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Accurate monitoring of ozone (O3) concentrations by remote sensing is essential
for achieving pollution control and ecological protection. However, the existing
O3 remote sensing data with a low spatial resolution do not facilitate fine-grained
studies of small-scale urban clusters. In this study, the multiscale geographically
weighted regression kriging (MGWRK) method was used to spatially downscale O3

remote sensing products (10 km × 10 km). Downscaling factors were selected
from meteorological factors and vegetation, aerosol optical thickness (AOD), and
air pollutant emission inventory data. Spatial heterogeneity and scale differences
among the factors were considered and compared via multiple regression kriging
(MLRK) and geographically weighted regression kriging (GWRK) to generate 1-km
annual and seasonal O3 remote sensing products. The results showed that I) the
downscaling accuracy of each model can be expressed as MGWRK > GWRK >
MLRK; the local downscaling model yields data that are more consistent with the
actual spatial distribution of O3 after considering the spatial heterogeneity of the
influencing factors; and the downscaled annual and seasonal data exhibit
satisfactory spatial texture characteristics and consistency with the original
spatial distribution of O3, while the distribution boundary problem of image
elements is eliminated. II) Nitrogen oxide (NOx) and volatile organic compound
emissions and temperature exhibit strong positive correlations withO3, while wind
speed, humidity, the normalized difference vegetation index, and AOD indicate
weak positive correlations with O3. Moreover, precipitation exhibits a weak
negative correlation with O3. III) The coefficient of determination (R2) of the 1-
km resolution annual O3 concentration data after downscaling based on the
MGWRK model reaches 0.93, while the RRMSE and MAE values are only 3% and
1.86, respectively, with a coefficient of variation of 9.55%; the downscaling
accuracy of the seasonal O3 concentration data is higher in summer and
winter than during the other seasons, with R2 greater than 0.85, further
confirming the spatial and temporal downscaling advantages of the MGWRK
model for O3 in the Chang-Zhu-Tan city cluster. This further corroborates the
feasibility of the MGWRK model for spatial and temporal O3 downscaling in the
Chang-Zhu-Tan urban area.
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1 Introduction

Near-surface ozone (O3) has become a major pollutant in some
urban areas in recent years, especially in spring and summer (Liu et al.,
2021). It is an important secondary pollutant that is mainly produced
by a series of photochemical reactions that occur between nitrogen
oxides (NOx) and volatile organic compounds (VOCs) that enter the
atmosphere in the presence of sunlight (Chen et al., 2022). Transient
or prolonged exposure to high ozone concentrations can cause asthma
and respiratory and cardiovascular diseases, which can be fatal for
certain populations (e.g., pregnant women, infants, and children)
(Chan et al., 2006; Li et al., 2021). The 2030 agenda of the Sustainable
Development Goals released by the United Nations clearly states that
by 2030, proactive and effective measures should be developed to
significantly reduce the number of deaths and illnesses caused by air
pollution, including O3 (United Nations, 2015).

Fine-scale information on the spatial distribution of near-
surface ozone is needed to implement precise pollution
prevention and control measures. Currently, ozone monitoring
based on remote sensing satellites can compensate for the
shortcomings of traditional air pollution monitoring stations, but
the spatial resolution of existing ozone remote sensing product data
or inverse ozone data is not fine enough to support studies on small
regional scales (Yang et al., 2021). Downscaling techniques can
effectively address this shortcoming, and statistical regression-based
downscaling techniques have been increasingly used to obtain high-
spatial resolution data. The statistical regression downscaling
method assumes that the scale of the relationship remains
constant; the fitted relationship between O3 and various
influencing factors does not change with the scale of remote
sensing images (Zhan et al., 2010). Specifically, the fitted
relationship between O3 and the considered factors obtained at a
low resolution can be used to estimate the O3 concentration.
Notably, deep learning-based downscaling methods are the latest
techniques for downscaling lower-resolution images to match
higher-resolution images. Compared with statistical regression
downscaling methods, deep learning-based methods can
approximate any relationship given two datasets, namely, they
can effectively learn the relationships between high- and low-
resolution pairs of images (Lanaras et al., 2018; Yang WM. et al.,
2019a; Mukherjee and Liu, 2021). However, in some cases, it is
difficult to obtain two datasets with different resolutions, and the
statistical regression downscaling method becomes more practical.

