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The Huaihai Economic Zone (HEZ) has excellent topographic and climatic
conditions and is recognized as one of China’s major grain production areas.
Identifying the spatiotemporal evolution patterns of arable land and the driving
factors can offer valuable insights for protecting arable land, optimizing land use
layout, and developing ecological economics in HEZ. In this paper, we analyze the
spatiotemporal evolution patterns using spatial autocorrelation, land use transfer
matrix, and kernel density calculations and investigate the driving factors of arable
land evolution with Geodetector. The results show the following trends in the
distribution of arable land within the HEZ: 1) The kernel density distribution of the
arable land in HEZ remained relatively consistent from 2005 to 2020, but the
density showed a downward trend over time. 2) The distribution of arable land in
HEZ exhibited lower density in the Northeast and higher density in the Southwest,
showing growth in the initial stage and subsequent declines in the intermediate
and final phases. 3) A significant positive spatial correlation was observed in the
distribution of arable land inHEZ. Themain local cluster typeswere the “high-high”
and “low-low” clusters, and their distribution characteristics were similar to the
kernel density of arable land. 4) The change of arable land in HEZ between
2005 and 2020 was primarily driven by the conversion of land types, with a
notable shift towards grassland and construction land 5) The main driving factors
affecting the spatial distribution of arable land in HEZ included traffic accessibility,
air temperature, precipitation, elevation, and slope. The secondary driving factors
were land use and soil type. Over time, population and GDP have also evolved into
significant driving factors. 6) The factors were bi-enhance after the interaction. In
the future, all cities within HEZ should implement rigorous control measures to
limit the expansion of arable land usage. Their primary focus should be on
revitalizing existing construction land while strictly upholding the
“compensation determines occupation” principle. They should also work to
optimize the arrangement of arable land and give increased consideration to
the interactive effects of traffic accessibility, population, and GDP to protect arable
land in a more focused and effective manner.
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1 Introduction

Grain production and security are significant strategic
concerns tied to economic development, social stability, and
national independence, and arable lands are the foundation to
ensure national grain security (Wang and Qian, 2019; Gao and
Wang, 2020; Su et al., 2020). Considering China’s endowment of
arable land resources, the outlook is not promising. The
topography of China is characterized by numerous
mountainous regions, limited plains, and extensive soil erosion.
The arable land predominantly consists of medium-and low-yield
fields with a fragmented distribution (Pei et al., 2014). The eastern
regions, known for their excellent topographic and climatic
conditions, often prioritize economic development, making it
challenging to ensure better protection of high-quality arable
land. As China experiences social and economic development
and continuous population growth, the limited land struggles to
meet the demand for construction land, resulting in the inevitable
conversion of arable land into construction land. However, the
balance of arable land often fails to supplement prime farmland
after the requisition of prime farmland, leading to an overall
decline in the quality of arable land in China. To this end, the
relevant ministries and commissions of the Chinese government
issued documents on arable land protection (Ye et al., 2023) and
rural revitalization (Liu et al., 2023) in 2017 and 2022, respectively,
proposing stringent arable land protection measures and adhering
to the red line for arable land and permanent prime farmland.
Therefore, identifying the spatiotemporal evolution patterns of
regional arable land and detecting the driving factors can provide
an essential theoretical basis for achieving a dynamic balance
between regional economic development and arable land
protection.

