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Outdoor air pollution, specifically nitrogen dioxide (NO2), poses a global health
risk. Land use regression (LUR) models are widely used to estimate ground-level
NO2 concentrations by describing the satellite land use characteristics of a given
location using buffer distance averages of variables. However, informationmay be
leaked in this approach as averages ignore the variances within the averaged
region. Therefore, in this study, we leverage a convolutional neural network (CNN)
architecture to directly pass data grids of various satellite data for the prediction of
U.S. national ground-level NO2. We designed CNN architectures of various
complexity which inputs both satellite and meteorological reanalysis data,
testing both high and low resolution data grids. Our resulting model accurately
predicted NO2 concentrations at both daily (R2 = 0.892, RMSE = 2.259, MAE =
1.534) and annual (R2 = 0.952, RMSE = 0.988, MAE = 0.690) temporal scales, with
coarse resolution imagery and simple CNN architectures displaying the best and
most efficient performance. Furthermore, the CNN outperforms traditional buffer
distancemodels, including random forest (RF), feedforward neural network (FNN),
and multivariate linear regression (MLR) approaches, resulting in the MLR
performing the poorest at daily (R2 = 0.625, RMSE = 4.281, MAE = 3.102) and
annual (R2 = 0.758, RMSE = 2.218, MAE = 1.652) scales. With the success of the
CNN in this approach, satellite land use variables continue to be useful for the
prediction of NO2. Using this computationally inexpensive model, we encourage
the globalization of advanced LUR models as a low-cost alternative to traditional
NO2 monitoring.
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Introduction

Outdoor air pollution was identified as the largest environmental cause of attributable
deaths, associated with several negative health effects including respiratory illnesses and
cerebrovascular diseases (Lelieveld et al., 2015; GBD, 2016). Specifically, nitrogen dioxide
(NO2), a prevalent pollutant emitted through the burning of fuel, is linked to asthma and
increased cardiac and respiratory mortality (Chiusolo et al., 2011; Greenberg et al., 2016).
With the prevalence of NO2 in urban settings and a substantial portion of the world’s
population living in cities, models which can estimate ground-level NO2 concentrations are
crucial to appropriately assess human exposure and enact policy changes to ultimately
provide a better air environment to inhabit (Novotny et al., 2011; Costa et al., 2014). In the
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United States, environmental disparities of NO2 concentrations
between majority and minority groups are increasingly evident,
indicating a demand for environmental justice (Clark et al., 2014).

Physical models that simulate chemical and physical processes
involved with emission formation have long been used to quantify
ground-level NO2 concentrations, including the Community
Multiscale Air Quality (CMAQ) and the Global Environmental
Multiscale (GEM) models (Byun and Schere, 2006; Kaminski
et al., 2008). However, despite these models’ adaptability and
interpretability of pollutant processes, they are computationally
expensive and require a complete assessment of pollution sources
and processes (Zhang et al., 2012). Statistical models, including
various multivariate models, have emerged as a more cost effective
alternative, albeit with a decrease in performance (Zhang et al., 2012;
Finazzi et al., 2013). One of the most common statistical models is
the land use regression (LUR)model, which aims to fit a multivariate
model based on various land use characteristics to estimate
monitored concentrations (Hoek et al., 2008; Knibbs et al., 2014;
Larkin et al., 2017). LUR models have been developed for both
national and global scales (Larkin et al., 2023), as well as for various
countries including the United States (Novotny et al., 2011),
Australia (Knibbs et al., 2014), Canada (Liu et al., 2020), and
sections of Europe (De Hoogh et al., 2013). These LUR models
rely on information from satellite data in the form of buffer distances
(Hoek et al., 2008).

Machine learning (ML) has shown promise in enhancing
predictive capacity of statistical LUR models (Kang et al., 2018).
Various ML models, including random forests (RF) (Zhan et al.,
2018), artificial neural networks (ANN) (Chan et al., 2021), and
support vector machines (SVM) (Sánchez et al., 2011), have
outperformed linear statistical models by providing necessary
nonlinearity to satellite imagery (Kang et al., 2018). Gharamanloo
et al. (2021) developed a 1D Deep-CNN model which was found to
outperform linear statistical models in estimating NO2

concentrations in Texas. Kang et al. (2021) implemented a
variety of ML approaches, including RF, SVM, and Extreme
Gradient Boost (XGB) models, to infer NO2 concentrations in
East Asia and significantly improved on linear regression
approaches.

However, with these models dominantly using buffer distance
averages to represent satellite variables, information may be leaked
as buffer averages cannot capture the precise spatial information of
the satellite variables. Instead, a method to better capture this spatial
information lies in convolutional neural networks (CNN). CNNs, a
subset of deep learning, are artificial neural networks which can
recognize spatial patterns, commonly used in image recognition
tasks (Gu et al., 2018). In this case, by passing a 2D pixel grid of data
where each pixel directly captures the fine resolution of satellite data,
rather than a 1D set of buffer distance averages, the CNN can learn
the exact spatial patterns present in the data which contribute to a
given NO2 concentration (Park et al., 2020). Furthermore, using a
reliable data provider like the Google Earth Engine (GEE),
geographic information system (GIS) satellite data can be
achieved efficiently for the purpose of providing immediate
estimates without having to process terabytes of data (Mutanga
et al., 2019).

