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Wetlands act as an important natural source of global methane (CH4). The
emission rate of wetland CH4 is jointly affected by climate change, carbon
dioxide (CO2) fertilization, and wetland distribution. In this study, we
implemented a wetland CH4 emission module into the Yale Interactive
Biosphere (YIBs) model to quantify the spatiotemporal variations of global
wetland CH4 emissions in 2001–2020. Site-level validations showed that the
YIBs model reasonably captures the seasonality and magnitude of CH4 emissions
at 28 out of 33 sites with significantly positive correlations and low relative biases.
On the global scale, the YIBs predicts an annual mean wetland CH4 emission of
147.5 Tg yr−1 in 2000–2017, very close to the estimate of 147.9 Tg yr−1 from the
ensemble of 13 process-based models. Global wetland CH4 emissions showed a
positive trend of 0.74 Tg yr−2 in the past 2 decades, leading to an increase of
7.4 Tg yr−1 (5.2%) in 2008–2017 than 2000–2009. Climate change and CO2

fertilization accounted for over 70% of global wetland CH4 emission changes.
Among them, the impact of CO2 grew steadily and became the dominant factor
after the year 2008. The most significant changes in wetland CH4 emissions were
located in the tropical regions following the perturbations in temperature that
drives the ecosystem productivity. We found limited changes in CH4 emissions
over high latitudes because of the moderate variations in wetland area fraction.
The rise of wetland CH4 emissions poses an emerging threat to the global
warming and likely escalates the tropospheric air pollutants.
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1 Introduction

Atmospheric methane (CH4) is an important greenhouse gas (Fletcher and Schaefer,
2019) and precursor of tropospheric ozone (Staniaszek et al., 2022). The CH4 concentrations
have been steadily increasing since the preindustrial period (Aben et al., 2017). Recent
observations showed a CH4 rise of 267 ppb (16.2%) from 1984 to 2022 though with large
interannual variations (Lan et al., 2022). Such increase of CH4 is mainly driven by the
changes of emissions, especially from the anthropogenic sources that grew 26% during
1970–2012 (Turner et al., 2019). However, the natural emissions of CH4 also account for
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approximately 28% of the global CH4 emissions and made
important contributions to the growth of atmospheric CH4 levels
(Saunois et al., 2020).

The wetland CH4 emission is the largest component of natural
sources (Koffi et al., 2020). Production of wetland CH4 involves
complex biogeochemical processes and is highly sensitive to climatic
and environmental perturbations. High temperature promotes CH4

emissions with a Q10 metric and further escalates emissions with a
warming feedback (Liu et al., 2020; Rößger et al., 2022; Zhang et al.,
2023). Precipitation usually increases wetland emissions by
enlarging the area of waterbody and increasing the water table
depth (Lunt et al., 2021; Zou et al., 2022), the latter of which
may further increase the temperature sensitivity of CH4

emissions (Duval and Radu, 2018; Chen et al., 2021). The
variation of wetland area caused by the shifts in precipitation
and temperature patterns directly determine the area of wetland
methane discharge (Kuhn et al., 2018; Zou et al., 2022). Increased
CO2 concentration can lead to an increase in microbial biomass of
methanogens by promoting the ecosystem productivity and the
mineralization of soil organic matter (Liu et al., 2019; Yuan et al.,
2021). The changes of these environmental factors modulate the
spatiotemporal variations in the regional to global wetland CH4

emissions.
Different approaches have been applied to estimate global

wetland CH4 emissions, including the top-down estimates of
155.5–218.6 Tg yr−1 using the inverse modeling and satellite-
based observations (Ishizawa et al., 2016; Bergamaschi et al.,
2018), as well as the bottom-up estimates of 100.1–183.2 Tg yr−1

with process-based models and site-level measurements (Zhu et al.,
2015; Arora et al., 2018). Among these methods, the process-based
models show advantages in predicting historical emissions and
identifying the dominant drivers. Most models consider the
biogeochemical processes such as production, oxidation, and
transport for CH4 emissions (Wania et al., 2010;
Nzotungicimpaye et al., 2021; Salmon et al., 2022). For example,
the LPJ-WHyMe model reasonably captures the seasonal variations
of CH4 emissions at seven sites by adding a root exudate pool with
stratified root distribution to the major biogeochemical processes
(Wania et al., 2010). The WETMETH model also considers the
above processes with dynamic predictions of soil water table and
inundation areas, and shows consistent spatial patterns with three
upscaled flux measurements (Nzotungicimpaye et al., 2021). The
ORCHIDEE model with the permafrost dynamics and optimized
parameters can reasonably simulate methane emissions from the
northern wetlands (Salmon et al., 2022).