The global rate of urbanization has been on the rise as human
society has advanced. Scholars worldwide express concerns about
changes in arable land as a fundamental resource for grain
production, with some focusing more on the ecology of
cultivated landscapes in urban areas (Song and Gin, 2002; Song
and Gin, 2003). In recent years, some researchers have studied the
effects of farming management practices (Gupta et al., 2010) and
land type transfer (Gebremedhin et al., 2018; Kazlauskaitė-Jadzevičė
et al., 2019; Gebresamuel et al., 2022) on cropland soil properties and
vegetation cover from a microscopic perspective to investigate
changes in cropland soil quality. The increase in urbanization has
brought about significant changes in both the quantity and quality of
arable land, leading to growing interest among international
scholars in food production security issues. The degradation of
arable soils has been investigated at various scales, including regional
(Adugna and Abegaz, 2016; Störrle et al., 2016), national (Daedlow
et al., 2018), and global (Prăvălie et al., 2021). As non-grain
production has advanced, people’s awareness of food security has
grown, and research on arable land has become more global and
macroscopic in scope. For example, some scholars have studied the
spatial and temporal evolution of cropland (Hatna and Bakker,
2011), and others have investigated the driving factors behind
cropland changes (Boru et al., 2015; Arowolo and Deng, 2018;
Uisso and Tanrivermis, 2021) to examine cropland patterns and
causes and provide a foundation for cropland conservation (Haggar
et al., 2021). Amidst global warming concerns, countries worldwide

are urging carbon emissions reduction, and the study of carbon
stock changes during cropland utilization (Desyatkin et al., 2018) is
emerging as a new research trend.

In China, there are also numerous research results on arable
land, including spatiotemporal distribution and evolution
characteristics of arable land (Zhang et al., 2018; Chen et al.,
2019b; Zhang and He, 2020; Xie et al., 2021b; Geng et al., 2021),
evaluation of the arable land quality and evolution trend (Qin et al.,
2020b; Xu et al., 2021), evaluation of arable land function and
evolution characteristics (Yang and Tan, 2014; Qin and Wang,
2020a; He et al., 2020; Tang and Zang, 2021), transformation
evaluation and evolution of arable land use function (Shi and Li,
2018; Ran et al., 2020; Miao et al., 2021), arable land and national
grain security (Shan and Lai, 2011; Liu et al., 2019; Deng et al., 2021)
and arable land consolidation (Guan et al., 2020; Wang et al., 2020).
To determine the causes of the spatiotemporal evolution of arable
land, numerous researchers have examined driving factors, such as
the influence factors of the spatiotemporal evolution of arable land
in karst mountain areas (Zhang et al., 2020), the factors influencing
the abandonment of arable land in major grain-producing regions
(Zhou et al., 2021), and the driving factors of spatiotemporal
variability of arable land fragmentation in mountainous and hilly
areas of eastern Jiangxi province (Chang et al., 2021). In conclusion,
while most scholars have analyzed the spatiotemporal evolution
patterns of arable land in terms of overall trends, characteristics, and
independent factors, they have often overlooked the spatial
distribution autocorrelation and the interactive effects of multiple
factors on arable land’s spatiotemporal evolution.

HEZ is located at the southern edge of the Huang-Huai-Hai
plain, with excellent farming conditions, and is one of the major
grain-producing areas in China (Xie et al., 2021a). However, it also
faces economic challenges and is considered an economic
depression zone. In 2018, the State Council of the People’s
Republic of China approved the Development Plan of the Huaihe
River Eco-Economic Belt, which clarifies the scope of HEZ and
incorporates it into the national development strategy, aiming to
promote the coordinated development of each city and the
development of ecological economics. This study employs spatial
autocorrelation, land use transfer matrix, and kernel density
calculations to identify the spatiotemporal evolution patterns of
arable land in the Huaihai Economic Zone. Furthermore, it utilizes
Geodetector to analyze the driving factors behind these changes. The
study aims to support the development of practical arable land
protection policies and ensure food security in HEZ. This effort
plays a crucial role in establishing a dynamic balance between
sustainable economic growth and the preservation of arable land
within the region.

2 Materials and methods

2.1 Study area

The scope of HEZ consists of Xuzhou, Lianyungang, Suqian,
Suzhou, Huaibei, Shangqiu, Zaozhuang, Jining, Linyi, and Heze,
with an area of 95,481 km2, as shown in Figure 1. HEZ borders
Beijing, Tianjin, and Hebei in the north, the Yangtze River Delta in
the south, the coastal economic belt in the east, and the Central
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Plains urban agglomeration in the west, with highly convenient
traffic conditions. The topography of the whole region is mainly
plain, with a temperate monsoon climate. The average temperature
is 9.8–16.1°C, the average frost-free period is 200–220 days, and the
annual precipitation is 660–950 mm.