With the incorporation of NO2 satellite data measured by the
Ozone Monitoring Instrument (OMI), which consistently provides

hourly satellite NO2 measurements, performance of many NO2 LUR
models improved (Novotny et al., 2011; Larkin et al., 2017; De
Hoogh et al., 2019; Chan et al., 2021). However, the OMI satellite
also suffers from a low spatial resolution of 13 × 24 km2, limiting its
effective application, especially in intra-urban environments where
NO2 can vary drastically (Ghahremanloo et al., 2021). Instead, the
recently launched TROPOspheric Ozone Monitoring Instrument
(TROPOMI) satellite provides NO2 measurements at a higher
spatial resolution (3.5 × 5 km2) which enables more accurate
modeling (Ialongo et al., 2020; Wu et al., 2021). Many prediction
models also incorporate descriptive meteorological reanalysis
variables for prediction, and these variables were often identified
as important features (Larkin et al., 2017; Zhan et al., 2018;
Ghahremanloo et al., 2021). With ground-level NO2 being
heavily affected by meteorological characteristics and atmospheric
conditions, those characteristics are important for statistical models
to understand atmospheric formation of NO2 (Atkinson, 2000;
Voiculescu et al., 2020).

In this study, we aimed to build a GIS satellite based CNNwhich
directly leverages satellite data, meteorological reanalysis, and
tropospheric NO2 data surrounding a location to develop low-
cost predictions of NO2 concentrations at both daily and annual
scales as an option when traditional NO2monitoring is not available.
Alongside the CNN, we also aimed to build buffer distance based
implementations of feedforward neural network (FNN), RF, and
MLR models to compare the CNN, ultimately to investigate the
mechanisms of a wide variety of statistical models towards NO2

prediction.

Methods

Study area and NO2 monitoring input data

We developed statistical models across the contiguous U.S.
(excluding Alaska and Hawaii), located between latitudes 25.12°

and 49.00° and longitudes −124.73° and −66.95°. The contiguous U.S.
is a suitable region for NO2 analysis, with a network of 500 unique
monitoring sites managed by the U.S. Environmental Protection
Agency (EPA) between 2018–2022. Although monitoring sites are
not evenly distributed, with a large majority clustered in urban
regions and much of the rural area containing fewer monitoring
sites, nearly every state contains NO2 monitors to cover the entire
U.S. region. A map of these monitoring sites is displayed in
Figure 1A. Although the instruments of these NO2 monitors may
potentially be biased, this data has gone through rigorous quality
checks from the EPA and is largely considered to be the standard for
NO2 monitoring (Lamsal et al., 2010; Dickerson et al., 2019).
Therefore, we chose to use the raw data without correcting for
such bias.

We excluded any monitoring data prior to July 2018, as the
TROPOMI data was not yet available prior to that date. Daily
averages were computed from the hourly data, and each daily
average was considered to be valid if at least 75% of the day’s
data was available (as following the EPA’s reliability criterion).

Although the COVID pandemic brought significant decreases in
NO2 levels (Hoang et al., 2021) and certain studies (Larkin et al.,
2023) excluding data after 2019 for that reason, we chose to include
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such data to provide the most up-to-date model for immediate NO2

predictions and to demonstrate the model’s capacity to adapt
temporally to lurking factors.

Modeling variables and databases

The standard modeling variables were chosen from various
commonly used satellite data methods used in past LUR
approaches, such as traffic data, tree cover (TC), elevation (ELEV),
and temperature (TP), with the full list of variables listed in Table 1.
Traffic and railway (RW) data were obtained from the Open Street
Map (OSM) database, a community based, worldwide map service
widely used in many research applications (Vargas-Munoz et al.,
2020). In this study, we used the OSMnx Python module to efficiently
extract OSM information (Boeing et al., 2017).

Almost the entirety of the satellite data and meteorological
reanalysis, including the TROPOMI NO2, were obtained from

the GEE database. The GEE database, a cloud computing
platform which compiles a large set of satellite data into an easily
accessible interface, greatly streamlines the data gathering process as
the data of interest can be directly extracted without having to
process entire datasets of raw data (Gorelick et al., 2017; Mutanga
et al., 2019). GEE provides many built-in functions to obtain data in
the needed format, working to streamline the preprocessing data
collection to focus on the actual model development (Gorelick et al.,
2017). Furthermore, GEE is also incredibly useful as its regularly
updated cloud system allows satellite data of a given day at any
location around the world to be easily extracted allowing immediate
predictions. With GEE, we extracted the TROPOMI NO2 (Veefkind
et al., 2012), population density (PD) (CISESIN, 2018), impervious
surface area (ISA) (Dewitz et al., 2021), ELEV (Jarvis et al., 2008),
water cover (WC) (Pekel et al., 2016), tree cover, non-tree vegetation
(NTV), non-vegetated (NV) (DiMiceli et al., 2015), normalized
difference vegetation index (NDVI) (Didan, 2021), and burned
area (BA) (Giglio et al., 2021).