In addition to the above-mentioned individual simulations,
the recent estimates with 13 models predicted natural wetland
CH4 emissions of 101–179 Tg yr−1 on the global scale during
2000–2017 (Saunois et al., 2020). These models were driven with
the same meteorology and boundary conditions, so as to
minimize the modeling uncertainties due to the forcing data.
However, they prescribed the wetland net primary productivity
(NPP) and ignored the CO2 fertilization effects to the changes in
substrate availability. As a result, the multi-model ensemble
average suggests a very limited trend in wetland CH4

emissions for 2000–2017 (Saunois et al., 2020), which are
inconsistent with the fast growth of atmospheric CH4 levels
(Lan et al., 2022) and the recent increase of wetland emissions

(Shaw et al., 2022). Furthermore, the drivers of the changes in
wetland CH4 emissions were not explored.

In this study, we implemented a process-based wetland CH4

emissions scheme into the well-established Yale Interactive
terrestrial Biosphere (YIBs) model (Yue and Unger, 2015). We
evaluate the simulated wetland emissions against in situ
measurements and the multi-model ensemble averages. The
model is then driven with year-to-year CO2 concentrations,
meteorological parameters, and wetland extent to predict global
wetland CH4 emissions during 2000–2020. We perform sensitivity
experiments to quantify the contributions of individual factors to the
trends in CH4 emissions. With these model configurations, we
attempt to depict the spatiotemporal variations of wetland CH4

emissions and identify their dominant drivers in the past two
decades.

2 Methods and data

2.1 YIBs vegetation model

We use the YIBs model as the framework for wetland CH4

emissions. The YIBs is a vegetation model that simulates carbon
fluxes with prognostic leaf area index (LAI) and tree height (Yue and
Unger, 2015). The model applies the Michaelis-Menten enzyme-
kinetics scheme for leaf photosynthesis (Farquhar et al., 1980) and
the two-leaf canopy radiative transfer scheme for light partitioning
(Spitters et al., 1986). The gross primary productivity (GPP) is
calculated by the integration of leaf photosynthesis along the LAI.
The litterfall drives the carbon transitions among soil pools and the
heterotrophic respiration (Rh). The accumulation of soil carbon
provides substrate for the wetland CH4 emissions. Simulated GPP
and LAI have been validated against site-level and satellite-based
observations (Yue et al., 2015). The YIBs model has joined the
vegetation model intercomparison project since 2020 and showed
reasonable performance in the simulation of major carbon metrics
including GPP, LAI, vegetation biomass, soil carbon and so on
(Friedlingstein et al., 2020).

2.2 Wetland CH4 emission module

We implement a process-based wetland CH4 emission module
into the YIBs with major biogeochemical processes, including
production, oxidation, and transportation of CH4. In the wetland
areas, the production of CH4 is calculated based on soil conditions
(including soil temperature and pH) and the amount of carbon that
is distributed for methanation, following the CH4-related module in
the TRIPLEX-GHG model (Zhu et al., 2014). The decomposition of
organic matter is regulated by redox acceptors. Under anaerobic
conditions, the presence of high organic substrates restricts the
redox potential, controlling the decomposition rate of organic
carbon and the emissions ratio of CH4 and carbon dioxide. The
Rh during anaerobic decomposition processes is derived as the
remaining portion after subtracting net ecosystem productivity
(NEP) from net primary productivity (NPP). The rate of CH4

