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This research aimed to predict soil’s physical and chemical properties with a state-
of-the-art hybrid model based on deep learning algorithms and optical satellite
images in a region in the north of Iran. As dependent data, 317 soil samples
(0–30 cm) were collected in field surveying and analyzed by the soil and water
research institute for their physical (clay, silt, and sand) and chemical [electrical
conductivity (EC), organic carbon (OC), phosphorus (P), soil reaction (pH), and
potassium (K)] properties. Based on independent data, 23 remote sensing (RS)
parameters (extracted from Landsat 8 optical images), 17 topographical
parameters [extracted from the digital elevation model (DEM)], and four
climatic parameters (derived from the meteorological organization). Spatial
prediction of physical and chemical properties was implemented using a
convolutional neural network (CNN), recurrent neural network (RNN), and
hybrid CNN-RNN models. The evaluation results indicated that the hybrid
CNN-RNN model had higher accuracy in all soil properties, followed by the
RNN and CNN models. In the hybrid CNN-RNN model, pH (0.0206), EC
(0.0958 dS/m), silt (0.0996%), P (0.1078 ppm), K (0.1185 ppm), sand (0.1360%),
OC (0.1361%), and clay (0.1419%) had higher prediction accuracy, as determined
by the root mean-squared error (RMSE) index. The hybrid CNN-RNN model
proved to be the most effective for soil property prediction in this region. This
finding underscores the potential of deep learning techniques in harnessing RS
data for precise soil propertymapping, with implications for landmanagement and
agricultural practices.

KEYWORDS

spatial prediction, optical satellite imagery, deep learning algorithms, soil properties, GIS

OPEN ACCESS

EDITED BY

Sawaid Abbas,
University of the Punjab, Pakistan

REVIEWED BY

Singara Singh Kasana,
Thapar Institute of Engineering and
Technology, India
Khabat Khosravi,
Florida International University,
United States

*CORRESPONDENCE

Abolghasem Sadeghi-Niaraki,
a.sadeghi@sejong.ac.kr

RECEIVED 21 August 2023
ACCEPTED 30 November 2023
PUBLISHED 22 December 2023

CITATION

Hosseini FS, Razavi-Termeh SV,
Sadeghi-Niaraki A, Choi S-M and
Jamshidi M (2023), Spatial prediction of
physical and chemical properties of soil
using optical satellite imagery: a state-of-
the-art hybridization of deep
learning algorithm.
Front. Environ. Sci. 11:1279712.
doi: 10.3389/fenvs.2023.1279712

COPYRIGHT

© 2023 Hosseini, Razavi-Termeh,
Sadeghi-Niaraki, Choi and Jamshidi. This
is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Environmental Science frontiersin.org01

TYPE Original Research
PUBLISHED 22 December 2023
DOI 10.3389/fenvs.2023.1279712

https://www.frontiersin.org/articles/10.3389/fenvs.2023.1279712/full
https://www.frontiersin.org/articles/10.3389/fenvs.2023.1279712/full
https://www.frontiersin.org/articles/10.3389/fenvs.2023.1279712/full
https://www.frontiersin.org/articles/10.3389/fenvs.2023.1279712/full
https://www.frontiersin.org/articles/10.3389/fenvs.2023.1279712/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2023.1279712&domain=pdf&date_stamp=2023-12-22
mailto:a.sadeghi@sejong.ac.kr
mailto:a.sadeghi@sejong.ac.kr
https://doi.org/10.3389/fenvs.2023.1279712
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2023.1279712


1 Introduction

Given the importance of soil in a variety of environmental and
social domains, such as land use planning and management and
ecosystem service provision, gathering soil maps for management
and sustainable development is critical (Mahmoudzadeh et al.,
2022). Soils result from complex interactions between geological
and geomorphological processes that operate at different scales and
locations over an area, resulting in various soil types (Ayoubi et al.,
2018). The properties of soil can be divided into two categories:
physical and chemical. The physical properties of soil include the
size of soil particles (silt, sand, and clay). The chemical category
includes phosphorus (P), potassium (K), organic carbon (OC),
electrical conductivity (EC), cation exchange capacity (CEC),
exchangeable sodium percentage (ECP), and soil reaction (pH)
(Mahmoudabadi et al., 2017; Zhao et al., 2021). Given the
changing surface features of soil over time, it is necessary to
understand the changes in physical and chemical characteristics
of soil, particularly in agricultural lands, for accurate planning and
management (Ayoubi et al., 2018). The challenge in the soil science
community is to provide accurate estimates of soil properties based
on limited point sample information and prior knowledge of soil
and terrain relationships (McBratney et al., 2003; Minai et al., 2021).
The high cost of collecting soil samples, the inaccessibility of some
parts of watersheds, and the high cost of analyzing soil samples
necessitate using indirect methods for estimating soil properties
(Zeraatpisheh et al., 2019). New approaches have been developed to
overcome these limitations, including digital soil mapping (DSM),
improving soil mapping accuracy, resolution, and economic
efficiency (McBratney et al., 2003; Bodaghabadi et al., 2015).
Using geographic information systems (GIS) and environmental
and climatic parameters, DSM reduced laboratory costs and soil
sampling costs. It is critical to estimate and predict the spatial
distribution of soil properties to manage land sustainably
(Fathololoumi et al., 2020). In addition, DSM and the spatial
distribution of soil properties are crucial in soil assessment,
agriculture, and irrigation management. Digital maps of soil
properties should be prepared to quickly assess the effect of soil
factors and human activity on soil fertility potential and soil-based
management capabilities (Mahmoudzadeh et al., 2022). Creating
digital maps of soil chemical properties, such as P, K, OC, pH, and
EC, as well as its physical properties, such as silt, sand, and clay, can
assist in making more informed management decisions.

Computers and information technology have advanced rapidly,
increasing access to tools such as global positioning systems (GPS)
and GIS, as well as high-resolution RS imagery, facilitating the
generation of timely and accurate soil information (McBratney et al.,
2003; Fathololoumi et al., 2020). GIS and RS are among the
techniques that are suitable for collecting and managing spatial
data and spatial modeling (Sahana et al., 2018). GIS can be used to
overcome limitations such as data accessibility and the spatial
discreteness of data when developing a spatial prediction model
(Knoll et al., 2019; Yariyan et al., 2020). During the last few decades,
RS data have been considered secondary sources for improving
DSM, regardless of scale. It is more reliable to utilize RS-based
methods when soil properties are influenced by environmental,
biological, and topographic factors, especially in mountainous
regions (Shafizadeh-Moghadam et al., 2022). Satellite images have

the potential to overcome the limitations of traditional approaches
(such as the absence of regional and country-level soil data) and
improve soil spatial coverage. In addition to their usefulness in
mapping large areas, these techniques can also reduce the need for
costly soil sampling and laboratory analysis (Peng et al., 2015;
Forkuor et al., 2017). Researchers have demonstrated that
laboratory soil data, spectral properties, and variables obtained
from RS images can be used to estimate many soil properties
(Kalambukattu et al., 2018; Khanal et al., 2018; Fathololoumi
et al., 2020; Venter et al., 2021; Nguyen et al., 2022). RS can
provide biophysical properties of vegetation indicators that are
related to the spatial distribution of soil properties (Zhou et al.,
2021). Optical RS provides images in various electromagnetic
spectrums, including visible and near-infrared, shortwave
infrared, and thermal. With optical images that include short
infrared bands, it is possible to determine the spectral indices of
vegetation, soil moisture, and soil conditions (Amani et al., 2018;
Mahdavi et al., 2018).