FIGURE 1
NO2 monitors and gridded variable representation examples. (A) Map of EPA NO2 monitors across the U.S. and their average NO2 concentrations
over the study period. (B) Example gridded representations of the TROPOMI NO2, tier 1 (T1) roads, PD, and NDVI at the 1,000 m resolution. (C) Example
data grid resolutions obtained from the ISA layer, ranging from 500 m to 10,000 m.
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Oil and gas (O&G) wells, which also contribute to NO2 emissions,
were also included in this study (Dix et al., 2022). O&G wells have
generally been excluded from LUR studies, but the increasing
prevalence of wells in the U.S. specifically potentially calls for their
inclusion. Data of O&G wells was obtained from the FracTracker
database, which gathers data of O&G wells from U.S. states (Jalbert
et al., 2017). Lastly, power plants were obtained from the Global Power
Plant Database. A full list of predictor variables leveraged by the model,
their spatial resolutions, their temporal frequencies, and their sources is
listed in Table 1.

Data grid representations

To represent each variable, we took advantage of the gridded format
of the GIS data to directly pass it as a 2D image to the CNN. At a buffer

distance of 10 km, each variable was represented as a pixel gridded
image where each pixel represents the satellite measured value over the
given region the pixel encompasses. 10 km is largely considered to be
the maximum buffer distance for LUR studies, therefore it was
considered to be our bounding box (Hoek et al., 2008; Novotny
et al., 2011). Examples of selected gridded variable representations
are displayed in Figure 1B.

Using the GEE database, data grids were computed based on
each variable for each monitoring site. Three different scale
resolutions were tested: 10,000 m, 4,000 m, 2,000 m, 1,000 m,
and 500 m per pixel. Example plots of each size are displayed in
Figure 1C. For the TROPOMI data, whose resolution is not as
fine as the other variables, the original pixels were expanded to
fit the size of the other variables. These computations were done
using GEE’s scale computation involving image pyramids,
which aggregates the data into various pyramidal scales and

TABLE 1 All predictor variables (imagery and numerical) taken by the model. Temporal frequency indicates the frequency of data collected over the study period.

Variable type Variable Unit Spatial
resolution

Temporal
frequency

Source

GEE satellite
imagery

Tropospheric NO2 column density mol/m2 3.5 × 5 km2 Daily TROPOMI Sentinel-5 Precursor NO2

Population density People/km2 1 × 1 km2 Once Gridded Population of theWorld (GPW), v4

Impervious area % 30 × 30 m2 Once National Land Cover Database (2019)

Elevation m 60 × 60 m2 Once Shuttle Radar Topography Mission

Water cover # detection 30 × 30 m2 Once JRC Global Surface Water Metadata

Tree cover, non-tree vegetation, non
vegetated

% 0.25 × 0.25 km2 Yearly MOD44B v006 Terra Vegetation
Continuous Fields

NDVI NDVI
index

0.25 × 0.25 km2 Monthly MOD13Q1 v061 Terra Vegetation Indices

Burned area Date 0.5 × 0.5 km2 Monthly MCD64A1 v061 MODIS Burned Area

OSM networks Roads N/A Once OpenStreetMap

Railways N/A Once OpenStreetMap

Features lists Power plants N/A Once Global Power Plant Database

Oil and gas wells N/A Once FracTracker database

ERA5 reanalysis Northward and eastward wind m/s 11,132 m2 Daily ERA5-Land Reanalysis

Temperature C 11,132 m2 Daily ERA5-Land Reanalysis

Pressure Pa 11,132 m2 Daily ERA5-Land Reanalysis

Precipitation kg/m2 11,132 m2 Daily ERA5-Land Reanalysis

Net and sensible heat flux J/m2 11,132 m2 Daily ERA5-Land Reanalysis

Net and downward thermal radiation J/m2 11,132 m2 Daily ERA5-Land Reanalysis

Net and downward solar radiation J/m2 11,132 m2 Daily ERA5-Land Reanalysis

Evaporation m 11,132 m2 Daily ERA5-Land Reanalysis

Forecast albedo N/A 11,132 m2 Daily ERA5-Land Reanalysis

Time and location Coordinates degrees Once

Year year Yearly

Julian day of year day Daily

Monitor state N/A Once
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chooses the closest scale to the specified resolution. To ensure
that each bounding box remains equal in size, we linearly
interpolated each bounding box to fit the specified
resolution. Due to much of the satellite data being gridded
through latitude and longitude, bounding boxes were not
entirely square for most resolutions.

Image plots of the road and railway networks were exported and
resized to fit the pixel resolution of the satellite data using OSMnx.
Road networks were separated into five separate tiers
(Supplementary Table S1), with each passed as its own image.
RW networks were given their own layer.

For power plants and O&G wells, which are datasets of features
with coordinates rather than grids, empty data grids were first
generated at a 10 km buffer distance. Then, each pixel was given
a value based on the number of power plants or wells that were
present in it and a zero if not. Oil (OP), gas (GP), coal (CP), and
waste (WP) power plants were each given a layer, along with O&G
wells.

The meteorological reanalysis data from the ERA5 global
reanalysis dataset from GEE and was provided as averages over
the 10 km buffer distance due to its coarse resolution (Munoz
Sabater, 2019; Hersbach et al., 2020). In addition to regularly used
meteorological variables including TP, wind components,
precipitation (PC), evaporation (EV) and surface pressure
(SP), we also included a couple of the ERA5 dataset’s other
surface measurements including sensible/latent heat flux (SHF,
LHF), normal/downward solar (SR, DSR) and thermal radiation
(TR, TSR), and forecast albedo (FA). Wind components
consisted of northward (VW) and eastward (UV), with their
respective minimums and maximums. By providing a detailed
assessment of meteorological variables, the model can better
understand both atmospheric NO2 formation as well as
seasonal variability in NO2 concentrations. Other non-image
variables include the state of the monitor (one hot encoded),
year of measurement, Julian day of the measurement, and lat-
long coordinates of the monitor.