oxidation is computed using a Michaelis-Menten kinetic
relationship that is dependent on temperature and CH4
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concentrations in the corresponding soil layer (Dunfield et al., 1993).
The transportation of CH4 from soil to atmosphere is composed of
three pathways including diffusion, ebullition, and plant-mediated
transportation. The diffusion of CH4 follows the Fick’s law with the
dependence on soil properties (soil texture, tortuosity and water
content) and CH4 concentration gradient between different soil
layers (Walter and Heimann, 2000). The ebullition of CH4 is
triggered if the CH4 concentration exceeds 750 μmol L−1 (Zhu
et al., 2014). The plant-mediated transportation, which provides
an impactful way to divert CH4 from soil to atmosphere, is
calculated based on the same aerenchyma factor of plants as
those equations used in the TRIPLEX-GHG model (Zhu et al.,
2014).

2.3 Data for simulations and validations

We use the meteorological variables from the MERRA-2
reanalysis (Gelaro et al., 2017) to drive the YIBs model. The
surface variables include air temperature, specific humidity, solar
radiation, air pressure, and wind speed. The soil variables include
soil temperature and soil moisture at six vertical layers. All these
variables are interpolated to the horizontal resolution of 1° × 1° at the
hourly time step. The year-to-year global mean atmospheric CO2

concentrations are adopted from the protocol data for the
input4MIPs (https://esgf-node.llnl.gov/projects/input4mips/).

For the wetland CH4 scheme, we used the monthly global
wetland extent dataset of WAD2M (Zhang Z. et al., 2021)
derived from remote sensing and the soil pH map of
SoilGrids250m dataset (Hengl et al., 2017) from the International
Soil Reference and Information Centre. Other gridded soil
parameters (e.g., particle composition, soil porosity) are obtained
from the ISLSCP II Global Gridded Soil Characteristics dataset
(Scholes et al., 2011) generated by the International Satellite Land-
Surface Climatology Project.

We use site-level measurements from the FLUXNET-CH4
network (Delwiche et al., 2021) to validate the simulated CH4

emissions. The monthly CH4 fluxes are collected from all the
available 33 sites with at least 3 years length of period. We also
use the multi-model output from 13 bottom-up models and 9 top-
down approaches to assess the simulated wetland emissions during
2000–2017. To facilitate the comparison, we separate the global land
into 18 regions following the definitions in Saunois et al. (2020)
(Figure 1).

2.4 Simulations

We perform four simulations to depict the spatiotemporal
variations of wetland CH4 emissions (Table 1). The BASE run is
forced with year-to-year meteorology, wetland extent, and CO2

concentrations during 2000–2020. Three “FIX” sensitivity

FIGURE 1
The distribution of 18 continental regions and the comparisons of site-level CH4 emissions between observations (black points) and simulations (red
lines) at 11 sites from the FLUXNET—CH4 network. The statistics for all sites are listed in Supplementary Table S1.
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experiments are conducted to distinguish the impacts of the changes
in climate (CLIM), wetland area (WET), and CO2 fertilization effects
(CO2) on CH4 emissions. For each of these runs, all the forcings are
the same as BASE run except that a specific forcing is fixed at the
year 2000. The differences between the BASE and “FIX” runs
indicate the contributions of changes in climate
(BASE—FIXCLIM), wetland (BASE—FIXWET), and CO2

(BASE—FIXCO2) to the global wetland CH4 emissions. For all
simulations, the hourly meteorology is applied from 1900 to
2020 with the cycling of 2000 meteorology for the
1900–2000 period, which is used for the model spin up.