So far, different statistical and geostatistical models and artificial
intelligence have been used in DSM to investigate soil-environment
relationships. Linear and statistical methods, including linear
regression, simple kriging, ordinary kriging (López-Granados
et al., 2005), kriging with external drift (Wadoux et al., 2018),
empirical Bayesian kriging (John et al., 2021), and cokriging
regression (Heuvelink et al., 2016) have been used for spatial
prediction of soil properties. These methods model the
interrelationships between features, but large data sets necessitate
complicated calculations (Zhang et al., 1997). Further, statistical and
geostatistical methods rely heavily on statistical assumptions
regarding soil properties (Zhou et al., 2023). In the past decade,
machine learning (ML) techniques have been widely used to solve
the problems of statistical methods to predict soil properties based
on soil and environmental variables (Wadoux, 2019). Different ML
methods have been employed to prepare digital soil maps, including
support vector machine (SVM) (Kovačević et al., 2010; Khanal et al.,
2018; Shafizadeh-Moghadam et al., 2022), k-nearest neighbor
(KNN) (Mansuy et al., 2014), random forest (RF) (Pahlavan-Rad
et al., 2016; Dharumarajan et al., 2017; Shafizadeh-Moghadam et al.,
2022), cubist (Zeraatpisheh et al., 2019; Fathololoumi et al., 2020),
regression tree (Zeraatpisheh et al., 2019), and multiple linear
regression (Komolafe et al., 2021). ML can handle complex and
large data; however, using many or a single hidden layer may result
in overfitting, vanishing gradients, and getting stuck in local minima
(Zhang et al., 2019; Barzegar et al., 2021). A unique advantage of
deep learning (DL) is its high prediction accuracy (Son et al., 2022),
and DL is more accurate than simpler machine learning techniques
in predicting spatial distributions (Alygizakis et al., 2022). Hence,
more complex algorithms with greater computing power have been
used to solve complex soil problems to improve prediction accuracy
and reduce uncertainty, such as convolution neural networks (CNN)
and recurrent neural networks (RNN), which are based on DL
algorithms (Taghizadeh-Mehrjardi et al., 2022). In DL, data are
trained through a series of processing layers and presented
differently (LeCun et al., 2015). Research has been conducted
using DL algorithms in the spatial prediction of soil properties,
which can be achieved by using a CNN to predict soil salinity
(Garajeh et al., 2021) or by simultaneously predicting six soil
properties, including OC, CEC, Clay, Sand, pH, and total
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nitrogen (Padarian et al., 2019). RNNs have also been used to
estimate different soil properties (Singh and Kasana, 2022).
Although DL has many advantages, it has several limitations and
problems, such as vanishing gradients in RNNs that prevent the
model from being adequately trained (Al-Dahidi et al., 2018).
Additionally, each DL algorithm is designed to accomplish a
specific task; for instance, CNN extract features from input data,
while RNN recognizes temporal relationships between data (Nasir
et al., 2021). Because of these limitations, it is necessary to integrate
DL algorithms. There has been a hybridization of CNN and RNN in
traffic flow prediction (Wu et al., 2018; Guo et al., 2021), a
hybridization of convolution and long short-term memory
(LSTM) networks for wind speed prediction (Shen et al., 2022), a
hybridization of convolution and bi-directional LSTM networks
(BiLSTM) and ant colony optimization for rivers water level
prediction (Ahmed et al., 2022), a hybridization of 3D-CNN and
BiLSTM for predicting air pollutant concentration (Kim et al., 2021),
and hybridization of CNN and LSTM to extract spatiotemporal
neighborhood features for simulating land use changes (Liu et al.,
2021), for predicting the outlet water temperature (Zhang et al.,

2019; Zhang et al., 2023), and for simulating urban land change
(Zhou et al., 2023). It has been demonstrated in the studies cited
above that hybrid algorithms perform more accurately than single
algorithms. In this study, CNN and RNN algorithms have been
hybridized to predict the spatial distribution of soil properties and
determine their relationship with parameters affecting the soil.

Owing to the need for accurate soil information in Iran, this
study utilized optical satellite images, deep neural networks (CNN
and RNN), and a hybrid CNN-RNN model to predict soil physical
and chemical properties. Therefore, the novelty of this research is 1)
obtaining parameters affecting soil properties from optical satellite
images, 2) simultaneous spatial prediction of soil physical and
chemical properties, and 3) developing a state-of-the-art CNN-
RNN model for soil properties spatial prediction.

2 Research steps

This research consists of five steps to predict the spatial
distribution of soil properties and prepare digital soil maps in the

FIGURE 1
Research flowchart.
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study area. The first step is to create a spatial database that contains
soil samples [analysis of physical (sand, silt, clay) and chemical
properties of soil (EC, OC, P, pH, K), as well as effective parameters
relating to soil properties (RS, topographic, and climatic
parameters]. As a second step, variable importance was
determined using a RF algorithm based on the Gini index. In the
third step, three different DL algorithms were applied to model soil
properties: a CNN, an RNN, and a hybrid CNN-RNN. The fourth
step involved preparing digital soil maps based on the developed
models. Finally, the models were evaluated using mean-squared
error (MSE), root mean-squared error (RMSE), box plots, and
Taylor diagrams. Figure 1 summarizes the steps in the research
process.

3 Materials and methods

3.1 Study area

The study area in Golestan province, one of Iran’s coastal
provinces, occupies approximately 2,123 km2. Figure 2 shows the
location of the study area and the distribution of soil samples. This
area is located between 36° 56′ to 37° 35′ latitude and 54° 58′ to 55°

42′ longitude. The highest and lowest altitudes in this area are 0 and
1722 m above sea level, respectively. According to the National
Meteorological Organization, the 8-year average (2014–2021) of
meteorological records indicates an average annual rainfall of
456 mm in the study area. In addition, the average annual air
temperature of the region is 19°C. As reported by the Soil and
Water Research Institute of Iran, a large portion of the study area is
dedicated to water wheat cultivation on the alluvial and valley plain.
Also, the southern and northeastern sides of the study area are
rugged terrain.

3.2 Soil sampling

The Soil and Water Research Institute collected 317 surface
(0–30 cm) samples. An analysis has been conducted of eight soil
properties, including chemical properties such as OC, EC, K,
phosphorus P, pH, and physical properties such as the
percentage of sand, silt, and clay. A handheld GPS device was
used to record the coordinates at each sampling point, and the
sampling resolution was 1 × 1 km. Five samples were taken from 0 to
30 cm depth, one at the main point and four at a 10 m distance from
the main point, mixed and considered representative of that point.
Each soil property has been analyzed differently. Disturbed soil
samples were used to determine OC by the Walkley-Black oxidation
method, K by the ammonium acetate extraction method (Richards,
1954), P by a Colorimeter (Olsen, 1954), pH and EC using a
conductivity meter, and physical properties by the hydrometer
method. These soil samples were used as dependent data. A
statistical analysis of soil properties is shown in Table 1.