CNN model architecture

In this study, the widely successful CNN was applied to learn
from the spatial patterns of the satellite generated pixel gridded
images. CNNs are a class of neural networks that scan through a
given input image with various filters to extract important features
(LeCun et al., 2015; O’Shea and Nash, 2015). Then, these features are
processed in a feed forward fashion to generate predictions.

In this task where multiple “images” are provided as input, there
are three potential architectures of varying complexity to leverage.
The first architecture consists of stacking each of the images together
to form a multi-channel, 3D tensor, and train using four 2D
convolution layers.

The second architecture treats the images like a video, with each
image variable contained in its own 3D tensor. Each 3D tensor is
then combined into a single 4D tensor, in which 3D convolution
layers are used rather than 2D layers. Figure 2A displays a model of
architectures 1 and 2.

The final, more complex architecture similarly treats each image
as its own 3D tensor. However, instead of stacking the data into a 4D

tensor, two unique convolution layers first process each image
variable before the information is passed into the last three
convolution layers, as Kappeler et al. (2016) introduced in their
video processing CNN (Figure 2B).

Lastly, the numerical features are concatenated to the fully-
connected (FC) layer at the end of the convolutions before going
through two more FC layers to generate the prediction with rectified
linear unit (ReLU) initializers to introduce nonlinearity (Nair and
Hinton, 2010), as well as dropout layers to combat overfitting
(Srivastava et al., 2014). All modeling was conducted using the
PyTorch module in Python and a NVIDIA RTX A4000 GPU
(Paszke et al., 2019).

Buffer distance models

In addition to the CNN, we also developed various buffer
distance models using three buffers of 1 km, 5 km, and 10 km to
directly compare with the CNN. Each variable that was once
represented as an image was computed into those three buffer
distance averages. Using that dataset, we trained a feedforward
neural network (FNN), a random forest (RF) model, as well as a
classic multivariate linear regression (MLR) for both daily and
annual prediction tasks.

The FNN is a network of neuron layers, where the neurons of
each layer are connected to every neuron of the next layer
through a weight coefficient, thus resulting in a 2D matrix of
weights to transform the representations at each layer (Svozil
et al., 1996). Ultimately, we built a three layer FNN using a
hidden layer of 128 neurons with the PyTorch module in Python
(Paszke et al., 2019), as three layer networks show sufficiently
capable prediction ability (Eldan and Shamir, 2016). Between
each layer, we used the ReLU activation function, which
introduces nonlinearity within the network (Nair and Hinton,
2010), as well as dropout layers to combat overfitting (Srivastava
et al., 2014). Lastly, using the backpropagation algorithm given
by stochastic gradient descent (SGD), the weight matrices are
optimized to best predict the output variable, being the NO2

measurement (Bottou, 2012).
Next, we also developed an RF model, which is a set of several

individual decision trees whose results are combined to form the
culminating RF’s prediction (Breiman, 2001). Each decision tree is
built through a network of if-then-else branches that are split using a
scoring criterion, such as Gini for classification and mean squared
error for regression (Myles et al., 2004). We developed our RFmodel
in the Scikit-Learn Python module using the
RandomForestRegressor class with 200 decision trees (Pedregosa
et al., 2011). For each decision tree, after resampling from the
training data, we use log2 times the number of features to build
each split that best minimizes the mean squared error. Then, the
resulting values from each decision tree are averaged to obtain the
RF’s NO2 prediction.

Lastly, we implemented a classic MLR model, which simply
aims to fit the coefficients of a linear model that minimizes the
residual sum of squares between observed and predicted values
(Alexopoulos, 2010). We similarly implemented the MLR using
the LinearRegression class in Scikit-Learn (Pedregosa et al.,
2011).
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Model analysis

To analyze the performance of each CNN,we performed a 10-fold
cross validation (CV). Using the entire dataset of all monitoring sites
and their measurements, we separated the data into ten different
chunks, training themodel on nine chunks and evaluating on the final
chunk in ten separate iterations. Three metrics were used for this
evaluation: the coefficient of determination (R2), root mean squared
error (RMSE), and mean absolute error (MAE).

In addition to the 10-fold CV, a spatial and temporal hold-out
validation was also conducted. The spatial evaluation separates the
list of monitoring sites into ten separate chunks. Then, the model is
trained on the measurements of the monitoring sites of nine chunks
and evaluated on the measurements of the sites of the final chunk in
ten separate iterations. The temporal evaluation holds out each year
of data for evaluation, and trains the model on the other years
between 2018–2022 for each year in the analysis. The spatial
evaluation simulates using the model to predict for unseen
locations, and the temporal evaluation simulates the model
predicting for future/past years. Example scripts used in this
study can be found at the following Github repository: https://
github.com/eltonc01/national-no2-cnn.

Results and discussion

Model input overview

From the 500 monitoring sites across the contiguous US, we
obtained 234,781 daily averages and 1,350 annual averages over the

4 year study period. After 2020, due to the COVID pandemic, there
was a marked decrease in average NO2 measurements, decreasing
from 8.08 ppb pre-2020 to 7.59 ppb 2020 and beyond (p < 0.001).