Currently, downscaling methods based on statistical regression
are widely applied to surface temperature (Yang C. et al., 2019b; Wu
et al., 2019; Zang et al., 2020), precipitation (Gu et al., 2009; Tian
et al., 2011), soil moisture (Sun et al., 2020), aerosol optical thickness
(AOD) (Zhang et al., 2022), and other data. According to the
different datasets used for regression modeling, downscaling
methods can be divided into global and local models. Global
models apply as many datasets as possible to build a global
model for spatial downscaling analysis. For example, Fan et al.
(2021) established a TRMM satellite precipitation downscaling
model based on multiple linear regression (MLR) and obtained a
high-resolution and high-precision satellite ground fusion
precipitation product. Zhu JH. et al. (2021a) constructed a
random forest downscaling model to achieve multilevel
resolution surface temperature data. Wang et al. (2018) applied

artificial neural networks to surface temperature downscaling and
found that the results were more accurate than those derived from
the traditional hierarchical linear regression downscaling method.

Researchers are increasingly reporting that the local
characteristics of variables are critical to obtain more accurate
relationships among spatial variables, and the spatial heterogeneity
of the explanatory variables should be considered in downscaling
analysis (Chen et al., 2014; Zhou et al., 2016). Notably, a local model
based on part of the dataset can be utilized to describe the
spatially varying relationships among the different variables. Duan
and Li (2016) proposed a new downscaling algorithm based on
geographically weighted regression that considers the geospatial
variability among variables; the results showed that its
performance was superior to that of the Ts HARP global model,
significantly improving the spatial resolution of ground surface
temperature data. Zhu XM. et al. (2021b) introduced multiscale
geographically weighted regression to consider the scale differences
among the covariate factors of the surface temperature mechanism;
relatively accurate results were obtained.

Although local models that consider spatial heterogeneity are
more effective than global models for downscaling spatial data, the
occurrence of spatial dependency among spatial data suggests that
incorporating spatial dependency into local models may further
improve their downscaling accuracy. Actually, local models with
integrated geostatistical methods based on spatial dependency (such
as kriging) have exhibited outstanding performance in spatial
modeling and prediction. For instance, Kumar et al. (2012)
developed a geographically weighted regression kriging (GWRK)
model to study the relationship between environmental variables
and soil organic carbon stocks in Pennsylvania, United States, thus
improving the accuracy of soil organic carbon stock estimation.
However, existing research on downscaling has mainly focused on
climatic and natural factors (surface temperature, precipitation, and
biomass), whereas few studies have focused on the application of
downscaling techniques to address air pollutant data. In addition,
the ozone pollution state in small and medium urban areas is often
neglected; larger urban areas with rapid economic development and
more serious air pollution are more closely monitored.

Consequently, in this study, the Chang-Zhu-Tan urban
agglomeration is selected as the study area, and a downscaling
model for ozone remote sensing products is proposed based on the
multiscale geographically weighted regression kriging (MGWRK)
method. China High Air Pollutants (CHAP) ozone remote sensing
data are selected as the data source, and ozone precursor emissions
and their meteorological factors are used as covariates to achieve
a downscaled ozone remote sensing product from 10 km ×
10 km–1 km × 1 km based on the relational scale invariance.

2 Materials and methods

2.1 Study area

The urban agglomeration of Changsha, Zhuzhou, and Xiangtan
is the core area of economic development and urbanization in
Hunan province (Figure 1), with a total area of approximately
28,087 km2. This area is a key region within the national air
pollution prevention and control system, with a dense

Frontiers in Environmental Science frontiersin.org02

Cheng et al. 10.3389/fenvs.2023.1267752

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1267752


population, rapid industrialization and urbanization, and a wide
range of pollution sources, with the air quality index ranking at the
bottom of Hunan province (Wang et al., 2017).

