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Background:Multi-wavelength transmittance spectroscopy, in combinationwith
the artificial neural network, has been a novel tool used to identify and classify
microorganisms in recent years.

Methods: In our work, the transmittance spectra in the region from 200 to 900 nm
for four bacterial species of interest, Escherichia coli (E. coli), Staphylococcus aureus
(S. aureus), Klebsiella pneumoniae (K.pneumoniae), and Salmonella typhimurium (S.
typhi), were recorded using an ultraviolet–visible spectrophotometer. Considering
too much redundant data on the full-wave band spectra, the characteristic
wavelength variables were selected using the competitive adaptive reweighting
sampling (CARS) algorithm. Spectra of the initial training set of these targeted
microorganisms were used to create identification models representing the
spectral variability of each species using four kinds of neural networks, namely,
backpropagation (BP), radial basis function network (RBF), generalized regression
neural network (GRNN), and probabilistic neural network (PNN).

Results: The blinded isolate spectra of targeted species were identified using the
four identificationmodels given above. Compared to fullbandmodeling, after using
CARS to screen thewavelength variables, four identificationmodels are established
for the 35 preferred characteristic wavelengths, and the prediction performance of
the four models is notably improved. Among them, the CARS–PNN model is the
best, and the identification rates of all targeted bacteria were achieved with 100%
accuracy; the calculation time is just approximately 0.04 s.

Discussion: The use of CARS can effectively remove useless information from the
spectra, reduce model complexity, and enhance model prediction performance.
Multi-wavelength transmission spectroscopy, combined with the CARS–PNN
method, can provide a new method for the rapid detection of bacteria in water
and could be readily extended for bacterial microbiological detection in blood
and food.
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1 Introduction

Pathogens are important sources causing human and animal
diseases. A large number of outbreaks due to bacterial infections
could occur via water contaminated by bacteria (Rajapaksha
et al., 2019; Nnachi et al., 2022). Pathogenic Escherichia coli,
Campylobacter jejuni, Shigella, and Salmonella typhi may cause
polar gastroenteritis, dysentery, and typhoid, respectively, in
human and animals. Furthermore, E. coli O157:H7 and Shigella
have been proven as the causes of waterborne disease outbreaks
worldwide, including the E. coli contamination of drinking
water in Canada, which led to 2300 symptomatic residents
and seven deaths (Meinhardt, 2006). In August 2020,
contaminated tap water in Shouxian county, Anhui province,
infected 493 people with Shigella bacteria, who successively
suffered from fever, vomiting, abdominal pain, and diarrhea
(Gao, 2021).

The rapid and accurate detection of bacteria in water is of great
importance in controlling and preventing waterborne diseases and
outbreaks. The techniques that are currently being used for bacteria
detection include isolated cultures (Sieuwerts et al., 2008; Azzam
et al., 2014), immunofluorescence assay (IFA) (Kuhn et al., 2010),
polymerase chain reaction (PCR) (Zhang et al., 2011; Gensberger
et al., 2015; Menu et al., 2018), and enzyme-linked immunosorbent
assay (ELISA) (Välimaa et al., 2015; Sakamoto et al., 2018). The
results from these methods are relatively accurate. However, they
require complex sample pretreatment, are time-consuming, require
expensive biological reagents, and cannot achieve real-time and on-
site detection. Therefore, a simple, rapid, and accurate method for
the detection of waterborne bacteria is greatly needed.

Multi-wavelength transmission spectroscopy (MWTS) is a
new non-invasive testing spectroscopy technology. It is
generated by the direct interaction of light with the cell
structure and chemical composition and can be used for the
characterization of the suspended matter in water. At present,
multi-wavelength transmission spectroscopy combined with
stoichiometry has a certain degree of research capability on
the classification and identification of microorganisms. For
example, multi-wavelength transmission spectroscopy
combined with the multivariate statistical analysis can
identify four bacterial microorganisms of clinical significance
with high accuracy (Smith et al., 2012). Ultraviolet–visible
(UV–Vis) spectra combined with a support vector machine
have been used to identify five different bacterial species, and
the accuracy rate reached 100% (Feng et al., 2021). Artificial
neural networks (ANNs) are computer programs that mimic the
way the human brain thinks, aiming at classifying or predicting
things by imitating the way the human brain processes
information. It has the characteristics of self-learning, self-
organization, self-adaptation, and fault tolerance and is
especially suitable for the processing of unknown and
uncertain non-linear problems. As the most important branch
of artificial intelligence, ANNs have many applications in
classification and regression, such as image recognition (Elish,
2019; Zhang et al., 2023) and model building (Ho et al., 2019; Liu
et al., 2019).

