low”
spatial distribution increased from 8.90% to 10.34%. Concurrently,
swift and efficient carbon emission reduction efforts resulted in an
11.34% decline in the proportion of the “Low-low” spatial
distribution, while the proportion of the “High-high” spatial
distribution witnessed a 15.69% increase. This pattern emerges

due to the rapid urbanization in the SHMR region, wherein
population siphoning leads to a substantial influx of rural
residents into urban areas, causing congestion. Vigorous human
activities act as drivers for accelerated carbon emission, while the
expansion of construction land and heightened energy consumption
result in significant encroachments upon forested and cultivated
lands. Consequently, carbon emissions from construction land
experience a noteworthy surge. Previous studies have already
indicated that continuous population growth plays a pivotal role
in propelling carbon emission dynamics, with the expanding
proportion of construction land holding significance in this
process (Liu et al., 2023). However, in reality, the vast expansion
of urban land fails to align harmoniously with the demands of urban
production and living, and the growth rate of the population
evidently lags behind the expansion of regional urban land. This
contradiction is not exclusive to China alone but is a common
phenomenon in the developmental trajectory of global cities (Zhao
et al., 2022). In 2020, our country proactively pursued the goal of
“Carbon peaking and carbon neutrality,” implementing a series of
measures across various domains of life, production, and ecology.
Consequently, the nation’s economic development has transitioned
towards a stage of high-quality growth, signifying a transitional
phase in carbon emission dynamics. During this period, the
influence of CEI on EHI has diminished within the SHMR
region. The proportion of the “Low-high” spatial distribution has
reached its pinnacle at 26.60%, marking the highest value
throughout the study period, while the proportion of the “High-
low” spatial distribution stands at 9.84%. This finding further
underscores the fact that SHMR’s urbanization process is
transitioning towards a high-quality, green, and sustainable
phase, thereby mitigating the impact of rapid carbon emission
on the ecosystem’s green and sustainable development. In
essence, during the pursuit of high-quality economic
development, greater attention should be directed towards the
expansion of urban construction land and the enhancement of
the development mode. Macro-level land use control should be
strengthened, and a concerted effort should be made to promote the
efficient, collaborative, and sustainable development of carbon
emission and ecosystem services within the SHMR region.

3.2 The influence mechanism of control
variables on coupling coordinated degree

The findings of this study revealed significant regional variations
in the driving forces of CCD within the SHMR. At the regional level,

TABLE 6 Percentages of different types of LISA clusters, 1990–2020.

Type 1990 (%) 1995 (%) 2000 (%) 2005 (%) 2010 (%) 2015 (%) 2020

Low-high 24.01 24.90 25.17 25.20 25.29 25.67 26.60%

High-low 7.89 8.01 8.67 8.90 9.97 10.34 9.84%

High-High 0.30 0.39 0.42 0.51 0.58 0.59 0.62%

Low-low 10.90 9.88 9.25 8.90 8.10 7.89 8 .25%

Not significant 54.89 55.03 56.48 56.89 57.17 54.32 53.70%
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during the year 1990, the pivotal factors influencing the coupling
system between carbon emission and ecosystem health were
identified as forest coverage, net primary productivity (NPP), and
biodiversity index. This can be attributed, in part, to the inherent
natural endowment of the SHMR itself, with forested land covering a
remarkable 70% of the total area. The region also displays
conspicuous spatial heterogeneity in its ecosystems (Ren et al.,
2018). Furthermore, ecological management initiatives in the
SHMR, such as reforestation efforts, land consolidation, and
afforestation programs, have contributed to the expansion of
forested areas, thereby augmenting the proportion of broadleaf
and coniferous forests (Sohil and Sharma, 2020). Furthermore, it
is worth noting that the topography of the SHMR exhibits noticeable
fluctuations, with vegetation coverage surpassing 60% in the region.
This abundant vegetation plays a pivotal role in climate regulation.
Several studies have indicated that climatic factors serve as the
primary determinants of regional ecological sensitivity (Yao et al.,
2012). Through the intricate interplay between precipitation
patterns and land use intensity, these factors influence the
growth and distribution of vegetation within the region.
However, it is crucial to acknowledge that with the rapid
economic development and continuous urbanization in the
SHMR, socio-economic factors, such as GDP and the human
disturbance index, will emerge as the principal drivers
influencing the coupling system of carbon emission and
ecosystem health in the year 2020. Particularly in the central and
eastern regions of the SHMR, population density has increased
significantly, accompanied by dense population distribution and a
robust GDP. Unfortunately, this dense population distribution and
rapid economic progression have given rise to a series of issues,
including environmental pollution and ecosystem degradation,
resulting in a high CEI value and a low EHI value. Consequently,
these regions exhibit a lagging state of development in terms of EHI.