2.2 Data source and processing

2.2.1 Ozone data
Remote sensing-derived O3 concentration data were acquired

from the CHAP dataset with a spatial resolution of 10 km × 10 km
(https://weijingrs.github.io/product.html). The data were generated
from numerous ground-based observations, satellite remote sensing
products of the NASA Aura/OMI satellite sensor, atmospheric
reanalysis data, and model simulations. Data from 68 air quality
monitoring stations in and around the Chang-Zhu-Tan urban
agglomeration were obtained from the national real-time air
quality release platform (http://106.37.208.233:20035/) of the
China General Environmental Monitoring Station, and the
annual and seasonal average concentrations were obtained from
hourly concentration data. The average and standard deviation of
the 2017 annual data are 84.13 and 7.47 μg/m3, respectively.

2.2.2 Auxiliary data
The factors used in this study include meteorological factors

(annual mean temperature, annual precipitation, annual mean wind
speed, and annual mean relative humidity), the normalized
difference vegetation index (NDVI), pollutant emissions (NOx
and VOCs), and AOD. Among them, meteorological and AOD
data were obtained from the National Earth System Science Data

Center (http://www.geodata.cn/myspace/userInfo/), which were
extracted and collated by raster calculation to obtain an annual
average dataset with a spatial resolution of 1 km × 1 km. Vegetation
index data were obtained from the China Resources Science and
Data Centre (https://www.resdc.cn/), with a spatial resolution of
1 km × 1 km. Pollutant emission data with a spatial resolution of
10 km × 10 km were retrieved from the Multiscale Emission
Inventory of China (http://meicmodel.org/), covering five types of
anthropogenic emission sources, such as power, industry, civil,
transportation, and agriculture, which are widely used in
pollution cause analysis, air quality forecasting, and early
warning development. It is difficult to obtain complete datasets
over multiple years. For example, the most recent publication year
for the pollutant emission data is 2017; thus, to ensure data
uniformity over time, 2017 was chosen as the downscaling year
in this study. In addition, basic geographic information data were
obtained from the National Geographic Information Resources
Catalogue Service System (https://www.webmap.cn/). The spatial
distribution of the raw data is shown in Figure 2.

2.3 Methods

2.3.1 Multiple linear regression kriging
Multiple linear regression kriging (MLRK) is a combination of

MLR and kriging (Jin et al., 2016) that uses linear regression
obtained by the ordinary least squares (OLS) method and can be
optimized for kriging methods. A kriging estimation analysis is
performed on the residuals generated from MLR prediction. y(si)

FIGURE 1
Location of the study area.
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represents the dependent variables, where si (i = 1, . . ., n) denotes the
spatial location, and n is the number of locations or spatial samples.
The estimated value ŷ(si) can be expressed as follows:

ŷ si( ) � ŷMLR si( ) + êRK si( ) � β̂0 +∑m
j�1
β̂jxj si( ) +∑n

k�1
λk si( )e si( ), (1)

where ŷMLR(si) is the deterministic component fitted by MLR,
and êRK(si) is interpolated by ordinary kriging. Furthermore, in

the regression model, β̂0 is the intercept term, β̂j is the estimated
coefficient for the jth independent variable, and m is the number
of independent variables. In kriging, λk(si) denotes the
interpolation weight based on the spatial dependence structure
of the residuals, and e(si) is the regression residual at location si.
The regression coefficients for MLR can be computed by using
OLS, and interpolation weights can be obtained by solving a
system of kriging equations based on the residuals and their
variogram.

FIGURE 2
Spatial distribution map of the influencing factors: (A) ozone concentration, (B) temperature, (C) precipitation, (D) relative humidity, (E) NDVI, (F)
wind speed, (G) AOD, (H) NOx emission, and (I) VOC emission.
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2.3.2 Multiscale geographically weighted
regression kriging

GWRK compensates for the significant limitations of global
regression models or MLR, which cannot capture spatially non-
smooth relationships between variables. These types of relationships
are captured by embedding the spatial location information of
multiple variables. This method allows the relationship between
variables to vary with the geographic location by creating local
regression equations at each point within the spatial range and can
reflect neglected local characteristics (Yang et al., 2018a; Yang et al.,
2023). However, in the GWR model, the determined optimal
effective bandwidth is shared by all independent variables, while
the model does not consider the variability in the spatial scales of the
relationships between the different environmental covariates and
dependent variables. In response to the limitations of the GWR
model, Fotheringham et al. (2017) proposed a MGWR model that
eliminates the single bandwidth assumption and indicates that
multiple scales more closely match the spatial processes of the
actual state; it can be expressed as follows:

ŷMGWR si( ) � β̂bw0 si( ) +∑m
j�1
β̂bwj si( )xj si( ), (2)

where ŷMGWR(si) is the predicted value of O3 at location si; β̂bw0(si)
is the intercept term with bandwidth bw0 at location si; and β̂bwj(si)
is the jth local regression coefficient with bandwidth bwj at location
si. The regression coefficients of theMGWRmodel can be computed
using the back-fitting algorithm. Details can be found in the work of
Fotheringham et al. (2017).