3 Result

3.1 Model evaluations and comparisons

We first evaluate the simulated CH4 emissions at FLUXNET-
CH4 sites (Figure 1). For the selected sites around the world, the
YIBs model in general captures the seasonality of CH4 emissions
with the peak values in summer period. Among the total of 33 sites,
simulations show significantly positive correlation coefficients (R) at
28 sites and reasonable relative mean biases (RMB) of −50%–50% at
23 sites (Supplementary Table S1). Emissions are usually higher
nearby the tropical rainforest but lower in the semi-arid regions such
as western United States. For the Amazon rainforest with dense
vegetation, the non-flooded trees can absorb CH4 from the soil
through their roots, transport the gas through vascular systems to
stems, and release it into the air subsequently (Gauci et al., 2021).
The model fails to capture the CH4 emissions at some sites. For
example, simulated CH4 fluxes are negatively correlated with a high
RMB of 186% against measurements at site US-Snd. However, this
site is within the same grid as US-Sne and US-Srr where the YIBs
model yields reasonable emissions. A similar case could be found at
US-Twt, US-Tw1, and US-Tw4 where the simulations share the
same values due to the vicinity of sites but observations exhibit large
deviations. As a result, the missing of site-specific parameters (such
as vegetation types, soil characteristics) may in part cause the
modeling biases at these sites.

We then compare the simulated global wetland CH4 emissions
with other estimates (Supplementary Table S2). On average, the
emissions estimated by process-based models are 19.1% lower than
those using the top-down approaches. Compared to the ensemble of
13 bottom-up models, the YIBs shows lower value of −2.1% in
2000–2009 and the higher estimate of 1.6% in 2008–2017. For the
ensemble mean of models, limited differences are found between the
two periods likely because of the omission of CO2 fertilization effects

on the wetland NPP (Saunois et al., 2020). However, for individual
models, either positive (7 out of 13), negative (2 out of 13), or mild
(4 out of 13) trends are predicted because of their varied
representations of climatic impacts on CH4 emissions. A similar
conclusion is achieved with the nine top-down approaches utilizing
the WAD2M wetland dataset. The maximum increases in CH4

emissions between the two decades are predicted at 3.6% for the
top-down and 5.2% for the bottom-up methods, respectively. The
predicted trend of 5.2% with the YIBs model is at the high end of
other estimates, though our simulations consider the CO2

fertilization effect.
We compare the simulated trend of wetland CH4 emissions with

the top-down inversion (Zhang Y. et al., 2021) from the Greenhouse
gases Observing Satellite (GOSAT). The growth rate of natural
wetland CH4 in the YIBs model shows increased emissions after
the year 2010 (Supplementary Figure S1A). The simulated trend of
12.09% matches that of 12.29% from the posterior data of GOSAT,
which shows a much larger interannual variability than the
simulations. Such year-to-year variations are difficult to
reproduce as the prior data fail to capture both the interannual
perturbations and the long-term trend. Furthermore, we compare
the simulated interannual variations with the results of LPJ model
(Zhang et al., 2023) driven by meteorological fields from either
Climatic Research Unit (CRU) or MERRA-2 reanalyses
(Supplementary Figure S1B). The growth rates obtained from
different meteorological fields exhibit a maximum deviation of up
to 11.62%. Using the same meteorological field of MERRA2, the
moderate difference of 2.03% is achieved between the simulations of
YIBs and LPJ models. Such discrepancy is lower than the differences
caused by the varied meteorological fields.

We divide global land into 18 regions (Figure 1) where the
simulated wetland CH4 emissions are compared to the values from
multiple models and approaches (Figure 2). Comparing the results
from different approaches, the assessment of natural wetland CH4

emissions by bottom-up models tends to be lower than that of top-
down approaches in most regions (Supplementary Figure S2A).
Similar to other bottom-up models, the YIBs model yields lower
emission estimates in multiple regions compared to the top-down
models especially over the Canada, Brazil, and Southeast Asia
regions. On average, the simulated CH4 emissions match the
medians of multiple models with a high R2 of 0.77, though the
former is in general lower than the latter estimates (Supplementary
Figure S2B).

In all the 18 regions, YIBs model yields reasonable wetland CH4

emissions with differences of −15.2 Tg yr−1 ~ 2.54 Tg yr−1 from the
multi-model ensemble medians. For comparison of top-down
models and bottom-up models, both methods show the same top
two emitters in Brazil and Southeast Asia, though the top-down
approach predicts much higher emissions in Brazil than the latter
region. The YIBs also yields the largest wetland CH4 emissions in
Brazil, but underestimates the emissions in Southeast Asia by
56.82%–63.37% compared to the multi-model ensemble mean.
The median assessments of CH4 emissions from the third-largest
natural wetland region in Africa by bottom-up models, top-down
approaches, and YIBs model are relatively close, ranging from
14.21 to 18.72 Tg yr−1. However, there is a relatively significant
divergence among different models in the assessments over high-
emission regions, like Brazil, Southeast Asia and Equatorial Africa.