3.3 Environmental parameters

Three environmental categories were utilized, based on previous
studies (Shahriari et al., 2019; Fathololoumi et al., 2020; Taghizadeh-
Mehrjardi et al., 2022), expert insights, and the particular
circumstances of the study area. There are three categories of
effective variables for spatial prediction of soil properties: RS
parameters [Band 1 (B1) to Band 7 (B7) of Landsat 8, brightness
index (BI), coloration index (CI), clay index (CLI), enhanced
vegetation index (EVI), hue index (HI), mid-Infrared (MIR),
modified soil adjusted vegetation index (MSAVI), moisture stress
index (MSI), normalized difference index (NDI), normalized
difference vegetation index (NDVI), ratio vegetation index (RVI),

FIGURE 2
Case study with soil samples.
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TABLE 1 Summary statistics of measured soil properties.

Soil properties EC (dS/m) pH OC (%) P (ppm) K (ppm) Clay (%) Silt (%) Sand (%)

Minimum 0.35 6.7 0.4 1.6 78 8 24 0

Maximum 5.99 8.2 2.8 96 1,086 44 80 58

Mean 1.095 7.721 1.561 13.166 328.495 22.322 64.457 12.867

Standard deviation 0.660 0.468 0.397 11.330 154.409 6.920 9.249 9.115

FIGURE 3
(Continued).
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redness index (RI), saturation index (SI), soil adjusted vegetation
index (SAVI), triangular vegetation index (TVI), vegetation index
(VI)], topographic parameters [aspect, elevation, slope, duration
radiation (DR), general curvature, longitudinal curvature, modified
catchment area (MCA), multi-resolution index of valley bottom
flatness (MRVBF), multi-resolution ridgetop flatness index
(MRRTF), plan curvature, profile curvature, stream power index
(SPI), terrain ruggedness index (TRI), topographic wetness index
(TWI), valley depth (VD), vector terrain ruggedness (VTR), vertical
distance to channel network (VDCN)], and climatic parameters [air

temperature, rainfall, soil temperature, land surface temperature
(LST)]. Data were processed on ArcGIS 10.8, SAGA 8.2.1 software,
and Google Earth Engine (GEE) (earthengine.google.com) platform.
All data were projected to the WGS 84 zone 40 and resampled to a
30 × 30 m spatial resolution.

3.3.1 Remote sensing (RS) parameters
The RS images utilized were collected between January 1 and

30 December 2020. RS parameters (Figure 3) were calculated using
the Google Earth Engine system (code.earthengine.google.com). To

FIGURE 3
(Continued). RS parameters: (A)B1, (B)B2, (C) B3, (D)B4, (E) B5, (F)B6, (G) B7, (H) BI, (I)CI, (J)CLI, (K) EVI, (L)HI, (M)MIR, (N) SAVI, (O)MSAVI, (P)NDVI,
(Q) NDI, (R) MSI, (S) RVI, (T) RVI, (U) SI, (V) TVI, (W) VI.
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ensure data quality, the collection of Landsat 8 images was filtered to
include only those with a cloud cover of less than 5%. Subsequently,
the mean function was applied to each band of the Landsat 8 image
collection, allowing for the calculation of average pixel values across
the images. Atmospheric and radiometric correction of Landsat
8 imagery was conducted using the FLAASH (Fast line-of-sight
atmospheric analysis of hypercubes) algorithm. There are 23 RS
parameters listed in Table 2 with references.

3.3.2 Topographic parameters
The digital elevation model (DEM) of the study area, which was

derived from shuttle radar topography mission (SRTM) images in the
GEE platform, was used to generate topographical parameters (with a
30 × 30 m spatial resolution). These parameters were processed using
ArcGIS 10.8 and SAGA 8.2.1 software. Table 3 shows the topographical
parameters. In Figure 4, 17 topographic parameters are shown.

3.3.3 Climatic parameters
In this study, climatic data (Table 4) were calculated from the annual

average (2014–2020) of 10 stations in the Golestan province (Figure 5).
Iran Meteorological Organization provided these data. ArcGIS

10.8 software was used to prepare raster maps of climatic parameters
using local polynomial, ordinary kriging, and global polynomial
interpolation methods. The interpolation method with the least error
was used. RMSE and RMSE% (Eq. 1 and Eq. 2) were computed to assess
the interpolation methods’ errors. In general, the lower the RMSE, the
higher the interpolation accuracy. Acceptable value ranges for the RMSE
% are less than 40% (Shogrkhodaei et al., 2021).

RMSE �
�����������
1
n
∑n
i�1

yi − ŷi( )2√
(1)

%RMSE � RMSE /μ (2)
Where yi is the observed value, ŷi is the predicted value, μ is

the mean, and n is the number of observations. The RMSE% of all
interpolation methods is less than 40%, as shown in Table 5.
Therefore, the method with the lowest RMSE is selected as the
preferred method. Air temperature, rainfall, soil temperature,
and LST were mapped using the local polynomial, local
polynomial, kriging ordinary, and global polynomial
interpolation methods, respectively. In Figure 6, climatic
parameters are shown.

TABLE 2 Remote sensing parameters.

Covariate name Definition References

Coastal aerosol (B1) 0.43–0.45 µm Sayão et al. (2018), Mahmoudzadeh et al. (2022)

Blue (B2) 0.45–0.51 µm

Green (B3) 0.53–0.59 µm

Red (B4) 0.64–0.67 µm

Near-infrared (B5) 0.85–0.88 µm

Short-wave infrared-1(B6) 1.57–1.65 µm

Short-wave infrared-2 (B7) 2.11–2.29 µm

Bleftness index (BI) (B32 + B42)0.5 Khanal et al. (2018), Yang et al. (2020a)

Clay index (CLI) B6/B7 Taghizadeh-Mehrjardi et al. (2022)

Coloration index (CI) (B4 − B3)/(B4 + B3) Forkuor et al. (2017), Khanal et al. (2018)

Enhanced vegetation index (EVI) 2.5 * ((B5 − B4)/B5 + (6 * B4) − (7.5 * B2) + 1 ) Dharumarajan et al. (2017)

Hue index (HI) (2 * B4 − B3 − B2)/(B3 − B2) Forkuor et al. (2017)

MID-Infrared (MIR) (B6 − B7)/(B6 + B7) Sahabiev et al. (2021)

Modified soil adjusted vegetation index (MSAVI) (2 * B5 + 1−((2 * B5 + 1)2− 8 *(B5 − B4))0.5)/2 Mehrabi-Gohari et al. (2019)

Moisture stress index (MSI) B6/B5 Mahmoudzadeh et al. (2022)

Normalized difference index (NDI) (B5 − B6)/(B5 + B6) Yang et al. (2020a), Mahmoudzadeh et al. (2022)

Normalized difference vegetation index (NDVI) (B5 − B4)/(B5 + B4) Shafizadeh-Moghadam et al. (2022)

Ratio vegetation index (RVI) B5/B4 Zeraatpisheh et al. (2019)

Redness index (RI) (B42)/(B2 * (B33)) Forkuor et al. (2017)

Saturation index (SI) (B4 − B2)/(B4 + B2) Sahabiev et al. (2021)

Soil adjusted vegetation index (SAVI) ((B5 − B4)/(B5 + B4 + 0.5)) *1.5 Zeraatpisheh et al. (2019)

Triangular vegetation index (TVI) 0.5 *(120 *(B5 − B3) − 200 *(B4 − B3))

Vegetation index (VI) (B7 − B6)/(B7 + B6) Mahmoudzadeh et al. (2022)
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3.4 Training and testing dataset

The physical and chemical properties of the soil were considered
dependent data, while environmental parameters were considered
independent data. The dataset was divided into two subsamples,
with 70% and 30% for training and testing, respectively. Table 6
contains the criteria that were considered effective parameters for
each soil property based on the circumstances of the study area, the
opinions of experts, and a review of previous studies (Kalambukattu
et al., 2018; Fathololoumi et al., 2020; Sahabiev et al., 2021;
Mahmoudzadeh et al., 2022).