Based on Eq. 1, the MGWRKmodel can be expressed as follows:

ŷ si( ) � ŷMGWR si( ) +∑n
k�1

λk si( )e si( ), (3)

where the estimated value can be obtained by the combination of the
MGWR model and MLRK method.

2.4 Spatial downscaling of O3 remote
sensing datasets

While the O3 remote sensing data products area is characterized
by insufficient information at low spatial resolutions in the region,
spatial downscaling methods can be used to convert large-scale, low-
resolution data into small-scale, high-resolution data. In this study,
spatial downscaling of the O3 product is based on the MGWRK
model; the detailed downscaling procedure is described as follows:

(1) The downscaled factor remote sensing data of different spatial
resolutions are unified in the coordinate system and
interpolated to spatial resolutions of 10 km × 10 km and
1 km × 1 km by bilinear interpolation. The auxiliary data at
a spatial resolution of 1 km × 1 km, such as NDVI and DEW, are
converted to those at a spatial resolution of 10 km × 10 km by
upscaling methods, such as average aggregation.

(2) With the use of the low-resolution O3 remote sensing data at the
unified scale as the dependent variable and the downscaling
factors as independent variables, the MGWR model is used
to construct multiscale spatially non-stationary functional

relationships between O3 and the downscaling factors at a
10-km resolution, and the constant terms and regression
coefficients of all variables and residuals are obtained from
the regression model.

O3 10 km( ) � f NDVI10km, AOD10km, ...,pre10km( ), (4)
where O3 (10 km × 10 km) denotes the O3 data estimated as a
function at a 10-km resolution; f() denotes the scale-converted
MLRK, GWRK, and MGWR functions; and NDVI (10 km ×
10 km), AOD (10 km × 10 km), and pre (10 km × 10 km) denote
the NDVI, aerosol optical thickness, and precipitation factors,
respectively, uniformly sampled to a 10-km resolution.

(3) The above model results are rasterized using the kriging method,
and the regression coefficients, constant terms, and residuals of all
downscaling factors are resampled to a spatial resolution of 1 km ×
1 km. Notably, the established relationships from the 10-km data
are resampled via bilinear interpolation to generate corresponding
relationships at a spatial resolution of 1 km × 1 km.

(4) Based on the above estimated relationships at a spatial
resolution of 1 km × 1 km, each downscaled factor coefficient
is multiplied by the explanatory variable corresponding to its
resolution and added to the constant term (1 km × 1 km) to
obtain predicted O3 values (1 km × 1 km).

(5) Finally, the high-resolution residuals ΔO3 (1 km × 1 km) are
added to the predicted O3 values to obtain the final 1-km high-
resolution O3 values.

2.5 Downscaling model validation

The coefficient of determination (R2), mean absolute deviation
(MAE), and relative root mean square error (RRMSE) indicators are
introduced to verify the accuracy of the downscaling results. R2,
MAE, and RRMSE capture the degree of goodness-of-fit and data
deviation between the observational values and the downscaled
values of the model. These metrics can be calculated as follows:

FIGURE 3
Scatter plot of the annual average measured ozone
concentrations and CHAP values at the sites.
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R2 �
∑n
i�1

ŷi − μŷi( )
∑n
i�1

yi − μyi( ) , (5)

MAE � 1
n
∑n
i�1

yi − ŷi

∣∣∣∣ ∣∣∣∣( ), (6)

RRMSE �

�����������
1
n ∑n
i�1

yi − ŷi( )2√
1
n ∑n
i�1
yi

× 100%, (7)

where yi and ŷi denote the true and estimated O3 concentrations,
respectively; μyi

and μŷi
are the mean observed O3 concentration and

estimated O3 concentration after downscaling analysis, respectively;
and n denotes the number of validation samples.