Remarkably, the development of CCD in the SHMR is
significantly influenced by both natural and socioeconomic
factors, and their interaction yields intriguing outcomes.
Previous research has established that alterations in wetland,
grassland, and forest ecosystems are intricately shaped by a
combination of intricate climatic forces and human activities
(Wang et al., 2022). In the year 2020, the distribution area of CCD
types in the SHMR region displayed a moderately balanced
pattern, with the “31” type experiencing a substantial upward
trajectory. This further underscores the prevailing state of lagging
development in terms of EHI. Concurrently, the q-values for
natural factors, such as forest coverage (X8), annual mean
precipitation (X3), and the relief degree of the land surface
(X5), were all 0.45. Similarly, the socioeconomic factors of
human disturbances index (X9) and GDP density (X10)
yielded q-values of −0.34. Notably, the absolute value of the
interaction between forest coverage (X8) and human
disturbances index (X9) was found to be 0.23. Likewise, the
absolute value of the interaction between annual mean
precipitation (X3) and GDP density (X10) reached 0.45 The
continuous expansion of urbanized areas has led to the
encroachment upon vast stretches of farmland and forested
land within the region, resulting in the direct attenuation of
regional biodiversity and the fragmentation of ecosystem
structures. The q-value for the biodiversity index (X7) has

exhibited a decline from 0.12 in 1990 to 0.34 in 2020.
Consequently, it is imperative to prioritize the preservation of
the natural advantages inherent to the SHMR, consistently
upholding the region’s high vegetation coverage. Moreover,
meticulous attention must be directed towards addressing
extreme climatic events. Concurrently, the administrative
authorities must proactively recalibrate the regional economic
industries and guide the judicious distribution of the population
to mitigate the adverse consequences of human interference.

3.3 Implications for ecosystemmanagement
and sustainable development

Determining the regional differences of the coupling
coordination degree of carbon emission and ecosystem service
subsystems in SHMR region and their driving factors will not
only provide important guidance and suggestions for the
development of differentiated ecosystem protection and
ecosystem health improvement in SHMR region. In addition,
it can scientifically reduce carbon emission and improve
ecosystem health under the background of ensuring the
current high-quality economic development. It is usually in
the high CEI value regions, which have low EHI values and
are mostly in a slightly coupling coordinated development state
with lagging ecosystem health.

Owing to the siphon effect, a substantial concentration of high-
caliber workforce and advanced production technology converges
within this particular region, enabling effective management of the
input-output relationship during the process of urban land
expansion. This allows for seizing policy opportunities to drive
the transformation and upgrading of the industrial structure,
optimizing the allocation of land inputs, and ultimately
achieving the green and sustainable development of various
urban sectors. Simultaneously, the pace of urban land
expansion can be judiciously regulated to prevent the
destruction of the ecosystem’s landscape organization resulting
from imprudent reclamation of cultivated land. This ensures a
harmonious development trajectory, striking a balance between
high-quality economic growth and ecological environmental
preservation. Moreover, the implementation of ecological
protection and restoration initiatives, such as land reforestation,
assumes great significance as it improves vegetation coverage and
mitigates ecological and environmental predicaments like soil
erosion, thereby enhancing the overall health of the ecosystem.
These projects are particularly crucial in regions boasting high EHI
values and relatively lower CEI values. Consequently, it is
imperative to curtail the influence of natural factors on the
coupling system of carbon emission and ecosystem services.
This necessitates comprehensive consideration of the natural
endowment conditions within the SHMR region, empowering
the strengthening of protective functions such as meteorological
disaster monitoring and fostering the implementation of ecological
protection and restoration initiatives. Furthermore, urban
development within these regions should exhibit reduced
reliance on construction land investments, thereby significantly
bolstering the efficiency of regional resource integration and
utilization.
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3.4 Future work