2.2 Data collection, pre-processing and
analysis

2.2.1 Data collection
2.2.1.1 Remote sensing image data from 2005 to 2020

Remote sensing images of HEZ from 2005 to 2020 were
obtained from the Geospatial Data Cloud (http://www.gscloud.
cn/). These images are in TIF format with a resolution of 30 m.
Specifically, the images in 2005 are based on Landsat4-5TM
satellite digital products, those from 2010 on Landsat7 ETM
SLC-off satellite products, the 2015 images on Landsat8 OLI/
TIRS satellite digital products, and the 2020 images on Landsat8-
9 OLI/TIRS C2 L2 products. The ENVI 5.3 software was used to
create interest zones for a total of six land use types, namely,
cropland, forest land, grassland, construction land, water, and
unused land, by combining the location and colors of the real
land use types of the HEZ region in Google Maps. Finally, with
the support vector machine classification method in ENVI 5.
3 software, the land use type maps of 2005, 2010, 2015, and
2020 were obtained, and the Kappa coefficients for remote
sensing image classification of the 4 years showed that the
overall accuracy ranged from 80% to 90%.

2.2.1.2 Detection factor data from 2010 to 2020
Data on precipitation, temperature, population, GDP, and soil

type in HEZ from 2010 to 2020 were sourced from the Resource and
Environmental Science and Data Center (RESDC) at the Chinese
Academy of Sciences (CAS) (https://www.resdc.cn/). The
meteorological data for 2020 were obtained from the National
Climate Data Center (ftp://ftp.ncdc.noaa.gov/pub/data/noaa/isd-
lite) and were interpolated using the ANUSPLIN interpolation
method, similar to the RESDC, CAS. Road data were acquired
from OSM (http://download.geofabrik.de/), and their density was
estimated as traffic accessibility data using GIS software. Elevation
and slope data were sourced from the SRTMDEMUTM 90 m
resolution digital elevation data product and the SRTMSLOPE
90 m resolution slope data product in the DEM digital elevation
data available on the Geospatial Data Cloud (http://www.gscloud.
cn/). All the mentioned data were resampled in GIS to standardize
the pixel size to 1,000 m and reclassified to discretize them as
detection factor data.

2.2.1.3 Single-period data
The administrative division data were obtained from the

RESDC, CAS (https://www.resdc.cn/).

2.2.2 Pre-processing and analysis
2.2.2.1 Kernel density calculation

Kernel density calculation is a statistical method for
nonparametric density estimation and is valuable for identifying
and analyzing hot and cold zones (Li et al., 2014). In kernel density
analysis, points falling within the radius are given different weights

FIGURE 1
Location of HEZ in China.
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according to their distance from the central sample point. The closer
they are to the central sample point, the higher their weight and the
resulting kernel density value. In the kernel density measurement of
arable land, the larger the estimated value of kernel density, the more
concentrated the distribution of arable land. In this paper, we
transformed the arable land map from 2005 to 2020 into arable
land element points using ArcGIS software, then calculated the
kernel density of the arable land element points using the Kernel
Density tool. Finally, we classified the computed value of arable land
kernel density using a five-level classification based on the Natural
Breaks method. To better compare the kernel density analysis maps
of different years, we graded the calculated kernel density values in
2010, 2015, and 2020 according to the classification threshold of
2005. This allowed us to generate kernel density distribution maps of
arable land from 2005 to 2020. The calculation formula, as defined
by Li et al. (2014), is as follows:

fn � 1
nh

∑n
i�1
k

x − xi

h
( ) (1)

In the formula, fn represents the estimated value of the kernel
density of cultivated land, indicating the number of cultivated land units
per square kilometer (plots/km2). n is the total number of cultivated
lands, and k denotes the kernel density function. x-xi represents the
distance between the calculated cultivated land and the sample
cultivated land, while h represents the smoothing parameters for the
cultivated land, which are calculated for the kernel density.