3 Results and analysis

3.1 CHAP O3 data applicability analysis

The CHAP dataset has been widely used to study the effects of
air pollution on the environment, health, and economy, but these
data are all targeted at large scales. To ensure the feasibility and

accuracy of the ozone remote sensing dataset in the Chang-Zhu-Tan
urban agglomeration and the reliability of the downscaled results,
the applicability of the CHAP data was first analyzed. The ozone
concentration at air quality monitoring stations in and around the
Chang-Zhu-Tan urban agglomeration in 2017 was used as the
dependent variable, and the corresponding annual-scale CHAP
ozone data were used as the independent variable. Figure 3
shows that the linear regression coefficient is 0.96, the correlation
coefficient at the 99% confidence level is higher than 0.93, and the
RRMSE is 3%. These results indicate that the CHAP remote sensing
product can provide high data quality in the Chang-Zhu-Tan urban
agglomeration.

3.2 Statistical description

The multicollinearity of factors can affect the regression results.
In this study, the variance inflation factor (VIF) combined with
correlation analysis (Pearson) was used to explore the
multicollinearity of the downscaling factors; the results are listed
in Table 1. All VIF values of precipitation, wind speed, AOD, NDVI,
NOx, VOCs, humidity, and temperature are less than 5, indicating
the weakness of multicollinearity among the considered factors. The
Pearson correlation results in Table 2 show that all eight factors are

TABLE 1 Downscaling factors and collinearity statistics.

Variable Min. Max. Mean Standard deviation VIF

Pre (mm) 1121.20 1611.92 1366.55 107.86 4.13

Wind (m/s) 0.74 1.65 1.20 0.18 1.71

AOD 0.44 0.74 0.59 0.06 4.23

NDVI 0.07 0.90 0.49 0.17 4.20

NOx (million moles) 298.02 16978.67 8638.34 4505.65 3.30

VOCs (million moles) 1158.73 41859.65 21509.19 10144.55 4.34

Hum (%) 7.57 86.03 46.81 12.18 3.85

Tem (°C) 16.74 19.25 17.95 18.30 1.44

TABLE 2 Correlation coefficient matrix of the impact factors.

Pre Wind AOD NDVI NOx VOCs Hum Tem O3

Pre —

Wind −0.264 — .

AOD −0.768** 0.502** —

NDVI 0.377* −0.235 0.530** —

NOx −0.166 0.342* 0.536** 0.447** —

VOCs 0.446** −0.191 0.416** 0.613** −0.327* —

Hum 0.092 0.430** 0.155 −0.197 0.149 −0.022 —

Tem −0.266 0.351* 0.611** 0.496** 0.639** −0.396* 0.154 —

O3 −0.273* 0.167* 0.253* 0.267* 0.514* 0.439* 0.136* 0.499* —

* and ** denote correlations significant at the 0.05 and 0.01 levels, respectively (two-tailed).
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significantly correlated at the 0.05 level, with VOCs, NOx emissions,
and temperature showing strong positive correlations with ozone,
while wind speed shows a weak positive correlation with ozone. The
increase in precursor emissions directly exacerbates photochemical
reactions, leading to higher ozone concentrations; the increase in
solar radiation intensity with an increase in temperature accelerates
photochemical reactions, leading to higher O3 concentrations (Song
et al., 2022). Wind imposes a certain dilution and transport effect on
pollutants, with the average annual wind speed in the Chang-Zhu-
Tan urban agglomeration ranging from 0.74 to 1.65 m/s. A low
wind speed (2 m/s) has been shown to promote the mixing of
pollutants (Xu et al., 2023), leading to the production of precursors
such as NOx and VOCs and promoting photochemical reactions
(Requia et al., 2019), resulting in higher O3 concentrations. The
negative correlation between precipitation and ozone may be
attributed to the scouring effect of precipitation on O3 and the
lower solar radiation when precipitation is high, which, to
some extent, positively affects temperature reduction (Huang
et al., 2020).