The objectives of this study were to investigate the feasibility of
using MWTS to detect bacteria in water, including Escherichia coli,

Staphylococcus aureus, Klebsiella pneumonia, and Salmonella
typhimurium, and to differentiate among bacterial species using
artificial neural networks (that is, backpropagation [BP], radial basis
function [RBF] network, generalized regression neural network
[GRNN], and probabilistic neural network [PNN]).

2 Materials and methods

2.1 Preparation of bacterial samples

All strains of E. coli (China Center of Industrial Culture
Collection (CICC) #10389), Staphylococcus aureus (CICC
#21648), K. pneumonia (CICC #21106), Salmonella typhi (CICC
#21913), and E. coli (DH5α) were obtained from the China Center of
Industrial Culture Collection. The bacterial suspension was made by
the process that involved the activation of bacteria; culturing at 37°C
in the beef extract peptone medium (pH 7.0), containing 0.3% beef
extract, 1% peptone, 0.5% NaCl, and 2% agar; expanding
propagation in the solution culture; centrifugation using a
centrifuge; and washing in sterilized deionized water.

2.2 Spectroscopy measurements

For each bacterial suspension, a series of bacterial test samples of
different concentrations were obtained by diluting them with
deionized water for determining the multi-wavelength
transmission spectroscopy measurement. The multi-wavelength
transmission spectra of five bacterial suspensions were recorded
using a UV/visible spectrophotometer (UV-2550 Shimadzu, Kyoto,
Japan) in the wavelength range of 200–900 nm. The instrument-
recorded spectra represent the averages of three replicate
measurements with 1-nm sampling intervals and medium scan
speed. To eliminate the effect of inhomogeneity in the suspending
medium, sterilized deionized water was used as the reference solution.
All measurements were conducted using a 1-cm path length and 3.5-
mL volume quartz cuvettes at room temperature.

2.3 Spectral pretreatment

To eliminate bacterial concentration effects, the transmission
spectra were normalized with the average optical density between
200 and 900 nm.With sample set partitioning based on the joint x–y
distance (SPXY), 40 spectra of each bacterial suspension were
performed by selecting 28 spectra as the training set; the
remaining spectra were assigned to the test set to ensure the
selected optimal spectra characterizing each bacterial species. In
order to verify the ability of the model to discriminate between the
species within the genus of bacteria, 12 spectra of Escherichia coli
(DH5α) were used as the test set. The spectral statistics for the
training and test sets of five bacterial species are reported in Table 1.

As indicated in Table 1, the minimum and maximum optical
densities divided into the test set were within the range of the values
given in the training set, indicating that the partition of sample sets
was reasonable using the SPXY algorithm, and the established
discrimination model could also produce good results.
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2.4 Bacterial identification models

The generation of an accurate identification model for each
microorganism must be based on a set of spectra that represents as
many spectral variations as possible, which can be exhibited by each
microorganism. The optical density at each wavelength point in the
multi-wavelength transmission spectrum of bacterial suspensions is a
function of the number, shape, size, internal structure, and the chemical
composition of bacteria (Hu et al., 2017). Therefore, the bacterial
identification model is characterized by the measured wavelength,
and the optical density at the wavelength is the characteristic value,
that is, the sample set is (λi and τ(λi)).

ANNs are constructed as complex networks of interconnected
artificial neurons, which are used to estimate or approximate the
functions that can depend on a large number of inputs and are
usually unknown (Slabbinck et al., 2009; Wang et al., 2010; Gargouri

et al., 2012). The output signal of each artificial neuron is given by
the following:

yi � f ∑
j

ωijxj + bi⎛⎝ ⎞⎠, (1)

where xj is the jth input signal from peripheral neurons, ωij

represents the corresponding weight assigned to the xj input, bi
represents the bias, and f is called the activation function. For
different neural networks, the appropriate activation function should
be selected. In this study, four kinds of neural networks were used to
establish bacterial identification models, and in the BP neural network,
the activation function is given in Eq. 2:

f x( ) � 1/ 1 + exp −x( )( ), (2)

where x is the input value, which is determined by continuously
adjusting the weights and biases of the network; the error between
the network output and the expected output is minimized.