TABLE 1 Summary of sensitivity experiments.

Simulations Climate Wetland
extent

CO2

concentration

BASE 2000–2020 2000–2020 2000–2020

FIXCLIM 2000 2000–2020 2000–2020

FIXWET 2000–2020 2000 2000–2020

FIXCO2 2000–2020 2000–2020 2000
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We also found large inter-model variability in Canada and Russia
though the emissions are much lower than the tropical region, which
is likely associated with the varied sensitivity to climatic drivers
among different models and approaches (Saunois et al., 2020). In
most regions, the performance of the YIBs model is relatively
close to the intermediate levels of other bottom-up models.
However, it yields significantly higher assessment of emissions
in Central Asia compared to most models, though it does not
exceed the maximum values among the other 13 bottom-up
models. The discrepancies underscore the substantial
uncertainty in the current assessment of natural wetland CH4

emissions, primarily attributed to the complex biogeochemical

and ecological processes involved in the processes. The variations
among models in different processes may further magnify the
differences in the final emission estimates. In future researches,
more observations are required to validate the simulated CH4

emissions from natural wetlands in different regions.

3.2 Spatiotemporal variation in wetland CH4
emissions

The wetland CH4 emissions show distinct spatial and seasonal
variations (Figure 3). Large emissions are located in the tropics

FIGURE 2
Comparisons of wetland CH4 emissions at 18 regions averaged for 2000–2017 between simulations and the estimates by (A) 13 bottom-up
approaches and (B) 9 top-down approaches. For each boxplot, the central black solid line indicates the median, and the blue solid square shows the
ensemble mean of all approaches. The top and bottom edges represent the 25th and 75th percentiles, respectively, with the whiskers representing the
data range. The results of YIBs are shown in red triangles.

FIGURE 3
The (top) mean (mg [CH4] m

−2 day−1) and (bottom) trend (mg [CH4] m
−2 day−1 yr−1) of CH4 emissions from wetland for (A,D) whole year (B,E), June-

August, and (C,F) December–February in 2001–2020. The global total values are shown on each panel.
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(23.5°S–23.5°N), contributing 69.22% to the global total amount due
to the optimal hydrothermal conditions and the adequate supply of
substrate. The secondary hotspots are found in the temperate
(23.5°N–60°N) regions of the Northern Hemisphere, which
accounts for 24.32% of the global amount (Figure 3A). These
centers become the strongest in the boreal summer (Figure 3B),
when the high temperature promotes CH4 emission rate and expand
the wetland extent. The total global emissions in summer (from June
to August) reach 50.2 Tg, accounting for 33.8% of the annual total
amount. In contrast, limited emissions are predicted over the
northern mid-high latitudes in boreal winter because of the low
temperature and seasonally frozen ground. For this season, most of
global wetland CH4 emissions are confined in the tropical regions,
leading to 45% lower emissions compared to the summertime on the
global scale.

We further assess the trend of wetland CH4 emissions during
2001–2020. Over the global grids with baseline emissions of at least
1 mg m−2 day−1, 1.47% show significant increase in the past two
decades. The most significant enhancement is located at the tropical
Africa, eastern Asia, and eastern United States. (Figure 3D). The
increase of CH4 emissions in tropical Africa persist all year round,
while those in Asia and US are more evident in boreal summer
(Figures 3E, F). Meanwhile, large reduction is predicted over eastern
South America, where the baseline emissions (Figure 3A) are low
due to the moderate supply of substrate from grassland. Such
regional decline is more evident in boreal winter (Figure 3F). On
the global scale, the positive trend in summer almost doubles that in
winter.