Between the image resolutions of 500 m, 1,000 m, 2,000 m,
4,000 m, and 10,000 m, we obtained data grids of size 42 × 50,
20 × 24, 10 × 12, 5 × 6, and 2 × 2 respectively using Google Earth
Engine’s scale computation. Example data grids of these resolutions
are shown in Figure 1C.

Model architecture and resolution selection
results

Using the image resolutions, we trained the three model
architectures to both ascertain the effect of image resolution on
CNN performance and identify the most efficient model by
comparing model performance.

Between the three architectures, there was not a significant
difference between each model’s performance. Architectures
1 and 2 comparing 2D and 3D convolution layers respectively
achieved similar performance (Supplementary Figure S1).
Additionally, the more complex architecture 3 did not provide a
boost in performance despite greater computational resources
consumed. We opted for architecture 1 due to its simplicity
throughout the study.

Interestingly, image resolution similarly did not improve model
performance. For the daily model, between the resolutions of 500 m
(daily R2: 0.879; annual R2: 0.951), 1,000 m (daily R2: 0.885; annual
R2: 0.947), 2,000 m (daily R2: 0.889; annual R2: 0.950) and 4,000 m
(daily R2: 0.892; annual R2: 0.952), each model’s R2 indicated similar

FIGURE 2
CNNmodel architectures 1 and 2 (A), which stack layers prior to applying convolutions, and architecture 3 (B), which first apply convolutions to each
layer before stacking and applying further convolutions.
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performance, with higher resolution inputs even showing a slight
decrease in R2 performance, especially in the daily models
(Figure 3A, Supplementary Table S2). Additionally, the 10,000 m
resolution model, which was simply just a 2 × 2 grid, similarly
performed fairly well (daily R2: 0.877; annual R2: 0.937), albeit
slightly worse than the higher resolutions. These results suggest
that the CNN does not require a high resolution to maintain its
accuracy; in fact, it may benefit more from a more generalized and
less nuanced input. Although many deep learning tasks may require
large and complex models to train such as certain image recognition
tasks accomplished using ResNet models (Allen-Zhu and Li, 2019),
we demonstrate that the task of NO2 prediction can be successfully
done with simple, from-scratch CNN models.

The architectures and resolution indicate that the problem does
not need particularly complex machine learning inputs, with low
resolution images and simple CNN architectures achieving the best
and most efficient performance. With these low resolution images
and simpler architectures, models can be trained and developed at a
much faster rate.

Furthermore, it was only when restricting the image resolution to a
very coarse 10,000 m per pixel that the TROPOMI NO2 data had to be

blurred from its input size. Since a decrease in performancewas observed
in the only iteration where the NO2 grid resolution was decreased, it
suggests that the CNN relies largely on the TROPOMI data. However,
when evaluating on a model which did not include the TROPOMI data,
the CNN only experienced a slight drop in performance (daily R2: 0.873;
annual R2: 0.939), albeit the model took notably longer to converge and
more epochs to train (Supplementary Table S3).

When taking the best performing resolution of 4,000 m and the
simplest architecture 1, we obtained a daily 10-fold CV R2 score of
0.892, RMSE of 2.259, and MAE of 1.534 and an annual 10-fold CV
R2 score of 0.952, RMSE of 0.988, and MAE of 0.690. When
comparing the observed vs the predicted NO2 concentrations,
both models achieve a high correlation (Figures 3B, C).

Model and method comparison

We also developed a set of buffer distance-based models to
directly compare the CNN’s 2D representation with the classic
approach of providing various buffer distance averages. Among
those models, we developed FNN, RF, and MLR models using 1 km,

FIGURE 3
CNN satellite data resolution and performance. (A)CNN satellite data resolution vs 10-fold CV R2 score for daily (blue) and annual (yellow) prediction
tasks. (B + C) Observed NO2 vs CNN predicted NO2 concentrations for daily (B) and annual (C).
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5 km, and 10 km buffers. These models represent the simplest buffer
distance based models, using both nonlinear and linear statistical
models, so that it is possible to gauge the effect of model type on air
quality prediction given that each model uses the same predictor
variables.

Out of all the models, the MLR performed poorest (daily R2:
0.625, annual R2: 0.758), indicating that linear approaches are likely
too simple to quantify NO2 concentrations. This result is consistent
with past implementations of linear models, and despite its fastest
computational time, the linear dependencies between the GIS
predictor variables likely cannot capture the complexities
behind NO2 prediction (Ghahremanloo et al., 2021; Kang et al.,
2021).

The FNN makes a significant improvement in performance
compared to the MLR (daily R2: 0.863, annual R2: 0.863). The
FNN, which leveraged a 2D matrix of weights, rather than a 1D
vector of weights in the MLR, and a nonlinear activation function,
provided the necessary nonlinearity to the buffer distance GIS
predictor variables towards greatly improved NO2 predictions
(Maas et al., 2013). Similarly, the RF also shows a significant
improvement from the MLR (daily R2: 0.863, annual R2: 0.828).
RF models, which are made up of a large number of decision trees,
are similarly able to capture nonlinearity within the GIS predictor
variables. Each decision tree makes a network of if-then-else
branches, and with hundreds of these deep decision tree
networks, the RF captures a significant portion of nonlinear
patterns within the data to ultimately increase predictive capacity
(Biau and Scornet, 2016).