In the RBF neural network, the activation function is expressed
by the Gaussian function (also known as the radial basis function):

f x( ) � exp − x − c( )∧2( )/ 2*sigma∧2( )( ), (3)

where x is the input value, c is the center of the Gaussian function,
and sigma is the standard deviation of the Gaussian function.

In the GRNN, the activation function is also expressed by the
Gaussian function:

f x( ) � exp − x∧2( )/ 2*sigma∧2( )( ), (4)

where x represents the input value and sigma is the
standard deviation.

In the PNN, the activation function is given by the probability
density function:

f x( ) � 1/ sqrt 2*pi( )*sigma( )( )* exp − x −mu( )∧2/ 2*sigma∧2( )( ),
(5)

where x is the input value, mu is the mean of the Gaussian
function, and sigma is the standard deviation of the Gaussian

TABLE 1 Spectral statistics for the training and test sets of five bacterial species.

Bacterium Dataset Number Optical densities (AU)

Minimum Maximum Mean Standard deviation

E. coli Training 28 0.002 2.363 0.151 0.219

CICC 103891 Test 12 0.002 1.970 0.149 0.220

K. pneumonia Training 28 0.007 3.076 0.173 0.236

CICC 21106 Test 12 0.010 1.666 0.171 0.225

S. aureus
CICC 103891

Training 28 0.000 2.404 0.153 0.212

Test 12 0.015 0.774 0.123 0.128

S. typhi Training 28 0.001 3.299 0.104 0.206

CICC 21913 Test 12 0.001 1.649 0.074 0.140

E. coli DH5α Training 0 —— —— —— ——

Test 12 0.031 2.693 0.268 0.305

FIGURE 1
Transmission spectra of E. coli, K. pneumonia, S. aureus, and
S. typhi.
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function. By adjusting mu and sigma, the shape and width of the
probability density function can be controlled, improving the fitting
ability and smoothness of the neural network.

3 Results and discussion

3.1 Multi-wavelength transmission spectra
for bacteria

The normalized optical density spectra of E. coli, K.
pneumonia, S. aureus, and S. typhi in the region from 200 to
900 nm are shown in Figure 1. A qualitative comparison of the
spectra of the four bacteria reveals the discriminating power
among them using the spectroscopy approach. It can be seen
that the spectral patterns of K. pneumonia, E. coli, and S. typhi
have similar features with their peak at approximately 260 nm,
which is likely due to the similarities in shape, aggregation state,
and chemical composition of these microorganisms (Garcia-Rubio
et al., 2004; Alupoaei and García-Rubio, 2005). However, when
their optical densities at some wavelength points are distinct, it is
due to the differences in the size and content of the chemical
composition (Adams et al., 1989). With the differences of the first
three microorganisms, the spectra of S. aureus have no apparent
absorption peak at 260 nm; this is because S. aureus cells are
spherical and show different spectral features (Mattley et al.,
2000). Clearly, the spectra of the four microorganisms are
almost overlapped in the region from 450 to 600 nm; however,
there are differences in the optical density in the wavelength range
(250–450 nm and 600–900 nm). These spectral fingerprints are

able to distinguish among different bacterial species with the help
of artificial neural networks.

3.2 Discrimination model construction and
validation based on the full-spectrum band

The optical density spectra in the full range of the wavelength
(200–900 nm) were selected as the analysis data, and the four
bacterial species in the experiment were classified into species
numbers: E. coli as species 1, K. pneumonia as species 2, S.
aureus as species 3, and S. typhi as species 4. The bacteria
identification model was established using the corresponding
training set (28 spectra were selected from the full set of spectra
available for each species, with a total of 112 training sets).

ANNs are usually composed of three neuron layers: one input
layer, one hidden layer, and one output neuron layer. The number of
input and output neurons correspond to the optical density for each
wavelength (n = 701) and the number of bacterial species present in
the dataset. After multiple-experiment comparative analyses, the
parameters of the BP neural network are set as follows: the number
of the neural units is 6, and the epoch limits, the target error, and the
learning rate are set to 1000, 1e-6, and 0.01, respectively. The
parameters controlled the threshold size in the neural network of
the RBF, GRNN, and PNN, which are set to 0.003, 0.003, and 0.0013,
respectively.