2.2.2.2 Global spatial autocorrelation
The global spatial autocorrelation describes the degree of

association and spatial characteristics between the attribute values
of each geographical element in a region, which can measure the
overall degree of spatial association and the difference between
regions (Anselin, 1995; Fotheringham, 2009; Li et al., 2013;
Anselin and Rey, 2014). In this paper, we generated a 10 km
arable land grid map using ArcGIS and calculated the arable land
area proportion for each grid square. In addition, the spatial weight
matrix was constructed based on the arable land map of HEZ from
2005 to 2020 using Geoda software. Finally, the arable land area
proportion was selected as a variable to calculate the globalMoran’s I
index, with the formula defined as follows (Anselin, 1995; Zhang
et al., 2023):

I �
n∑n
i�1
∑n
j�1
wij xi − �x( ) xj − �x( )

∑n
i�1
∑n
j�1
wij( )∑n

i�1
xi − �x( )2

(2)

Where I represents the globalMoran’s index, n is the number of
study areas, xi and xj are the cultivated land area of the i and j
regions, respectively. �x is the average value of xi, and wij is the
symmetric spatial weight matrix element of the i and j regions. The
globalMoran’s I value falls within the range of −1 and 1. At a specific
significance level, when the global Moran’s I is greater than 0, it
indicates a positive spatial autocorrelation. In other words, regions
with higher (or lower) arable land area are significantly clustered in
space. In this study, we use the Normalized value Z to test the
significance level of the global Moran’s I index. The formula for the
Normalized value Z is as follows (Li et al., 2013):

Zscore � I − E I( )







VAR I( )√ (3)

Where E(I) and VAR(I) represent the expected value and
variance of the global Moran’s I index, respectively.
Zscore>+1.96 or Zscore < −1.96 (α� 0.05) indicates a significant
spatial autocorrelation of arable land elements.

2.2.2.3 Local spatial autocorrelation
There are some differences in the spatial autocorrelation level

between different spatial units and adjacent regions in HEZ. Global
spatial autocorrelation cannot effectively express the type of arable
land agglomeration in HEZ (Ren et al., 2016). Hence, the detailed
state of arable land agglomeration is analyzed using the local spatial
autocorrelation. The utilization of LISA analysis facilitates
researchers in comprehending the spatial patterns of clustering
exhibited by high and low values of a variable inside a certain
geographical region (Brooks, 2019). In accordance with a
comprehensive global spatial autocorrelation analysis, this study
generates LISA cluster maps of arable land within HEZ employing
the Geoda software. LISA constitutes a visual representation of
localized Moran’s I values, primarily depicted as a Moran’s I
scatterplot (Anselin and Rey, 2014). In the local Moran’s I scatter
plot, the x-axis represents the variable values of each observation
(X), and the y-axis represents the summated values of the
observation’s neighbors (Y). Z-scores are calculated for these X
and Y values, and the origin of the scatter plot is set to a Z-score of
zero, which represents the mean value (Brooks, 2019). At the
confidence level of Zscore > + 1.96 or Zscore < − 1.96 (α� 0.05),
when the local Moran’s I > 0, the spatial distribution of arable
land shows clustering characteristics. If the localMoran’s is less than
0, it indicates a significant difference in the spatial distribution of
arable land with distinct features. The specific calculation formula is
as follows (Ren et al., 2016):

Ii � xi − �x( )
n

∑n
j�1
wij xj − �x( ) (4)

In the formula, Ii represents the local Moran’s index of the i
region, and the meaning of the other variables is consistent with that
in the global Moran’s index formula.