Between all models developed in this study, the CNN
performed best in all metrics, providing further improvements

on the FNN and RF approaches (Table 2; Supplementary Figure
S2). The CNN gains much of the advantages provided by the
FNN, with deeper weight matrices and nonlinear activation
functions. However, with the more informative 2D
representation leveraged by the CNN’s approach, the model
can likely better learn specific factors which lead to ground-
level NO2 concentrations at a given site. With the CNN’s
backpropagation boosted filters, the most predictive properties
of the buffer region are automatically identified and purposed
towards prediction, hence the feature extraction of the CNN,
which is the primary mechanism behind CNNs success (Jogin
et al., 2018). Rather than simply forcing the model to predict
using a set of predefined buffer averages, the CNN has freedom to
select which spatial patterns in the GIS variables it deems to be
important and use those towards NO2 prediction.

In regards to computational training time, each model
trained did not require intense computational resources. Due
to the lower resolution imagery, model training was quick even
for the more complex CNN. Although FNN, RF, and MLR
approaches were much faster to train in comparison, the
overall training time required by the CNN was not
particularly intense, maintaining the lower cost of developing
statistical models over computationally heavy physical chemical
transport models.

Compared to national NO2 models in literature, the CNN
achieves highly competitive performance, improving metric-wise
on Ghahremanloo et al.‘s Texas CNN, Di et al.‘s ensemble, and
Novotny et al.‘s MLR, which are based on buffer distances.
Developing effective models for expansive regions, such as the
contiguous U.S. or even the state of Texas, can be difficult with

TABLE 2 CNN performance compared to buffer distance models and models found in literature for both daily and annual temporal scales. Bolded values indicate
the best performing model’s metric in each section.

Comparison type Temporal
scale

Model CV R2

score
Root mean squared error
(RMSE)

Mean absolute
error (MAE)

Buffer distance models Daily CNN 0.892 2.259 1.534

FNN 0.863 2.558 1.775

RF 0.861 2.603 1.747

MLR 0.625 4.281 3.102

Annual CNN 0.952 0.988 0.690

FNN 0.863 1.513 0.993

RF 0.828 1.880 1.392

MLR 0.758 2.218 1.652

NO2 models found in
literature

Daily CNN 0.892 2.259 1.534

Ghahremanloo et al.
Texas CNN

0.828 2.40 1.75

Di et al. ensemble 0.788 2.673

Annual CNN 0.952 0.988 0.690

Qi et al. GSV RF 0.91 1.69 1.13

Di et al. ensemble 0.844 2.12

Novotny et al. MLR 0.77 2.4
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many LUR models optimized for districts or cities. However, the
CNN regardless displays a very high accuracy in predicting NO2.
Furthermore, despite the success of Qi et al.‘s novel GSV image
approach, the CNN regardless maintains increased performance
while using classic land use GIS variables. Although some of this
effect could potentially be attributed to the CNN using the more
detailed TROPOMI data (Qi et al. used the coarser OMI data) and
our model being trained on a smaller timespan, our results still
indicate the strengths of using land use variables in a more
detailed way.

It can be difficult to accurately compare model performances
between models from different studies. However, these results
mirror the results comparing the CNN to our own buffer
distance models, ultimately suggesting that the novel CNN 2D
representation approach has strengths over classic buffer distance
approaches.

Spatial and temporal CVs

In addition to the 10-fold CVs, we also conducted a spatial and
temporal CV to test the CNNs ability to predict for both unseen
locations and unseen years. In the spatial evaluation, model
performance dropped significantly, with a daily R2 CV score of
0.593 and an annual R2 CV score of 0.549 (Supplementary Table S4).
This result is consistent with many other LUR models, indicating
that the issue of a lower spatial evaluation performance has yet to be
solved (Park et al., 2020; Ghahremanloo et al., 2021; Qi et al., 2022).

For the temporal evaluation, it is not only important to consider the
overall accuracy, but also whether the hold-out temporal year is within
the range of years trained or if we are extrapolating for past or future
years. Overall, both daily and annualmodels experienced a slight drop in
performance, with a daily R2 CV score of 0.848 and an annual R2 CV
score of 0.943 (Supplementary Table S5). Regarding the daily model,

FIGURE 4
CNN time series analysis. (A) Histogram of MAE scores individual to each monitoring site. (B + C) Predicted and actual time series over 2022 for low
(B) and high (C) NO2 monitors. (D) Culminating NO2 time series with all monitors over the entire study period.
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when we did not extrapolate temporally (years 2019–2021), the CNN
recorded an average R2 score of 0.854. However, when extrapolating,
performance dropped slightly to R2 score of 0.838 (2018) and 0.839
(2022). Annually, a slightly differing pattern was observed. Extrapolating
for a past year did not decrease performance; however, when
extrapolating for a future year, R2 score dropped to 0.929.

A factor weighing into the poorer performance for both the
spatial and temporal evaluations could also be the smaller timespan.
With more years to train on, the model can likely better ascertain the
effect of changing years regarding the temporal evaluation, and
more samples of the changing landscapes over time provide different
types of spatial factors for the model to learn from a more diverse set
of locations.