3.3 Drivers of the trends in wetland
CH4 emissions

We isolate the contributions of climate change, CO2

fertilization, and wetland extent to the trend of CH4 emissions
during 2001–2020 (Figure 4). Among these factors, the changes

of wetland area show limited impacts while the other two factors
cause large variabilities in CH4 emissions (Figure 4A). For
2001–2008, the negative effects of climate change play the
dominant role in regulating the total trend. However, after the
year 2008, the impact of CO2 fertilization is becoming more
important year by year, accounting for 67.84% of the total
changes in CH4 emissions during 2010–2020 (Figure 4B). For
the FIXCO2 simulation, the average wetland CH4 emissions are
predicted to be 143.47 Tg yr−1 in 2000–2009 and 143.26 Tg yr−1 in
2008–2017. As a result, the YIBs model yields limited changes in
wetland CH4 emissions between the 2 decades, close to the
estimate by the ensemble of 13 process-based models without
the CO2 fertilization effects (Supplementary Table S2).

We further identify the spatial distribution of wetland CH4

changes induced by different factors (Figure 5). Climate change
alone exerts strong impacts in tropical regions with CH4 reductions
in South America, South Africa, and Australia, but increased
emissions in central Africa (Figure 5A). There are some
moderately positive changes in CH4 emissions induced by
climate at the middle latitudes of Northern Hemisphere. The
positive and negative changes are offsetting each other, leading to
a limited contribution of −0.12 Tg yr−1 by climate change during
2001–2020. CO2 fertilization causes widespread enhancement in
CH4 emissions especially over the tropical regions (Figure 5B). The
changes in wetland area cause patchy responses in CH4 emissions
with moderate reductions in South America and central Africa
(Figure 5C).

In anaerobic environments, the rate of organic carbon
decomposition and the release ratio of carbon dioxide to
methane are constrained by the presence of high organic
matter substrates. Climate change decreases Rh in South
America, South Africa, and Australia (Figure 6A), because
increased temperature (Figure 6C) inhibits plant
photosynthesis in the tropical regions (Piao et al., 2013). In
contrast, the slight cooling over Sahel and central Africa
promotes the regional Rh (Figure 6A) and the consequent

FIGURE 4
The (A) variations of wetland CH4 emissions and (B) contributions of three key driving factors including wetland extent, climate change, and CO2

fertilization during 2001–2020. The contribution percentages for individual factors are derived based on the absolute changes from baseline simulation
caused by prescribing the specific factor.
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wetland CH4 emissions (Figure 5A). Solar radiation shows
widespread reductions except over Indonesia and Australia
(Figure 6D). However, the effect of radiation change on Rh is
secondary to that of temperature, as the warming-induced
inhibition overweighs the benefit of increased radiation in
Indonesia and Australia (Figure 6A). The CO2 fertilization
effect causes increases in Rh globally (Figure 6B), leading to
significant enhancement of wetland CH4 emissions. (Figure 5B).

4 Conclusion and discussion

We implemented a wetland CH4 emission module into the
YIBs vegetation model and validated its performance against

available measurements and estimates. Simulated wetland CH4

emissions matched observations with reasonable seasonality at
28 out of 33 sites. The model also yielded similar global wetland
CH4 emissions compared to the ensemble of 13 process-based
models. We performed sensitivity experiments to identify the
spatiotemporal variations of wetland CH4 emissions and the
associated drivers from 2001 to 2020. The results showed that
the interannual variation of atmospheric CO2 and meteorological
conditions predominantly drive the changes in global wetland
CH4 emissions, with their combined contributions exceeding
70% in each month during the research period. The role of
CO2 fertilization grew gradually and became the dominant
factor after 2008. The attribution analyses indicated that the
changes of wetland CH4 emissions followed the changes in Rh,

FIGURE 5
The mean differences in wetland CH4 emissions (Units: mg[CH4] m

−2 day−1) between simulations with all forcing (BASE) and that with fixed (A)
climate (FIXCLIM), (B) CO2 (FIXCO2) and (C) wetland extent (FIXWET) during 2001–2020.