3.5 Prediction models

3.5.1 Convolutional neural network (CNN)
A CNN is a method of supervised DL that extracts and classifies

features from high-dimensional data (Ma et al., 2021). A CNN is a
multilayer perceptron that consists of one or more convolutional,
max pooling, and fully connected layers. The input layer is an m × n
matrix where m represents the number of soil samples, and n is the
number of effective parameters for each soil property. Every element
has a feature value. In the case where Vi is the ith row in the input
matrix, and the convolutional layer contains k filters, where the jth
filter weights ofWj, the output Cj is calculated as follows (Eq. 3 and
Eq. 4):

Cj � ∑m
i

f Wj p Vi( ), j � 1, 2, . . . , k (3)

f � max 0, x( ) (4)

Where * denotes the convolutional operator (Fang et al., 2021)
and f is the rectified linear activation function (ReLU). The ReLU
function is used here since it provides high performance in CNNs,
compared to Sigmoid and Softmax (Scardapane et al., 2019; Azizi
et al., 2020). Backpropagation algorithms optimize the parameters of
each convolutional unit in each convolutional layer (Wang et al.,
2019). Afterward, the obtained features are reorganized by fully
connected layers (Fang et al., 2021). Finally, regression results are
obtained from the output layer. Overfitting occurred after the CNN
model was fitted to the data. Overfitting was solved by regularization
in the two convolutional layers and dropout after the fully connected
layer (Ng et al., 2020). An overview of the CNN algorithm is shown
in Figure 7.

3.5.2 Recurrent neural network (RNN)
RNNs are generally used for supervised learning, although

they can also analyze sequential data (Ma et al., 2021). A deep
RNN consists of several layers of RNNs stacked on top of one
another. An RNN is a parameter updating function that outputs a
new state (ht) based on the previous state (ht−1) and input data
(xt) (Merrill et al., 2020). As a result, the vector generated in the
current state is influenced both by the current input data and by
the previous input fed to the RNN (the vector generated during
the last step). RNNs can create a sequence of states by defining the
initial state as h0� 0 (Dhruv and Naskar, 2020; Merrill et al.,
2020). Assuming the hyperbolic tangent as an activation
function, the updated state of hidden layers is computed
according to Eq. 5;

ht � tanh whhht−1 + wxhxt( ) (5)

TABLE 3 Topographic parameters.

Covariate name References

Aspect Fathololoumi et al. (2020), Mahmoudzadeh et al. (2022)

Elevation Fathololoumi et al. (2020), Mahmoudzadeh et al. (2022)

Slope Dharumarajan et al. (2017), Mahmoudzadeh et al. (2022)

Duration radiation Mosleh et al. (2016)

General curvature Mosleh et al. (2016)

Longitudinal curvature Mosleh et al. (2016)

Modified catchment area (MCA) Mahmoudzadeh et al. (2022)

Multi-resolution index of valley bottom flatness (MRVBF) Naimi et al. (2021)

Multi-resolution ridgetop flatness index (MRRTF) Naimi et al. (2021)

Plan curvature Dharumarajan et al. (2017), Fathololoumi et al. (2020)

Profile curvature Dharumarajan et al. (2017)

Stream power index (SPI) Mosleh et al. (2016)

Terrain Ruggedness Index (TRI) Khanal et al. (2018)

Topographic wetness index (TWI) Afshar et al. (2016), Piedallu et al. (2022)

Valley depth (VD) Mahmoudzadeh et al. (2022)

Vector terrain ruggedness (VTR) Mahmoudzadeh et al. (2022)

Vertical distance to channel network (VDCN) Mahmoudzadeh et al. (2022)
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Where whh and wxh are the weight matrix of the outputs the
previous step and of the inputs of the current step, respectively.
Following the calculation of the outcomes of the hidden layers, the
output state yt is calculated by Eq. 6:

yt � whyht (6)
Where why represents the weight matrix of the state between the

hidden layer and the output layer. The RNN architecture is shown in
Figure 8.

3.5.3 Novel hybrid algorithm (CNN-RNN)
In this study, CNN and RNN algorithms were hybridized to

overcome the disadvantages associated with each algorithm. CNNs
have several limitations, including losing valuable information in the
pooling layer and ignoring the correlation between the part and the
whole of input data. In addition, RNNs have the problem of
exploding and vanishing gradients (Shen et al., 2022). This
research proposed a state-of-the-art hybridization of CNNs and
RNNs owing to the limitations mentioned. DL hybrid CNN-RNN
model illustrates the ability of CNNs to extract features and RNNs to
learn temporal dependencies (Barzegar et al., 2021; Nasir et al.,

2021). The architecture of the CNN-RNN model is shown in
Figure 9. In Figure 9, raw data is normalized and pre-processed
before being fed into the convolution layer, where the model extracts
spatial features. The output of the convolution layer is passed to the
RNN layer to learn temporal dependencies. To organize the features
obtained from the RNN layer, this layer transmits the predicted
values to the fully connected layer. Lastly, the fully connected layer
with one neuron provides the predicted value of the soil property.

3.5.4 Variable importance using random forest (RF)
An RF algorithm is used to determine the importance of

environmental parameters for each soil property based on the
Gini index. RF is a tree algorithm for classification and
regression problems that can considerably reduce computation
time (Nam and Wang, 2020; Farhangi et al., 2022). The Gini
index is a number describing the quality of the split of a node on
a variable. The Gini index is calculated for the variable Xm with
probability Pi(i � 1, 2, ..n) at node k by Eq. 7 (Farahani et al., 2022):

gXm
� 1 − ∑n

i�1
Pi
k2 (7)

FIGURE 4
(Continued).
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After separating into two sub-nodes and selecting optimal
features, the Gini index at the parent node decreases to its
maximum value. Therefore, it is possible to determine the
average reduction in the Gini index for each variable Xj (jϵM).
Variable importance corresponds to the sum of the amount of forest
tree reduction, as shown in Eq. 8 (Guo et al., 2022).

VI Xj( ) � ∑N
n�1

∑K
k�1

gXm
k( ) −PLgXm

KL( ) − PRgXm
KR( )[ ] (8)

FIGURE 4
(Continued). Topographic parameters: (A) aspect, (B) elevation, (C) slope, (D) general curvature, (E) long curvature, (F) plan curvature, (G) profile
curvature, (H) MRRTF, (I) MRVBF, (J) TRI, (K) VD, (L) VTR, (M) DR, (N) MCA, (O) SPI, (P) TWI, (Q) VDCN.

TABLE 4 Climatic parameters.

Covariate name References

Air temperature Wang et al. (2019), Mahmoudzadeh et al. (2022)

Rainfall

Soil temperature Mahmoudzadeh et al. (2022)

Land surface temperature (LST) Sayão et al. (2018), Fathololoumi et al. (2020)

FIGURE 5
Meteorological stations in study area.
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Where PL and PR refer to the proportion of samples that are
divided into the left and right sides at node k, respectively. K is the
number of nodes in a decision tree. Using Eq. 9, variable
importance can be normalized to the interval (0, 1) (Guo et al.,
2022).