Time series analysis

We also evaluated our model in a time series forecasting
scenario, where the model is trained on years 2018–2021 and
attempts to forecast the year 2022. Although our model was not
developed as a forecasting model, with recurrent neural networks
(RNN) better suited to the task (Tsai et al., 2018), it is regardless
useful to identify the model’s predictive capacity in this scenario, and
how well a statistical model could potentially replace a real NO2

monitor.
We first individually evaluated the MAE of each specific

monitoring site when forecasting for 2022, with Figure 4A
displaying a histogram of the MAEs of each site. Although there
are certain sites where the model predicts poorly, the model overall
displays a decent distribution of performance.

Additionally, we also selected two specific monitors to
investigate their time series prediction for 2022. We chose two
monitors to conduct the analysis: one monitor in a low NO2

environment, and another in a high NO2 environment. Both
monitors were from California, with the high NO2 monitor
located at the coordinates (34.068120°, −117.525790°) outside Los
Angeles located near an interstate highway, and the low NO2

monitor located at the coordinates (34.725352°, −120.428717°) in
the rural region between the coastline of Los Angeles and San
Francisco (Supplementary Figure S3).

Figures 4B, C display the predicted and actual time series for
both specific monitors. The prediction model had difficulty in
capturing the variance in the low NO2 environment, only
capturing the general trend. This suggests the model has
difficulty capturing very fine variances in NO2 concentrations.
Compared to the high NO2 environment, the model appears to
capture larger scale variances in NO2 concentrations, with the
predicted time series matching the actual time series closely.

Although the model was also not optimized to predicting time
series, the model regardless displayed fairly good performance for
predicting NO2 time series. Models optimized to predicting time
series are often built using RNNs, which incorporate past NO2

concentrations to infer the concentration of the next time step (Tsai
et al., 2018). Although our model lacked this “past” information and
leveraged the spatial information only, it regardless matched the
actual time series well.

Lastly, we also analyzed the overall time series patterns in
Figure 4D, which displays the actual and predicted overall time

series by averaging the predictions of all monitoring sites of each
day across the entire study period. In the actual time series, the
seasonal variability of NO2 concentrations appears in peaks over
winter seasons and lows over summer seasons. The CNN’s
predicted time series closely matches this seasonal variation,
indicating the model’s ability to understand seasonal variations
in NO2 concentrations. Given Julian day and other
meteorological variables such as temperature, the model gains
an understanding of the distinct seasons. Considering
anthropogenic, biomass burning, and soil emissions as the
primary sources of NO2 seasonal variability (Van Der A et al.,
2008), our model can use the variable indicators of those sources
(ex: ISA, BA, and NDVI respectively) combined with seasonal
understanding to identify contributors to seasonal variation in
NO2. In the U.S., anthropogenic sources contribute most
towards seasonal variability in NO2, which our model
thoroughly assessed through various road, RW, ISA, and PD
variables (Van Der A et al., 2008). Furthermore, given a
thorough meteorological assessment of variables such as solar
radiation, which contribute to seasonal NO2 atmospheric
lifetime, the CNN effectively understands meteorological
parameters contributing to seasonal variability (Van Der A
et al., 2008).

SHAP analysis

Using the SHAPely Additive Explanations (SHAP), many once
black-box deep learning models could be effectively interpreted,
including CNNs (Lundberg et al., 2017). SHAP analyzes each
individual prediction and determines what features factored into
making the prediction by comparing the model predictions with and
without the feature. To determine the importance and effect of each
feature on the CNNs predictions, we ran a SHAP analysis to
determine the individual effects of each variable on model
performance, as well as how the CNN processes each data grid
for prediction.

We first ran a general SHAP analysis by gathering the effects of
the pixels of each variable together into a plot. A larger SHAP value
indicates a greater feature importance for a given prediction. For
each GIS variable grid, we summed up all the SHAP and actual pixel
values in a grid to compare with the numerical variables.
Additionally, due to the removal of the TROPOMI having a
minimal effect on performance, we ran SHAP analysis for both a
TROPOMI CNN model and a TROPOMI-less CNN model. We
chose to only analyze the annual model to allow SHAP to better
generalize to the dataset with a more encompassing set of
background samples in a reasonable span of time, as having a
large number of background samples reduces the variability of
the results (Yuan et al., 2022).

In the general SHAP analysis described in Figure 5A, the
model favored many variables that were previously identified as
important in past LUR models, such as the road variables
(positive correlation) and NDVI (negative correlation).
Similarly, many of the more detailed meteorological variables,
such as thermal radiation, were identified as important features in
the model. Considering the role that atmospheric and
meteorological variables play in NO2 formation, these results
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indicate the CNN began to identify chemical processes of NO2

formation (Atkinson, 2000; Voiculescu et al., 2020).
However, although the TROPOMI NO2 was identified as the

most important feature in the annual analysis, its removal had a
minimal impact on overall model performance for both daily and
annual models. In the SHAP analysis of the TROPOMI-less model,
the model’s feature importance did not change significantly; rather,
it used the same features to compensate for the lack of TROPOMI
information (Supplementary Figure S4). While previous buffer
distance LUR models relied heavily on the TROPOMI
information (Novotny et al., 2011), our model was only slightly
impacted, further indicating the strength of providing a 2D CNN
representation as opposed to the classic buffer distance method.