3.3 Comparison of the accuracy of the
downscaled results

The downscaled CHAP ozone remote sensing data (1 km ×
1 km) are shown in Figures 4B–D. After the application of the
different downscaling models, the spatial resolution is greatly
improved, and the spatial distribution of the ozone concentration
is consistent with that of the original dataset overall as shown in
Figure 4A. The spatiaFanl resolution is enhanced, and more detailed
spatial information is obtained. Higher ozone concentrations in the
Chang-Zhu-Tan urban agglomeration are concentrated in the
central region. High values are distributed in the middle, and low
values are distributed in the surrounding areas. Furthermore, the
overall concentrations in Changsha and Xiangtan are higher than
those in Zhuzhou, resulting in higher ozone concentrations.

Performance validation of each model was implemented at a
spatial resolution of 1 km × 1 km by using the data from 68 stations.
The scatter plots in Figure 5 show that the downscaling accuracy of
each model can be expressed as MGWRK > GWRK > MLRK, the

FIGURE 4
Comparison of the results of the three downscaling method. (A) before downscaling; (B) MLRK; (C) GWRK; (D) MGWRK.
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downscaling accuracy of the MGWRK and GWRK models is
improved after considering the local spatial heterogeneity of the
factors, and the MGWRK model performs better than the GWRK
model, indicating that the scale difference between the different
factors influences the downscaling results. The validation results
showed that 93%, 81%, and 78% of the variance from the
observations could be accounted for by the predictions from the
MGWRK, GWRK, and MLRK models, respectively, indicating that
the models provide a certain reliability and stability. The
downscaling results of the MGWRK model were the best, with
RRMSE and MAE values of only 3% and 1.86, respectively, and the
downscaled O3 concentrations ranged from 64.1 to 95.6 μg/m3, with
a mean value of 82.9 μg/m3 and a coefficient of variation of 9.55%.
The coefficient of variation was 9.55%, which better conforms with
the statistical characteristics of the original CHAP ozone remote
sensing data and indicates that the accuracy of the original data is
basically retained.

3.4 Seasonal ozone concentration
downscaling results

First, existing ozone remote sensing datasets are mostly annual-
scale data or spatially interpolated data from ground-based air quality
monitoring stations, and monthly and seasonal-scale datasets are
lacking. Second, due to the inhomogeneous spatial distribution of air
quality monitoring stations, spatially interpolated data often exhibit
large errors. Therefore, based on CHAP ozone remote sensing
products with a 10 km × 10 km spatial resolution at the seasonal
scale, in this research, the MGWRK method was used to generate a
seasonal-scale O3 dataset, and the remaining six downscaling factors
(precipitation, temperature, wind speed, relative humidity, AOD, and
NDVI) were used for downscaling due to the lack of monthly scale
NOx and VOC data in the 2017 MEIC emission inventory.

Figures 6, 7 show the downscaling results and scatter plots,
respectively, of the MGWRK-based ozone concentrations for all
seasons compared to the station observations. The mean absolute
error (<8 μg/m3) indicates that the downscaling accuracy of the
MGWRK model is high in all seasons, especially in summer,
where R2 is the highest (0.95). The MAE value is 4.84, indicating
that the higher the ozone concentrations, the higher the downscaling

accuracy and the better the downscaling effect. The spatial
distribution of the ozone concentrations in spring and summer is
higher than that of the ozone concentration in autumn and winter,
with high values concentrated in the central parts of the Chang-Zhu-
Tan urban agglomeration, especially in the districts of Yuelu, Tianxin,
Yuhua, and Yuhu. The drier weather and higher solar radiation in
spring and summer in Hunan province accelerate photochemical
reactions and, thus, promote O3 accumulation, which is consistent
with the work of Liu et al. (2022), showing that O3 exhibits notable
seasonal characteristics (Lin and Guo, 2022); moreover, seasonal-scale
O3 remote sensing data can provide reliable data to explore its spatial
variability and pollution prevention and control.

4 Discussion

Currently, downscaling is increasingly applied in the field of air
pollution analysis; examples include the downscaling of AOD
products (Li et al., 2020; Liang et al., 2022), estimation of the
PM2.5 concentration (Zhang and Pan, 2020), and generation of
long-term hourly 0.25° global PM2.5 datasets (Valencia et al.,
2022). Existing statistical downscaling methods are used in the
downscaling of O3 remote sensing products. However, traditional
statistical downscaling methods assume that the relationship between
the dependent variable and the downscaling factor remains spatially
constant (Zhan et al., 2018), ignoring the spatial heterogeneity in
environmental variables and the variability of different environmental
variables across different scales. Therefore, in this study, the MGWR
method was proposed for the spatial downscaling of satellite-based
ozone datasets by combining this method with kriging.