VI XJ( ) � I XJ( )/∑M

m�1Xm (9)

3.6 Model performance

Two evaluation metrics were used to assess the efficiency of the
models, namely, RMSE andMSE, as shown in Eqs 1, 10, respectively.
MSE and RMSE evaluate a model’s ability to predict data. The lower
values of MSE and RMSE indicate higher modeling accuracy
(Razavi-Termeh et al., 2021).

MSE � 1
n
∑n
i�1

yi − ŷi( )2 (10)

In Eq. 10, yi is the measured value, ŷi is the predicted value, �y is
the mean of the actual values, and n is the number of observations
(Razavi-Termeh et al., 2022). The Taylor diagram demonstrates the

TABLE 5 Interpolation errors of climate parameters.

Covariate Interpolation
method

Mean RMSE RMSE
%

Air temperature Kriging ordinary 18.643 0.889 4.770

Local polynomial 18.643 0.858 4.601

Global polynomial 18.643 0.986 5.288

Rainfall Kriging ordinary 38.397 11.003 28.655

Local polynomial 38.397 7.826 20.383

Global polynomial 38.397 8.188 21.324

Soil temperature Kriging ordinary 20.214 1.206 5.965

Local polynomial 20.214 1.407 6.960

Global polynomial 20.214 1.393 6.893

LST Kriging ordinary 11.011 1.367 12.416

Local polynomial 11.011 1.299 11.778

Global polynomial 11.011 1.281 11.644

Bold values represent the lowest RMSE values among three methods (Kriging ordinary,

Local polynomial, and Global polynomial) for each climate parameter.

FIGURE 6
Climatic parameters: (A) LST, (B) rainfall, (C) soil temperature, and (D) temperature.
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TABLE 6 Effective parameters for each soil property.

Soil properties Variables for modeling Number of
variables

EC NDVI, Elevation, Aspect, B4, B2, B5, MRRTF, Rainfall, Temp, Plan curvature, Gen curvature, VTR, VI, Prof curvature,
MSI, TWI

16

OC NDVI, Elevation, B7, B5, B1, B2, B3, B4, Rainfall, SI, BI, CLI, LST, Temp, EVI, DR, Soil-Temp, SAVI, TWI, MRVBF, SPI 21

K NDVI, Elevation, B5, B1, B2, B3, MRRTF, Slope, MSAVI, RVI, EVI, SAVI, VDCN, RI, Rainfall, TRI, BI, SI, CI, MIR,
NDI, MSI

22

P SAVI, NDVI, MRRTF, VDCN, MCA, B7, TVI, HI, BI, B1, B2, B3, B4, B6, MSI, CI, SI, MIR, RI 19

pH NDVI, B2, B3, B4, Slope, Aspect, EVI, Soil-Temp, Plan curvature, SPI, VDCN, TRI, Long curvature, VD, MSI, MRRTF,
MRVBF

17

Clay NDVI, Elevation, B7, B5, B1, B2, B3, B4, MRRTF, MRVBF, Rainfall, SI, CI, LST, Temp, Aspect, RI, TWI 18

Silt NDVI, Elevation, B7, B5, B3, B4, MRRTF, MRVBF, SI, BI, CLI, CI, Slope, EVI, DR, Aspect, RI, TWI 18

Sand NDVI, Elevation, B7, B5, B1, B2, B3, B4, Rainfall, SI, BI, CLI, MRRTF, MRVBF, CI, Slope, LST, DR 18

FIGURE 7
Architecture of the CNN algorithm.

FIGURE 8
Architecture of the RNN algorithm.
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relationship between evaluation metrics, which is used to compare
the performance of models in spatial prediction of soil properties
(Taylor, 2001; Wadoux et al., 2022). Taylor diagrams illustrate the
correlation and standard deviation error between predicted and
observed values. Moreover, a box plot was used to compare the
dispersion, mean, maximum, and minimum of predicted and actual
values.

4 Results

4.1 Correlation analysis

The research employed the Pearson correlation coefficient to
elucidate the intricate relationships between soil properties and
environmental parameters, as depicted in Figure 10. These
analyses unveiled a diverse landscape of associations, with
varying strengths and directions. For instance, concerning EC, a
notable positive relationship with MMRTF (0.12) was discerned,
while EC exhibited notably negative associations with elevation
(−0.26) and temperature (−0.26). These findings underscore the
intricate interplay between EC and these environmental parameters.
For PH, relatively mild negative associations with NDVI (−0.091)
and modest positive connections with B2 (0.096) were observed. OC
exhibited substantial positive relationship with DR (0.24), coupled
with relatively robust negative associations with temperature (−0.26)
and LST (−0.28). P displayed relatively solid positive correlations
with VDCN (0.12) and negative relationships with B7 (−0.099). For
K, there were strong negative associations with rainfall (−0.33) and
elevation (−0.33) and a relatively robust positive connection with B1
(0.11). In the context of Silt, a relatively strong positive relationship

with CI (0.27) was evident, while relatively strong negative
relationships were observed with NDVI (−0.25) and CLI (−0.24).
Sand showed a relatively robust positive association with DR (0.11)
and a negative relationship with LST (−0.19). Lastly, Clay exhibited a
relatively strong positive connection with MRVBF (0.18) and a
relatively robust negative relationship with B7 (−0.26).

4.2 Variable importance

After identifying the parameters that affect the chemical and
physical properties of the soil, the RF algorithm was used to assess
variable importance. The relative importance of each variable is
shown in Figure 11 for the various soil properties. The results show
that MRRTF (0.14), air temperature (0.12), and rainfall (0.11) were
the most influential parameters for EC prediction (Figure 11A). As
shown in Figure 11B, the most significant parameters for the
prediction of OC were air temperature (0.22), LST (0.13), and
rainfall (0.08). The most effective parameters for K prediction
were elevation (0.19), rainfall (0.18), and MIR (0.08), respectively
(Figure 11C). According to Figure 11D, CI (0.23), VDCN (0.14), and
MCA (0.06) were the most influential parameters for P prediction.

NDVI (0.23), Slope (0.15), and VD (0.11) had the most
significant impact on soil pH (Figure 11E). TWI (0.1), MRVBF
(0.0925), and MRRTF (0.09) were the most effective parameters for
clay content (Figure 11F). CLI (0.15), NDVI (0.08), and TWI (0.08)
were the most influential parameters for silt prediction (Figure 11G).
The most influential parameters for predicting sand content were
CLI (0.14), LST (0.12), and B5 (0.09) (Figure 11H).

In general, based on the results obtained among the climatic
parameters of rainfall, air temperature, and LST, among the RS

FIGURE 9
Architecture of the novel hybrid algorithm.
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parameters of NDVI, CI, and MIR, and among the topographic
parameters of elevation, MRRTF, slope, VDCN, MCA, and VD had
the highest effect on the chemical properties of the soil. Physical

properties were also affected by climatic factors such as rainfall, and
LST, RS parameters such as NDVI, B5, CLI, and B7, and topographic
parameters such as TWI, MRVBF, and MRRTF.