2.2.2.4 Land use transfer matrix
The land use transfer matrix quantitatively expresses the status

and changes of land use types at the beginning and end of the period.
They reflect the quantity and flow direction of land use types and can
reveal the macroscopic change pattern of land use in the study area
(Niu et al., 2021). In this paper, we transform the raster data of land
use status in 2005 and 2020 into a land use transfer matrix using
ArcGIS software. The mathematical model is as follows (Jin et al.,
2022):

Sij �
S11 S12 / S1n
S21 S22 / S2n
/ / / /
Sm1 Sm2 / Smn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (5)

Where Sij denotes the land use state at the beginning and end of
the study period,m and n are the corresponding land use types in the
two periods.
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2.2.2.5 Geodetector model
The Geodetector model is a statistical method to detect the spatial

differentiation between elements and their driving factors. It
encompasses four primary functions: interaction detection, ecological
detection, factor detection, and risk zone detection (Wang et al., 2010;
Wang and Hu, 2012; Wang and Xu, 2017). Factor detection involves
exploring the spatial heterogeneity of attribute Y and assessing the
explanatory power of factor X in relation to this variability. Interaction
detection identifies synergistic interactions between different risk factors
Xs, determining their combined impact on the dependent variable Y.
Risk zone detection assesses differences inmean attributes between sub-
regions, while ecological detection compares the effects of factors X1 and
X2 on the spatial distribution of attribute Y (Wang and Xu, 2017). Based
on the natural and socio-economic attributes of arable land, this study
selects four socio-economic driving factors (land use type, population,
GDP, and traffic accessibility) and five natural driving factors
(precipitation, air temperature, elevation, slope, and soil type). In
this context, Y represents the spatial distribution of arable land in
HEZ for the years 2010, 2015, and 2020, while Xs denote the driving
factors influencing this distribution, including land use types,
population, GDP, transportation accessibility, precipitation,
temperature, elevation, slope, and soil types. We analyzed the
driving factors of spatial and temporal differentiation of arable land
with the factor interaction and interaction detection functions of the
Geodetector model (Wang and Xu, 2017; Bian et al., 2023). The types of
interaction between two variables and their interactive impacts are
shown in Figure 2 (Wang and Xu, 2017).

This study uses the q value to measure the explanatory power of
the factors within the Geodetector model, as expressed in the
following formula (Wang and Hu, 2012):

q � 1−
∑L
h�1

Nhσ2h

Nσ2
(6)

Here, L represents the stratification of the dependent variable Y
or influencing factor X, reflecting its classification or partition. Nh

stands for the number of units within layer h; and N is the total

number of units across the entire study area. σ2h represents the
variance of layer h, while σ2 represents the variance of Y for the
entire area. q is the influence degree of driving factors on cultivated
land and its spatio-temporal evolution, and the value is between
0 and 1. The higher the q value, the stronger the explanatory power
of driving factors to the distribution and spatio-temporal evolution
of cultivated land (Wang et al., 2010; Bian et al., 2023).

3 Results

3.1 Characteristics of spatiotemporal
distribution

3.1.1 Distribution characteristics of kernel density
of arable land area

Figure 3 indicates that the spatial distribution of kernel density of
arable land in HEZ from 2005 to 2020 was roughly consistent. Arable
land with medium and high kernel density covered a wide area, mainly
concentrated in Heze, Shangqiu, Huaibei, Suzhou, Xuzhou, the eastern
part of Jining, the southern areas of Lianyungang and Linyi, as well as
the northern part of Suqian. The distribution area of arable land with
high density in 2015 and 2020 was significantly smaller than that in
2005 and 2010. There were only a few low-density areas of arable land,
primarily located in the northern part of Linyi, at the junction of Linyi,
Zaozhuang, and Jining, and scattered in the urban areas of each city.
Themaximumvalues for the kernel density of arable land in 2005, 2010,
2015, and 2020 were 1050.20, 1034.25, 1022.10, and 1050.00 plots/km2,
respectively. While there was a rebounded in 2020, there was a general
downward trend.

3.1.2 Spatial distribution and change types of arable
land area

The distribution of arable land in HEZ from 2005 to 2020 shows
a decrease in the northeast and an increase in the southwest
(Figure 4). More arable land is found in the northwest (Heze and
Jining), southwest (Shangqiu and Huaibei), and southeast (Suzhou

FIGURE 2
Types of interaction between two variables.
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and Suqian) of HEZ. In contrast, the northeast of HEZ, including the
area north of Linyi and the junction of Linyi, Jining, and Zaozhuang,
exhibits less arable land, mirroring the distribution characteristics of
arable land kernel density. The total area of arable land in the HZE
for 2005, 2010, 2015, and 2020 is 5.10, 5.37, 5.29, and 5.12 million
hectares, respectively. The total arable land increases before
2010 and decreases after.