In order to verify the accuracy and reliability of bacterial
discrimination models, 60 spectra in the test set were analyzed. A
performance breakdown for the individual classes is displayed in the
confusion matrix (Figure 2). It can be seen that the overall

FIGURE 2
Performance breakdown for individual classes based on the full band is displayed in the confusion matrix. (A) BP, (B) RBF, (C) GRNN, and (D) PNN.
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identification rates of targeted bacterial species for four neural
networks are 78.33%, 70.00%, 91.67%, and 90.00%, respectively.

The classification results of four neural networks based on the
full band are presented in Table 2. The classification rates of the BP

neural network for S. typhi and S. aureus both achieve 100.00%,
whereas the classification rates of E. coli (CICC 103891), K.
pneumonia, and E. coli (DH5α) are just 91.67%, 83.34%, and
16.67%, respectively. The classification rates of the RBF neural

TABLE 2 Identification rate and calculation time of four neural networks based on the full band.

Model Species No. of wavelength points Overall recognition rate/% Recognition
rate/%

Computing
time/s

BP E. coli 701 78.33 91.67 22.42

K. pneumoniae 83.34

S. aureus 100.00

S. typhi 100.00

E. coli (DH5a) 16.67

RBF E. coli 701 70.00 100.00 0.052

K. pneumoniae 83.33

S. aureus 66.67

S. typhi 100.00

E. coli (DH5a) 0.00

GRNN E. coli 701 91.67 100.00 0.067

K. pneumoniae 100.00

S. aureus 100.00

S. typhi 100.00

E. coli (DH5a) 58.33

PNN E. coli 701 90.00 100.00 0.048

K. pneumoniae 83.33

S. aureus 66.67

S. typhi 100.00

E. coli (DH5a) 100.00

FIGURE 3
Diagram of the CARS variable selection process. Changes in variable,
rootmeansquareerrorofCross-Validation, regressioncoefficientswith the
number of sampling times (A) the number of wavelength variables (B) root
mean square error of cross-validation (C) regression coefficients.

FIGURE 4
Feature variables selected based on the CARS algorithm.
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network for E. coli (CICC 103891) and S. typhi achieve 100.00%,
whereas the classification rates of K. pneumonia, S. aureus, and
E. coli (DH5α) are just 83.33%, 66.67%, and 0.00%, respectively. For
the GRNN, E. coli (CICC 103891), K. pneumonia, S. aureus, and S.
typhi achieve correct classification rates of 100.00%; however, the
classification rate of E. coli (DH5α) is 58.33%. For the PNN, E. coli
(CICC 103891), S. typhi, and E. coli (DH5α) achieve correct
classification rates of 100.00%, whereas the classification rates of
K. pneumonia and S. aureus are just 83.33% and 66.67%,
respectively.

It can be seen that the performance of four identification models
needs to be improved. Since there are as many as 701 wavelength
variables in the full spectrum, some variables contain irrelevant
information, which is unfavorable for classification modeling and
leads to a reduced prediction accuracy. Therefore, reducing the
complexity of the model and extracting the wavelength variables
related to the sample information can get a better
classification model.

3.3 Discrimination model construction and
validation based on the characteristic
wavelengths

3.3.1 Feature wavelength selection
In order to improve the bacterial recognition rate and reduce the

required time for ANNs to process data, we used the competitive
adaptive reweighting sampling (CARS) method. It is also used to
extract the wavelengths with notable differences in the optical

density values of the target microorganisms from the wavelength
variables of the full spectrum, which were used as the new training
sets for the four neural networks.

The main steps of the CARS algorithm (Li et al., 2019; Yuan
et al., 2020; Yang et al., 2023) are as follows: first, the Monte Carlo
sampling (MCS) method was used to sample n times, and 80% of the
samples were randomly selected from the sample set as the
correction set each time to establish the PLS model; the
wavelength variables with less absolute weight of the regression
coefficients were removed, and the number of variables removed was
determined using the exponentially decreasing function (EDF).
Then, the wavelength variables were screened using the adaptive
reweighted sampling (ARS) technique; finally, the PLS model was
established by each newly generated variable subset, and the
variables with the smallest root-mean-squared error of the cross-
validation value (RMSECV) comprised the optimal variable subset.