FIGURE 10
The correlation coefficients between environmental parameters and soil properties.
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4.3 Model development

Using DL algorithms, spatial modeling and prediction of soil
properties were performed on a computer with an Intel Cori7 CPU
@2.80 GHz and 16 GB of RAM. Each model is developed in the
Google Colab environment (https://colab.research.google.com)
using the Python programming language and DL libraries such
as Keras and TensorFlow. Furthermore, the Numpy, CSV, Scikit-
Learn, and Matplotlib libraries were used to analyze data, evaluate
models, and plot results. Before modeling, data must be

preprocessed and normalized. Parameter tuning was performed
using grid search. 5-fold cross-validation has been used to
prevent over- or under-fitting of the model, estimate its
performance in new data and remove any bias in the data
(Tavakkoli Piralilou et al., 2022). Despite the advantages of DL
models, some practical limitations exist, such as the difficulty of
determining optimal hyperparameters for specific problems and
data sets. Model performance is directly impacted by choice of
optimal parameters (Drumond et al., 2019). Therefore, GridSearch
is used to determine the number of filters in each convolution layer,
its kernel size, the number of nodes in the fully connected layers
(except for the output layer with one node), the number of nodes in
the SimpleRNN layer, the activation functions, and the optimizer
functions (Table 7).

The percentages of training and testing data for soil samples are
70% and 30%, respectively. Input matrices for each model consisting
of m rows and n columns, where m indicates the number of soil
samples and n indicates the number of effective parameters for each
soil property. As shown in Table 6, the parameters affecting OC, EC,
K, P, pH, Silt, Sand, and Clay was 21, 16, 22, 19, 17, 18, 18, and 18,
respectively. CNN, RNN, and CNN-RNN models were used for
modeling.

MSE (Eq. 10) is employed as the loss function in the developed
models. It is widely used as a loss function estimating the parameters
of nonlinear models such as supervised neural networks (Sangari
and Sethares, 2015). Loss function plots are shown in Figure 12. It is
clear from comparing the plots of all three models that the hybrid
model is more accurate in all the physical and chemical properties of
soil than the other models.

4.4 Comparison of prediction models

Using train and test data, CNN, RNN, and CNN-RNN models
were evaluated using MSE and RMSE. Table 8 demonstrates the
outcomes of various metrics in the training and testing phases.
CNN model calculated MSE (0.020264%2, 0.020984%2) and RMSE
(0.142351%, 0.144859%) in the training and testing phases of OC
prediction, respectively. Furthermore, RNN produced MSE
(0.018823%2, 0.02395%2) and RMSE (0.137196%, 0.154757%)
for OC, whereas CNN-RNN obtained MSE (0.018533%2,
0.020718%2) and RMSE (0.136137%, 0.143939%) in the training
and testing phases, respectively. CNN model calculated MSE
(0.010068 dS2/m2, 0.011895 dS2/m2) and RMSE (0.10034 dS/m,
0.109062 dS/m) for EC during the training and testing phases,
respectively. Moreover, MSE (0.009476 dS2/m2, 0.013556 dS2/m2)
and RMSE (0.097346 dS/m, 0.11643 dS/m) were generated by the
RNN model for EC, while the hybrid CNN-RNN model produced
MSE (0.009187 dS2/m2, 0.011353 dS2/m2) and RMSE
(0.095848 dS/m, 0.106551 dS/m) in the training and testing
phases, respectively. MSE (0.015725 ppm2, 0.02192 ppm2) and
RMSE (0.1254 ppm, 0.148054 ppm) were computed by the CNN
model for K during the training and testing phases, respectively. In
addition, RNN calculated MSE (0.015264 ppm2, 0.020387 ppm2)
and RMSE (0.123549 ppm, 0.142782 ppm) for K, whereas CNN-
RNN obtained MSE (0.014051 ppm2, 0.019809 ppm2) and RMSE
(0.118535 ppm, 0.140743 ppm) in the training and testing phases,
respectively.

FIGURE 11
Importance of environmental parameters for soil properties: (A)
EC, (B) OC, (C) K, and (D) P, (E) pH, (F) Clay, (G) Silt, and (H) Sand.

Frontiers in Environmental Science frontiersin.org15

Hosseini et al. 10.3389/fenvs.2023.1279712

https://colab.research.google.com
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1279712


As a result of the CNN model, MSE (0.012009 ppm2,
0.020633 ppm2) and RMSE (0.109587 ppm, 0.143643 ppm) are
calculated during the training and testing phases of P
prediction, respectively. Furthermore, RNN produced MSE
(0.018823 ppm2, 0.02395 ppm2) and RMSE (0.137196 ppm,
0.154757 ppm) for P, while CNN-RNN generated MSE
(0.018533 ppm2, 0.020718 ppm2) and RMSE (0.136137 ppm,
0.143939 ppm) in the training and testing phases, respectively.
CNN model calculated MSE (0.000646, 0.010287) and RMSE
(0.025409, 0.101426) for soil pH during the training and testing
phases, respectively. Moreover, MSE (0.000532, 0.010102) and
RMSE (0.023065, 0.100508) were generated by the RNN model
for soil pH, while the hybrid CNN-RNN model produced MSE (0.
000423, 0. 009994) and RMSE (0. 020568, 0. 099971) in the
training and testing phases, respectively. MSE (0.020786%2,
0.022582%2) and RMSE (0.144174%, 0.150274%) were
computed by the CNN model for clay during the training and
testing phases, respectively. In addition, RNN obtained MSE
(0.020525%2, 0.024151%2) and RMSE (0.143264%, 0.155407%)
for clay, whereas CNN-RNN calculated MSE (0.020147%2,
0.023495%2) and RMSE (0.14194%, 0.153282%) in the training
and testing phases, respectively. CNN model calculated MSE

(0.021531%2, 0.025079%2) and RMSE (0.146734%, 0.158362%)
in the training and testing phases of sand prediction,
respectively. Furthermore, RNN produced MSE (0.021343%2,
0.026512%2) and RMSE (0.146094%, 0.162825%) for sand,
whereas CNN-RNN obtained MSE (0.018488%2, 0.025611%2)
and RMSE (0.135972%, 0.160034%) in the training and testing
phases, respectively. As a result of the CNN model, MSE
(0.010174%2, 0.016834%2) and RMSE (0.100869%, 0.129745%)
are calculated during the training and testing phases of silt
prediction, respectively. Furthermore, RNN produced MSE
(0.010573%2, 0.018903%2) and RMSE (0.102826%, 0.137489%)
for silt, while CNN-RNN generated MSE (0.009914%2,
0.016625%2) and RMSE (0.09957%, 0.128938%) in the training
and testing phases, respectively.

Generally, for all properties in the training phase, the hybrid
CNN-RNN model had the highest performance based on MSE and
RMSE. According to the testing phase, the best model for most
properties was the hybrid CNN-RNN model, while the most
appropriate model for P, clay, and sand properties was the RNN,
CNN, and CNN models, respectively.

Figure 13 graphically compares the performance of the three
developed models, RNN, CNN, and CNN-RNN, with the soil

TABLE 7 A description of the layers and parameters used in DL models.