Very few units of arable land remain unchanged in each period,
with more units increasing compared to those decreasing in the initial
stage (Figure 5). In comparison, the number of In comparison, the
number of units with increased arable land is fewer than those with
reduced land in the middle and final phases. Over time, the units with
reduced arable land show an increasing trend continuously.

The increase in arable land area initially decreased and then
increased over time (Table 1). Arable land increased significantly
from 2015 to 2020, while the decrease in arable land area continued
to rise and exceeded the increase during the middle and final phases.

Except for the growth of arable land in the initial stage, the arable land
area in the middle and final phases is in a state of negative growth.

3.1.3 Spatial distribution correlation of arable land
3.1.3.1 Global spatial autocorrelation

The globalMoran’s I index values of HEZ from 2005 to 2020 are
significantly greater than 0 (Table 2). The Z-values in 2005, 2010,
2015, and 2020 are 37.6825, 33.7846, 36.3673, and 33.8522,
respectively, which are more significant than the threshold value
of 1.96 and pass the test of significance level (α = 0.05), indicating
that the arable land in HEZ from 2005 to 2020 shows a significant
agglomeration distribution. In other words, the regions with a high
(low) proportion of arable land have a high (low) ratio in their
adjacent areas. The global Moran’s I index values from 2005 to
2020 are 0.6307, 0.5723, 0.5935, and 0.5763, respectively. Overall, the
global Moran’s I index’s values are decreasing, indicating that the
aggregation of arable land distribution shows a weakening trend.

FIGURE 3
Kernel density distribution of arable land in HEZ from 2005 to 2020. (A) 2005; (B) 2010; (C) 2015; (D) 2020.

TABLE 1 Increase and decrease of arable land area in HEZ in different periods.

Periods Increased area of arable land (hectares) Reduced area of arable land (hectares)

2005–2010 (Preliminary stage) 735,528 460,533

2010–2015 (Metaphase) 573,396 657,274

2015–2020 (Last phase) 656,482 821,616
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3.1.3.2 Local spatial autocorrelation
Figure 6 shows four distribution types of arable land within HEZ

on the LISA clustering map.

(1) ‘high-high’ type. These regions have a high proportion of arable
land within themselves and their adjacent areas, with minimal
spatial distribution differences, indicating an agglomeration
distribution. Excluding the regions of insignificant type, this
type is the most numerous. From 2005 to 2015, the number of
regions of the ‘high-high’ type regions remained stable. In 2020,
it significantly decreased, primarily transforming into
insignificant regions, with a few becoming ‘low-low’ type
regions. From 2005 to 2020, the ‘high-high’ type regions are
more prevalent in the western (Shangqiu, Heze, Jining),
southern (Huaibei, Suzhou), eastern (Suqian, Lianyungang)
parts of HEZ, as well as in northwestern Xuzhou City. The
regions of this type tended to shrink toward the central HEZ

from 2015 to 2020, with distribution characteristics similar to
arable land with high kernel density.

(2) ‘low-low’ type. These regions have a low proportion of arable
land within themselves and their adjacent areas, with minimal
spatial distribution differences, indicating an agglomeration
distribution. The number of ‘low-low’ type regions remained
consistent in 2005, 2015, and 2020, except for 2010. From
2005 to 2015, there were more ‘low-low’ type regions in the
northeast of HEZ, including the north of Linyi, the junction of
Zaozhuang, Jining, and Linyi, the water area, and the urban
areas of each city, similar to the spatial distribution of low kernel
density regions of arable land. By 2020, regions of this type had
reduced, mainly transforming into insignificant regions.
Meanwhile, some of the insignificant regions at the junction
of Lianyungang and Linyi transformed into the ‘low-low’ type.