In the experiment, the parameters of the CARS algorithm are set
as follows: the number of times Monte Carlo sampling was carried
out was 40 times, the number of folds in half for cross-validation was
10, and the selected best variable criteria was 0. The screening
procedure for wavelength variables is shown in Figure 3. The
abscissa stands for the sampling number and the ordinate stands
for the number of wavelength variables, RMSECV, and the
regression coefficient of the wavelength variable.

As indicated in Figure 3, with the increase in the sampling times,
the number of wavelength variables gradually decreases until the
optimal number of sampling times is selected. The smaller the
RMSECV, the better the number of sampling times is. When
RMSECV is 0.48, the corresponding optimal sampling number is

FIGURE 5
Performance breakdown for individual classes based on the characteristic wavelengths is displayed in the confusion matrix. (A) BP, (B) RBF, (C)
GRNN, and (D) PNN.
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21, and then, 35 characteristic wavelength variables can be screened
from 701 wavelength variables. These characteristic wavelengths are
mainly concentrated in the wavelength range of 250–400 nm and
750–900 nm, as shown by the red hollow dot in Figure 4.

3.3.2 Evaluation and analysis of improved
identification models

A performance breakdown for individual classes based on the
characteristic wavelengths is displayed in the confusion matrix
(Figure 5). It can be seen that the overall identification rates of
the targeted bacterial species for CARS–BP, CARS–RBF,
CARS–GRNN, and CARS–PNN models are 93.33%, 90.00%,
91.67%, and 100.00%, respectively, which demonstrates that the
transmission spectra of microorganisms combined with the
CARS–PNN model can be utilized for microorganism
identification, eliminating the need for culturing or
specialized reagents.

The results are shown in Table 3; after wavelength variable
screening using CARS, the recognition performance of the GRNN
model remains unchanged, but the required computing time is
reduced. The recognition performance of the BP, RBF, and PNN
models are, respectively, improved, and the computation time is also
reduced. This is because full-wavelength spectra often contain
redundant information, which is unfavorable for classification

modeling. It can be seen that selecting feature wavelength
variables can not only reduce the model complexity but also
enhance the prediction accuracy.

In terms of the recognition accuracy and calculation time, the
CARS–PNN model is the best. The identification accuracy of the
CARS–PNN method for E. coli (CICC 10389), K. pneumonia, S.
aureus, and S. typhi reaches 100.00%, and the calculation time is
just 0.04 s. It demonstrates that the bacterial identification model
based on the CARS–PNN has high accuracy. The recognition rate
of E. coli (DH5α) is also 100.00%, which proves that the recognition
model shows the certain stability of inter-genus recognition and
potential to recognize bacteria of the same genus outside the
training set.

5 Conclusion

In this paper, common bacterial microorganisms in water are
chosen as the research object; four identification models of BP, RBF,
GRNN, and PNN are established, respectively; and the wavelength
variables are selected optimally using the CARS method; the
identification performance of the four models for target bacteria
is compared. The results show that compared with the full-band
model, the four neural network models based on the characteristic

TABLE 3 Identification rate and calculation time of four neural networks based on the characteristic wavelengths.

Model Species No. of wavelength
points

Overall recognition
rate/%

Recognition
rate/%

Computing
time/s

CARS–BP E. coli 35 93.33 100.00 0.81

K. pneumoniae 83.33

S. aureus 100.00

S. typhi 100.00

E. coli (DH5a) 83.33

CARS–RBF E. coli 35 90.00 100.00 0.064

K. pneumoniae 83.33

S. aureus 66.67

S. typhi 100.00

E. coli (DH5a) 100.00

CARS–GRNN E. coli 35 91.67 100.00 0.04

K. pneumoniae 100.00

S. aureus 100.00

S. typhi 100.00

E. coli (DH5a) 58.33

CARS–PNN E. coli 35 100.00 100.00 0.04

K. pneumoniae 100.00

S. aureus 100.00

S. typhi 100.00

E. coli (DH5a) 100.00
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wavelength can improve the performance of bacterial recognition;
the CARS–PNN model is the best, the identification accuracy of the
five tested bacteria is 100.00%, and the computing time is only 0.04 s.
This study demonstrates that multi-wavelength transmission
spectroscopy combined with the CARS–PNN model can
effectively identify bacterial microorganisms, providing a simple,
accurate, and reagent-free newmethod for the rapid identification of
bacteria in water.
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