FIGURE 6
The trend of heterotrophic respiration (Units: mg[C] m−2 day−1) induced by (A) climate change and (B) CO2 fertilization, as well as the trend in (C)
temperature (Units: °C) and (D) solar radiation (Units: W m−2) during 2001–2020.
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with widespread enhancement by CO2 fertilization effects but
patchy responses to climate change mainly following the trend of
temperature.

Previous studies also revealed the strong impacts of CO2

fertilization on wetland CH4 emissions. For example, Yuan et al.
(2021) suggested that increased CO2 could promote the
concentration of dissolved organic carbon (DOC) and acetate
by enhancing ecosystem productivity and the mineralization of
soil organic matter. This, in turn, leads to an increase in the
microbial biomass of methanogens, ultimately resulting in
enhanced CH4 emissions. However, some recent estimates
ignored the CO2 fertilization effect in their simulations. For
example, the observation-constrained study by Koffi et al.
(2020) showed enhanced wetland CH4 emissions of 50%–80%
at the end of 21st century without considering CO2 fertilization
effect. The multi-model ensemble estimates by Saunois et al.
(2020) also neglected the CO2 fertilization and achieved limited
trends in wetland CH4 emissions for the recent two decades. We
expect that the increasing rates of wetland CH4 emissions are
likely underestimated in above studies as the role of CO2

fertilization becomes more dominant over the long-term period.
Many studies have emphasized the influences of climatic

factors on wetland CH4 emissions. Liu et al. (2020)
highlighted the important role of air temperature, which
affects CH4 production directly through Q10 factors and
indirectly by altering both NPP and wetland inundation area
fraction. We also found that temperature accounts for most of
climate-driven changes in CH4 emissions through modulating
ecosystem NPP (Figure 6). Furthermore, Chen et al. (2021)
observed a positive correlation between wetland water level
and temperature sensitivity in CH4 emissions, though this
relationship is not incorporated in our model. Zhang et al.
(2023) compared the impacts of temperature and
precipitation, and found that precipitation dominates the
variability of CH4 emissions in some tropical regions as
rainfall alter the wetland extent. However, we prescribed the
area of wetland in our simulations and constrained the effects of
precipitation to some extent. Despite these discrepancies, we also
found that the perturbations of tropical CH4 dominates the
global wetland emissions as concluded by Zhang et al. (2023).

In this study, we found limited changes of wetland CH4

emissions at high latitudes. The melting permafrost in boreal
regions of the Northern Hemisphere is expected to become a
crucial source in the future, as projected by the Coupled Model
Intercomparison Project (Canadell et al., 2021). However, there is
considerable disagreement regarding the assessment of the
impact of permafrost melting on CH4 emissions. Zhang et al.
(2017) estimated that CH4 emissions could reach 347.8 Tg yr−1 by
the end of the 21st century under the RCP8.5 scenario taking into
account the wetland expansion from permafrost melting.
Nonetheless, the inversion-constrained estimation showed
much lower CH4 emissions under the same climate change
scenario (Koffi et al., 2020). Furthermore, Salmon et al. (2022)
found that bottom-up models tend to overestimate CH4

emissions in northern peatland sites in the model calibrations.
These studies revealed the large uncertainties in estimating
wetland CH4 emissions due to the permafrost dynamics in

process-based models. It should be noted that global wetland
area distributions derived from satellite retrievals may also
deviate from the actual conditions. The retrievals are
influenced by the accuracy of prior data (Xi et al., 2022) and
it is challenging to adequately validate retrieval results in regions
lacking ground-based observations. Additionally, the low surface
reflectance features such as limestone deposits may lead to
overestimations of inundation levels in certain areas (Jensen
and Mcdonald, 2019). Non-wetland areas in dynamic dataset
with an inundation index of 0 do not necessarily imply the
absence of wetlands. These limitations of the wetland area
dataset may introduce uncertainties into our assessment of the
global variations in wetland CH4 emissions. Despite these
uncertainties, we revealed an increasing tendency of wetland
CH4 emissions due to the joint effects of CO2 fertilization and
climate change in the past two decades. Such trend likely persists
under global warming and poses an emerging threat to both
climate and air quality.
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