Layers Models

CNN RNN CNN-RNN

Input layer Conv-1D Conv-1D

Filters = 16 SimpleRNN Filters = 64

Kernel size = 3 Filters = 20 Kernel size = 5

Activation = Relu Return sequences = True Activation = Relu

Regularizers.l2 = 0.01 Regularizers.l2 = 0.01

Hidden layers Conv-1D SimpleRNN

Filters = 64 Filters = 40

Kernel size = 2 SimpleRNN Dense

Activation = Relu Filters = 20 Filters = 128

Regularizers.l2 = 0.01 Activation = Relu

Flatten

Dense

Filters = 128

Activation = Relu

Dropout = 0.2

Output layer Dense Dense Dense

Filters = 1 Filters = 1 Filters = 1

Other parameters Batch_size = 10 Batch_size = 10 Batch_size = 20

Epochs = 20 Epochs = 20 Epochs = 20

Optimizer = adam Optimizer = adam Optimizer = adam

Loss = mse Loss = mse Loss = mse
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samples dataset using box plots. The minimum and maximum
values of each property are shown at the ends of purple dashed
whiskers outside the box, and the median is indicated by a notch
within each box. Outliers are plotted in circles outside the box. This
figure showed that for most soil properties, the hybrid CNN-RNN
model achieved higher prediction accuracy with its shape identical
to the actual values than other models.

Figure 14 illustrates Taylor diagrams, where the purple point
indicates the reference point, and red lines show the distance from
the reference point. The CNN-RNN model has a higher correlation

and a lower error value for all soil properties except soil
pH (Figure 14E) compared to the CNN, and RNN models.

4.5 Spatial predication of soil properties

After model development, the modeling results were generalized
to the entire study area for each soil property. The spatial predictions
of the target soil properties at 30 × 30 m spatial resolution are
illustrated in Figure 15. As shown on the prediction map of the CNN

FIGURE 12
(Continued).
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model (Figure 15C), EC properties decreases with increasing
elevation. There is a similar pattern in the prediction maps of
RNN, and CNN-RNN models, where the amount of soil EC is
scattered, and in the north and northeast, the amount is less than in
the southeast. However, the range of EC changes in the RNN
prediction map is greater than that in the hybrid model.
Regarding OC prediction maps, the RNN and CNN-RNN model
show a similar pattern. OC prediction maps for RNN and CNN-
RNN models indicate that the value of OC increases from north to
south. Higher-altitude areas have more OC, while low-altitude and

the plain regions have less OC. The OC map in the CNN model is
nearly identical to the maps in the other models, except that the OC
value in the eastern region is substantially lower. The K prediction
maps in both RNN and CNNmodels are similar. However, the RNN
model exhibits a greater range of K changes than the CNN model.
Both of these maps indicate that K concentrations increase as
altitude decreases. However, CNN-RNN has predicted different
amounts of K for high-altitude areas, where some areas have
average K levels and others have lower levels. There is a similar
pattern in the P prediction maps of RNN and CNN-RNN models.

FIGURE 12
(Continued). Loss function plots for soil properties: (A–C) EC, (D–F) OC, (G–I) K, (J–L) P, (M–O) pH, (P–R) Clay, (S–U) Silt, (V–X) Sand.

Frontiers in Environmental Science frontiersin.org18

Hosseini et al. 10.3389/fenvs.2023.1279712

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1279712


However, the P change range of the hybrid model is smaller than
that of the RNNmodel (Figure 15K). As illustrated in Figures 15J–L,
P levels decrease with increasing altitude. According to the CNN
model, P levels in the east and northeast of the region are average
compared to the other two models. Furthermore, the hybrid model
exhibits a more extensive range of P changes than the CNN model.
Based on the CNN model, pH distribution on the soil surface is not
directly related to altitude. In contrast, the prediction map of the
RNNmodel indicates higher pH in high-altitude areas than in other
areas, while in the CNN-RNN model, soil pH decreases as altitude

increases. In terms of clay prediction maps, the CNN and CNN-
RNN models show a similar pattern. At high altitudes, there was a
concentration of medium clay content, while in the northeast, there
was low clay content. However, in the RNN prediction map, the clay
content is low in high-altitude areas. However, the greatest
concentration of clay was found in the west, as shown by all
three maps. The Sand prediction map in both RNN and CNN-
RNN models is similar. The lowest amount of Sand can be observed
in the high-altitude areas, while the highest amount of Sand can be
found in the central and northern parts of the region. The RNN
model provides a wider range of sand changes than the hybrid
model. The CNN model’s prediction map is similar to the other
models’ map; however, it shows more sand in the western and
southwestern regions. The spatial distribution of silt in CNN and
CNN-RNN maps is similar. Based on these two maps, high-altitude
areas have more silt content than low-altitude areas. Furthermore,
the CNN-RNNmodel displays amore extensive range of silt changes
than the CNN model. In contrast, silt content at high-altitudes is
average on the CNN model map.

5 Discussion

5.1 Variable importance analysis

Variable importance was calculated for each soil property
using an RF algorithm based on the Gini index. MRRTF and
air temperature were the most important criteria for EC property.
In agreement with these results, Dharumarajan et al. (2017) and
Taghizadeh-Mehrjardi et al. (2022) reported that MRRTF and air
temperature are influential auxiliary variables for EC modeling.
There is evidence that temperature can increase fluid viscosity,
affecting EC, and soil EC can also increase as temperature increases
(Bai et al., 2013). The most influential variable for OC prediction
was air temperature. Similar results were reported by Taghizadeh-
Mehrjardi et al. (2022). Temperature and rainfall can impact OC
and nitrogen dynamics by affecting net primary productivity,
biological activity, litter accumulation and decomposition rates
(Zhou et al., 2021). Another parameter affecting OC was LST,
which is directly related to OC (Sayão et al., 2018). The most
significant variables in predicting K property were elevation and
rainfall. Elevation affects the chemical and physical properties of
soil owing to its effects on rainfall, temperature, and vegetation.
The K content of the soil decreases as elevation increases (Badía
et al., 2016). The results of the K property were consistent with the
results of Mahmoudzadeh et al. (2022). Precipitation has an
indirect effect on soil pH (Yang et al., 2020b). In terms of P
property prediction, CI was the most influential parameter. Most
multispectral and hyperspectral sensors can determine soil CI,
which is one of the most useful parameters for describing and
identifying soil. Organic matter is usually found in greater
quantities in dark soils than in light soils (Novák et al., 2018;
Sahabiev et al., 2021). In soil pH prediction, NDVI was the most
important parameter. Previous studies have shown that NDVI is
one of the most critical parameters in the spatial prediction of soil
pH (Mazur et al., 2022; Taghizadeh-Mehrjardi et al., 2022).
Environmental parameters such as temperature, rainfall,
nitrogen, and soil pH influence NDVI. A higher NDVI

TABLE 8 Results of prediction models in training and testing phases.