(3) The number of ‘low-high’ and ‘high-low’ distribution types of
arable land in HEZ is minimal, with no apparent pattern.

3.1.4 Land use transfer matrix
According to Table 3 and Figure 7, forest land in HEZ decreased by

1179487.17 ha, and unused land decreased by 19,878.48 ha from
2005 to 2020. In contrast, grassland, construction land, arable land,
and water area increased by 611,089.74, 528,634.08, 26,033.94, and
33,607.89 ha, respectively. Regarding arable land, the net increase from
the conversion of water area, construction land, grassland, unused land,
and forest land to arable land from 2005 to
2020 is −26262.36, −248301.81, −298003.59, 5601.15, and
593,000.55 ha, respectively. Therefore, the primary input land type of

FIGURE 4
Distribution of arable land area in HEZ from 2005 to 2020. (A) 2005; (B) 2010; (C) 2015; (D) 2020.

TABLE 2 GlobalMoran’I index and test of arable land in HEZ from 2005 to 2020.

Year Moran’I Zskernel p-value Threshold value
(α = 0.05)

2005 0.6307 37.6825 0.001 1.96

2010 0.5723 33.7846 0.001 1.96

2015 0.5935 36.3673 0.001 1.96

2020 0.5763 33.8522 0.001 1.96
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arable land in HEZ from 2005 to 2020 is forest land, while the main
output land types are grassland and construction land (Figure 7).

3.2 Driving factors of spatio-temporal
evolution of arable land

3.2.1 Single factor detection
This study divided the driving factors of the spatial distribution

of arable land in HEZ into three levels in 2010 (Figure 8). The most

influential factors are elevation, slope, and traffic accessibility, with
strengths of 71.4%, 69.4%, and 68.2%, respectively. Precipitation and
air temperature have influences of 39.8% and 37.3%, respectively.
Population, GDP, and land use type are the factors at the third power
level, with strengths of 11.8%, 11.7%, and 10%, respectively.

This study divided the driving factors of arable land distribution
in the study area into two levels in 2015 (Figure 8). The first level
driving factors are elevation, slope, traffic accessibility, precipitation,
air temperature, population, and GDP, with influences of 72.1%,
70.9%, 70.5%, 68.6%, 66.6%, 69.1%, and 69.4%, respectively,

FIGURE 5
Increase and decrease of arable land area in HEZ from 2005 to 2020. (A) 2005–2010; (B) 2010–2015; (C) 2015–2020.

TABLE 3 Land use transfer matrix of HEZ from 2005 to 2020 (unit: hectares).

Out

Year
in

2005

Water
area

Forest Grassland Unused
land

Construction
land

Arable
land

Reduced
area

Net increased
area

2020

Water area 280366.65 31752.54 10870.11 3924.45 37451.61 58675.77 109066.59 33607.89

Forest 24613.65 198755.37 100086.57 2075.58 66177.18 238579.02 1611019.17 −1179,487.17

Grassland 7036.65 492311.07 188920.17 4757.40 102391.83 619171.56 614578.77 611089.74

Unused land 499.32 1899.99 3426.75 45.00 3264.12 11697.84 40666.50 −19878.48

Construction
land

44503.56 253476.00 179027.37 12610.08 730086.93 712623.60 673606.53 528634.08

Arable land 32413.41 831579.57 321167.97 17298.99 464321.79 3460239.36 1640747.79 26033.94

Increased area 142674.48 431532.00 1225668.51 20788.02 1202240.61 1666781.73
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followed by soil type and land use type, with influences of 14.3% and
10.8%, respectively.

In 2020, The factors with the most significant influence were
elevation, slope, and traffic accessibility, with strengths of 68.4%,
67.6%, and 68%, respectively, followed by air temperature, GDP,
precipitation, and population, with influences of 48.1%, 47.7%,
47.3%, and 46.8%, respectively (Figure 8). The factors with the
third power level are soil type and land use type, with influences of
14.2% and 9.9%, respectively.