The examination of ecosystem contributions and their potential
ramifications on carbon emissions has been the subject of numerous
investigations, employing both empirical measurement and simulation
analyses. Notably, these studies have shed light on the commendable
carbon storage capacity of forest ecosystems, while also identifying
wetlands and marine ecosystems as capable carbon sinks.
Concomitantly, addressing the issue of land use carbon emissions
has also been a focal point of research endeavors, with a particular
emphasis on devising strategies to curtail such emissions and safeguard
the integrity of ecosystems. Prominent measures include the
enhancement of agricultural practices, the adoption of sustainable
urban planning and construction models, and the promotion of
ecological restoration and conservation efforts. These studies serve
as a foundational bedrock for the formulation of policies geared
towards carbon reduction and sustainable development. Thus, the
nature of land use holds considerable sway over ecosystem robustness
and carbon emissions. Subsequent investigations could delve into
unraveling the repercussions of diverse land use types on ecosystem
functions and services, as well as assessing the corresponding levels of
carbon emissions. Moreover, agriculture, as a pivotal terrestrial
endeavor, bears substantial influence on ecosystem welfare and
carbon emissions. Prospective research endeavors could be steered
towards ground-breaking agricultural technological innovations,
aiming to curtail agricultural carbon emissions through the
implementation of scientific farming methods and the optimization
of agricultural production chains. Furthermore, a comprehensive
analysis could be conducted on the intricate carbon cycle processes
within agro-ecosystems, seeking ways to enhance the carbon storage
capacity of farmland by improving soil quality, judicious crop selection,
and rational fertilization practices. Lastly, urbanization, an indisputable
force in land use dynamics, bears profound ramifications for both
ecosystem health and carbon emissions. Future research undertakings
could concentrate on fostering ecological restoration and protection
amidst the urbanization process, while also endeavoring to diminish
carbon emissions in urban planning and construction. This would
concomitantly enhance the stability and perpetuation of urban
ecosystems. Additionally, novel strategies pertaining to urban
greening, urban agriculture, and urban water resources
management can be explored as viable approaches to ameliorate
urban carbon emissions and bolster ecosystem wellbeing.

5 Conclusion

In this study, carbon emission and ecosystem health evaluation
index systems were established respectively, and dynamically
evaluated the carbon emission intensity (CEI) and ecosystem
health level (EHI) in SHMR. Utilizing the Global Geographically
Weighted Regression (GWR) model, this study extended our
understanding of the spatial ramifications of carbon emissions on
ecosystem health within the SHMR region. Furthermore, a
comprehensive coupling system encompassing CEI and the EHI
has been devised, enabling a quantitative assessment of the
development level and nature of this coupling system. This
approach allowed for a more nuanced examination of the
intricate interplay between carbon emissions and ecosystem

health in the SHMR area. Ultimately, the geodetector model was
employed to quantitatively analyze the spatially differentiated
influencing factors impacting the coupling system between
ecosystem health and carbon emissions. The resulting insights
can be summarized as follows:

(1) Within the SHMR region, spanning the period from 1990 to
2020, the EHI has shown a discernible northward spatial
increase, accompanied by marked global spatial
autocorrelation and localized spatial agglomeration.
Concurrently, the CEI has exhibited an escalating level of
spatial differentiation, manifesting a conspicuous spatial
imbalance. The distribution pattern of carbon emissions can
be described as “predominantly eastern and lesser in the western
regions, and more pronounced in the northern areas while
relatively diminished in the southern regions.”

(2) Over the period spanning from 1990 to 2020, the coupling
coordination degree (CCD) between the CEI and the EHI within
the SHMR region has exhibited a gradual, yet promising,
increase. However, upon scrutinizing the spatial distribution
of the coupling coordination type pertaining to carbon emission
and ecosystem health, an unbalanced development still
dominates most of the SHMR, with slightly unbalanced
development being the prevalent type. Nevertheless, the area
manifesting slightly balanced development is observed to be on
the rise. Notably, the CEI and EHI in the northwest and
southwest regions of the SHMR are relatively high, with the
majority exhibiting CEI lag and a coupling coordinated
development type of CEI and EHI synchronous lag.

(3) Our single factor analysis revealed that the human disturbance
index, forest coverage, GDP density, and biodiversity index were
vital factors contributing to the spatial differentiation of the
carbon emission and ecosystem health coupling system in the
SHMR region. The factor interaction test further demonstrated
that natural and socio-economic factors were not mutually
exclusive and, in fact, exhibited a dual-factor and non-linear
enhancement effect on the CCD. Over time, as the social and
economic landscape has evolved, the influence of natural factors
on CCD has weakened, while the influence of social and
economic factors has gradually intensified. In other words,
our findings suggest that in ecologically vulnerable regions
like the SHMR, socio-economic factors play an increasingly
catalytic role in augmenting the impact of natural factors.
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