Soil
properties

Models Train Test

MSE RMSE MSE RMSE

OC CNN 0.020264 0.142351 0.020984 0.144859

RNN 0.018823 0.137196 0.02395 0.154757

CNN-
RNN

0.018533 0.136137 0.020718 0.143939

EC CNN 0.010068 0.10034 0.011895 0.109062

RNN 0.009476 0.097346 0.013556 0.11643

CNN-
RNN

0.009187 0.095848 0.011353 0.106551

K CNN 0.015725 0.1254 0.02192 0.148054

RNN 0.015264 0.123549 0.020387 0.142782

CNN-
RNN

0.014051 0.118535 0.019809 0.140743

P CNN 0.012009 0.109587 0.020633 0.143643

RNN 0.01227 0.11077 0.019971 0.141319

CNN-
RNN

0.011624 0.107813 0.020182 0.142062

pH CNN 0.000646 0.025409 0.010287 0.101426

RNN 0.000532 0.023065 0.010102 0.100508

CNN-
RNN

0.000423 0.020568 0.009994 0.099971

Clay CNN 0.020786 0.144174 0.022582 0.150274

RNN 0.020525 0.143264 0.024151 0.155407

CNN-
RNN

0.020147 0.14194 0.023495 0.153282

Sand CNN 0.021531 0.146734 0.025079 0.158362

RNN 0.021343 0.146094 0.026512 0.162825

CNN-
RNN

0.018488 0.135972 0.025611 0.160034

Silt CNN 0.010174 0.100869 0.016834 0.129745

RNN 0.010573 0.102826 0.018903 0.137489

CNN-
RNN

0.009914 0.09957 0.016625 0.128938

Bold value indicates the lowest MSE among three methods (CNN, RNN, and CNN-RNN)

for each property.
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corresponds to a lower soil pH (Piedallu et al., 2019). Higher NDVI
values in a decrease in pH owing to higher concentrations of H+
ions in the soil as a result of organic matter decomposition (Banday
et al., 2019). The most influential parameter for spatial prediction
of clay was TWI. The results of this research are consistent with the
results of Afshar et al. (2016) and Mehrabi-Gohari et al. (2019).
TWI shows the influence of topography on the location and

amount of moisture accumulation in soil or groundwater
(Mehrabi-Gohari et al., 2019). Humidity and high temperatures
lead to chemical weathering and clay mineral production (Liu
et al., 2020). The most influential parameter for spatial prediction
of sand and silt was CLI. Taghizadeh-Mehrjardi et al. (2022)
observed similar results to the current study. By examining
Pearson’s correlation coefficient, Shahriari et al. (2019) found a

FIGURE 13
Box plots for comparison of the hybrid CNN-RNN model, RNN and CNN models for soil properties: (A) EC, (B)OC, (C) K, and (D) P, (E) pH, (F) Clay,
(G) Silt, and (H) Sand.
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positive and negative correlation between CLI and Silt content and
Sand content, respectively.

Overall, climatic parameters such as air temperature and rainfall
had the greatest influence on chemical properties compared to other
environmental parameters. Topographic parameters such as
elevation, MRRTF, slope, and VDCN had a greater impact on
soil chemical properties than CI and NDVI parameters.
Topographic (TWI, MRVBF, and MRRTF), RS (CLI, NDVI), and

climatic (LST) parameters were effective at predicting soil physical
properties.

5.2 Comparison and analysis of models

Based on the results of the evaluation metrics, CNN-RNNmodel
had the highest accuracy, followed by RNN and CNN models.
Hybridization of convolutional and recurrent networks can
provide powerful tools for predicting the spatial distribution of
variables (Faraji et al., 2022). In the proposed hybrid model,
convolution layers extract the spatial features, while RNN layers
are used to model the temporal dependencies. In recent years, the
hybridization of CNN and RNN performed better than other
algorithms and regression models. Tovar et al. (2020) found that
the hybrid CNN-RNN model was more accurate at predicting
photovoltaic power than the RNN model and the Lasso and
Ridge regression models. In another study conducted by X.
Zhang et al. (2019), the CNN-RNN model proved to be more
accurate and superior to CNN, multilayer perceptron, and
support vector regression (SVR) models in predicting the
remaining useful life. Furthermore, Barzegar et al. (2021) found
that the CNN-RNN model performed better than the independent
SVR, and RF models in water level forecasting.

A deep neural network focuses on a single task, limiting its
ability to execute other tasks (Nasir et al., 2021). It is well known that
CNN can recognize spatial features from datasets (Yusuf et al.,
2021). CNNs have the drawback of overfitting the input data, which
results in inadequate performance on new datasets (Barzegar et al.,
2021). Meanwhile, RNNs are applied to analyze temporal
dependencies (Jenifer et al., 2022). Gradient loss is a common
problem in RNNs (with gradient-based and back-propagation
learning methods). Gradient vanishing occurs when training long
data sequences. As a result, the gradient of the loss function
approaches 0, making training the network challenges (Tovar
et al., 2020). In this regard, the inability of neural networks to
solve problems simultaneously becomes the advantage of hybrid
methods (Nasir et al., 2021).

As compared to CNN, the RNN model performed better. RNN
networks are distinguished from other DL algorithms by their ability
to process temporal information and use sequential data. As
embedded structures in data sequences contain valuable
information, this property is essential for various applications
(Alzubaidi et al., 2021). In the classification of sentence-level
relationships, a basic RNN structure can outperform a CNN
(Zhang and Wang, 2016).

5.3 Research strengths and weaknesses

One of the strengths of this study is the use of a state-of-the-art
hybrid CNN-RNN model for spatial prediction of soil properties.
Through the use of this method, it has become more accurate to
predict the chemical and physical properties of soils. This research
used all the physical and chemical properties of soil. In the current
study, hybrid modeling was found to be successful in improving the
predictive accuracy of all soil properties. The use of optical images
for obtaining vegetation indices and other RS parameters, which are

FIGURE 14
Taylor diagram for comparison ofmodel performance: (A) EC, (B)
OC, (C) K, (D) P, (E) pH, (F) Clay, (G) Silt, (H) Sand.
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more suitable than other satellite images, is another strength of this
research. The lack of a feature selection approach and the lack of
optimization of the hyperparameters of the DL algorithms utilizing
metaheuristic algorithms are the research’s shortcomings.

6 Conclusion

In this study, CNN, RNN, and a hybrid CNN-RNN algorithm
were used to predict the physical and chemical properties of soil.

Optical satellite images were used for soil property estimations
due to their advantages, such as the ease of extracting vegetation
indices, soil moisture and soil conditions, and other RS
parameters. Research findings can be summarized as follows:
1) Based on the RF algorithm, MRRTF, air temperature,
elevation, CI, NDVI, CLI, TWI, and CLI had a significant
effect on EC, OC, K, P, pH, sand, clay, and Silt, respectively.
2) The results showed that TWI and CLI were the most influential
parameters among the physical properties, while temperature
and rainfall were the most influential parameters among the

FIGURE 15
(Continued).
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chemical properties. 3) Based on the evaluation metrics, the
hybrid CNN-RNN model was more accurate at predicting soil
chemical and physical properties than both RNN and CNN
models. 4) Sand property had the highest accuracy in
prediction among physical properties, while OC had the
highest accuracy in chemical properties.

Soil properties can be mapped at the regional level using the
implemented hybrid model. These maps can be applied to various
applications, such as precision agriculture, soil protection, crop

planning based on the soil’s nutrient potential, and irrigation
management based on the soil’s physical properties. The
following recommendations are made for future research: 1)
Using a metaheuristic algorithm, principal component
analysis, and other feature selection methods to reduce the
number of independent parameters and improve prediction
accuracy. 2) A hybridization of other DL model, such as
LSTM and CNN, can be applied to develop a novel model for
soil spatial prediction.

FIGURE 15
(Continued). Digital maps of soil properties: (A–C) EC, (D–F) OC, (G–I) K, (J–L) P, (M–O) pH, (P–R) Clay, (S–U) Silt, (V–X) Sand.
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