Compared with the MLRK model, the GWRK and MGWRK
methods can capture the spatially varying relationships between
the O3 concentration and its associated variables. Notably, if
spatial heterogeneity exists among the different variables, the
MLRK and GWRKmethods can yield better fitted results than the
MLRK model; conversely, they cannot provide accurate
prediction results. Furthermore, compared with the GWRK
model, the MGWRK method can reveal multiple scale effects
of different independent variables on the O3 concentration.
Moreover, if the scale effect does not exist, the prediction
accuracy of the MGWR model may be similar to that of the

FIGURE 5
Scatter plot of the downscaling validation results. (A) MGWRK; (B) GWRK; (C) MLRK.
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GWRK model. The experimental results for the Chang-Zhu-Tan
urban agglomeration, China, show that the downscaling accuracy
of the MGWRK and GWRK models is higher than that of global
regression (MLRK). This indicates that spatially varying
relationships can be identified between the O3 concentration
and its associated variables in the case study. The MGWRK
method achieves the best fitting accuracy on both annual and
seasonal scales, which demonstrates that the consideration of
multiple scale effects can more effectively capture the complex
relationships in downscaling O3 datasets.

Actually, both MGWR and the other two models assume linear
relationships. This assumption determines their intrinsic
inadequacy in characterizing complex non-linear relationships
(Fotheringham et al., 2017). Notably, the MGWR model cannot
effectively describe complex non-linear relationships among spatial
variables. In this case, machine learning or deep learning is an
alternative technique to address non-linear relationships. However,

machine learning and deep learning usually require samples with
independent and identical distributions, and they cannot manage
spatial data with scale effects and spatial heterogeneity well (Yang
et al., 2018b). Moreover, most machine learning models or deep
learning models require many samples in the training process.
Therefore, statistical regression downscaling methods, such as the
MGWR model, cannot be replaced. The experimental results also
prove that the statistical regression downscaling method can achieve
a relatively satisfactory accuracy and is practical.

However, there are still certain uncertainties in the O3 dataset
that may lead to errors. First, the resampling of environmental
variables from a higher to a lower spatial resolution may lead to
smoothing effects. In this study, a downscaling model is constructed
based on their relationship at the 10-km scale. When the
environmental variables are resampled, bilinear interpolation
replaces the value of each environmental variable with the
average value of the surrounding neighboring pixels, thus losing

FIGURE 6
Results of MGWRK-based downscaling of the O3 concentrations during the four seasons. (A) Spring; (B) Summer; (C) Autumn; (D) Winter.
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some characteristic information of the variables and producing a
relative smoothing effect. Second, a total of 68 air quality monitoring
stations were used to validate the downscaling results in this study,
and the sparsely distributed validation data may have affected the
accuracy of the estimates. Finally, other environmental variables are
neglected. There are other environmental variables that may also
affect the spatial distribution of O3, such as insolation, solar
radiation, and DEM. In this study, only precipitation, humidity,
temperature, wind speed, NDVI, AOD, and emission inventory data
(NOX and VOCs) are considered, which may lead to uncertainty in
the downscaling results.

5 Conclusion

In this research, the MGWRK model was proposed for the
spatial downscaling of satellite-based ozone datasets. This method
considers the spatial dependency of variables and can be used to
account for the spatially varying relationships between the O3

concentration and its associated variables at different spatial
scales. The method was assessed for scaling down the ozone
remote sensing products in 2017 from a spatial resolution of
10 km × 10 km–1 km × 1 km in the Chang-Zhu-Tan urban
agglomeration via comparisons with MGWR and MLRK. The

MGWRK model achieved the most accurate predictions of ozone.
Moreover, this study demonstrated that the MGWRK model, with
the consideration of spatial effects, captured the complex
relationships between the ozone concentration and its associated
variables. This downscaling method can also be used for spatial
downscaling of other spatial data products. Additionally, the derived
1-km spatial resolution annual and seasonal ozone remote sensing
data products provide useful information for other relevant studies
of the area, such as environmental and public health and air
pollution prevention and control.
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