Interestingly, O&G wells were identified as an important feature
by the SHAP analysis. However, the numbers corresponding to the
SHAP values do not quite indicate that more O&G wells influences
higher NO2. Regardless, O&Gwells should likely be useful to include
in future LUR models due to their importance here.

Lastly, we also conducted a more focused SHAP analysis using
the annual model by selecting specific monitoring sites and
analyzing the spread of SHAP values within the data grids of
certain important variables. For this singular analysis, we chose

the two monitors used in the previous time series analysis: one in a
high NO2 and another in a low NO2 environment, which allow the
factors contributing to NO2 to be more clearly observed. The high
NO2 monitor recorded an average NO2 concentration of 29.89 ppb
and the low monitor 0.35 ppb over the study period. For both
samples, we chose the most recent year of 2021, in which the urban
monitor recorded a concentration of 29.04 ppb and the rural
0.49 ppb. For the urban monitor, the model predicted a
concentration of 29.31 ppb, and for the rural monitor, the model
predicted a concentration of 0.41 ppb.

In Figure 5, we displayed a set of notable variable layers from the
urban (Figure 5B) and rural (Figure 5C) analyses. Within both samples,
themodel’s filters learned to quantify pixels near the center of the plot as
more important due to proximity to the monitor. For example, in the
rural Road Tier 1 (T1) and ISA layers, the absence of roads and
impervious % in the middle of the plot resulted in a decrease in SHAP
values. In the urban analysis, the presence of roads and rails near the
middle of the plot showed larger SHAP values.

Conversely, the model also learned to take the pixels near the
edge of the plot with less consideration. For example, despite the
Road T1 plot for the rural monitor being influenced by a highway
near the top, it contributed little to the overall SHAP analysis.

FIGURE 5
CNN SHAP analysis. (A)General SHAP analysis for annual NO2 predictions. The x-axis lists SHAP values, while the y-axis lists the features. Each point
represents the SHAP values from an individual prediction, with the scale on the right indicating the real value of the feature. (B + C) Singular SHAP analysis
for urban (B) and rural (C)monitoring sites. The right row of these figures is the plot of SHAP values for each pixel in the grid, and the left row is the actual
pixel grid, with white values indicating a higher value and black values indicating a lower value.
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Among both analyses, the NO2 layer continues to contribute a
large amount of SHAP values. Furthermore, these NO2 SHAP values
seemed to appear in spreads of SHAP values rather than individual
peaks. The actual NO2 values may not necessarily be lower/higher,
but if the overall spread of NO2 was generally low/high, the whole
region would contribute to the SHAP value in the same direction.

Limitations and future implications

In this study, we built a novel NO2 LUR model based on satellite
GIS variables in a novel CNN pixel plot representation for both daily
and annual temporal scales. By representing these GIS variables in a
pixel plot, more detailed features can be learned by the model to
make its predictions.

The primary limitation behind the CNN lies in its poor spatial
evaluation performance. However, this limitation is not experienced
by the CNN alone; in fact, this is an issue observed in statistical
models in general, as they are often confined to the specific regions
they are trained on. Compared to advanced physical models, which
develop a set of comprehensive patterns that can account for a broad
set of environments, statistical models face a major limitation.

Such an issue can likely not be solved by model architecture
alone, as the problem likely lies in the inherent lack of monitoring
sites. With more monitoring sites and diverse locations, models like
the CNN can learn better about what types/formations of
surroundings that would lead to a given NO2 concentration. Due
to the lack of this general diversity, an unseen location is interpreted
as completely novel by the model as it has never seen any sample
similar to the location, thereby resulting in poor predictive capacity.
As methods of mobile monitoring (Padilla et al., 2022) and low-cost
sensors (van Zoest et al., 2019) advance and diffuse across the U.S.,
we expect the CNN along with LUR models in general to improve
significantly for the prediction of unseen locations.

Furthermore, with the recent launch of the new TEMPO satellite
(Zoogman et al., 2017), which provides higher resolution NO2

imagery over North America only thereby providing more
frequent measurements, the CNN could improve both in its
general performance and its spatial validations. Satellite NO2

remains a fairly good predictor of ground-level NO2 regardless of
whether a location has been seen or not, therefore higher quality
data would likely benefit the model’s spatial prediction ability
(Goldberg et al., 2021).

In the future, this approach could also potentially be expanded
beyond the contiguous U.S. With the model only requiring coarse
resolution imagery to achieve excellent performance, the entire
world could be quickly mapped using the readily available GIS
satellite data. Although this approach has not been tested outside of
the U.S., it has adapted well to state-to-state variations in NO2 and
can likely show the same performance globally.

Conclusion

In this study, using GIS satellite imagery, meteorological reanalysis,
and TROPOMI tropospheric NO2 data, we developed a CNN which
inputs a 2D buffer representation towards more comprehensive NO2

predictions. Using the same predictor variables, we also developed FNN,

RF, and MLR models based on 1D buffer distance averages. Among
these models, the CNN outperformed buffer distance models and past
NO2 LUR methods. Using the GEE database, the once tedious data
collection process from various data sources was optimized into an
efficient pipeline that allows immediate predictions to be made by the
model. With the CNN, we hope to provide more accurate and precise
NO2 monitoring across the contiguous U.S. As modern deep learning
frameworks continue to develop, we expect to see their rapid
implementation in this field with the success of CNNs in this study.
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