3.2.2 Interaction factor detection
Geodetector offers a significant advantage in identifying

influencing factors, enabling the detection of interactions between
two factors, analyzing changes in their interactive influence, and
determining the type of interaction (Zhao et al., 2018). Here, X1, X2,
X3, X4, X5, X6, X7, X8, and X9 represent land use type, soil type,
traffic accessibility, precipitation, air temperature, elevation, slope,
population, and GDP, respectively.

In 2020 (Figure 9) the interaction between any two factors increased
the power to a certain extent. The results in 2010 and 2015 are the same
as those in 2020. The interaction effect exceeds the highest value of the
individual influencing factor but falls short of the sum of the
corresponding factors. Hence, all pairs of factors exhibit a dual-
factor enhanced interaction. Among them, interactions between each
factor and traffic accessibility, elevation, and slope are the strongest,

explaining the spatiotemporal variation of arable land in HEZ with an
influence of approximately 0.7. Interactions involving precipitation,
temperature, elevation, population, and GDP are relatively weaker,
explaining the spatiotemporal variation with an influence of around 0.5.
The interactions between land use type and soil type are the least
significant, with an explanatory power of less than 0.2.

4 Discussion

4.1 Spatiotemporal evolution patterns of
arable land

Urban areas in each city are the primary locationswith a high kernel
density of construction land and a low kernel density of arable land in
HEZ. The urban areas of each city are the primary regions characterized
by a high kernel density of construction land and a low kernel density of
arable land. From 2005 to 2020, the conversion of arable land into other
land types, driven by diverse human utilization needs, eventually
decreased the aggregation of arable land (Wu, 2005).

Thus, the maximum kernel density of arable land and the Global
Moran’I index generally decrease over time. More construction land
occupied arable land with deepening urbanization, which made the
distribution of arable land in partial areas more intensive under the
requirement of the requisition-compensation balance system of

FIGURE 6
LISA clustering map of HEZ from 2005 to 2020. (A) 2005; (B) 2010; (C) 2015; (D) 2020.
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arable land. Hence, the maximum value of the kernel density of
arable land rebounded in 2020.

HEZ features an area with high terrain in the Northeast and low
terrain in the Southwest. Under the condition of large-scale mechanized
farming, elevation is the main factor in the distribution of arable land.
Thus, there is less area of arable land in the Northeast and more in the
Southwest within HEZ. Due to the region’s large-scale agriculture
mechanization, the ‘high-high’ distribution type of arable land is the
primary type. In contrast, the ‘low-low’ type is typically associated with
construction land and water areas, which are predominantly found in

the urban areas of each city and lake areas. It is the second most
common agglomeration type after the ‘high-high’ type.

HEZ is less influenced by the economic reach of provincial cities,
resulting in an economic depression. Nonetheless, HEZ possesses a
favorable climate, topography, and soil conditions, making it primarily
an area for agricultural development in the initial stage (2005–2010),
which led to a net increase in arable land. From 2010 to 2015, cities in
HEZ relied on their resource endowments to start vigorously
developing industries, which damaged many arable lands due to
excavation, subsidence, and occupation during production and

FIGURE 7
Sankey diagram of land use transfer of HEZ from 2005 to 2020.

FIGURE 8
Radar chart of driving factor influence.
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construction. The difficulty and cost of land consolidation and
reclamation increased. Therefore, the arable land area was in a
negative growth stage. In the last period (2015–2020), China
proposed the strategy of “rural revitalization,” which makes solving
the problems of “agriculture, rural areas, and farmers” the top priority
(Niu et al., 2020; Xu, 2020). This has underscored the increasing
importance of arable land protection and restoration. At the same
time, China’s economy has transformed from a high-speed
development model to a high-quality model. More attention has
been paid to the coordinated development of ecology and economy,
leading to the increased arable land area during this period. However,
due to the massive demand for construction land from the growing
population and production activities, most of the arable land was
converted to construction land, resulting in the maximum reduction
of arable land in the three periods. Thus, the arable land area was still in
negative growth in the last period.

Urbanization and industrialization transformed much of the arable
land into construction land from 2005 to 2020. Moreover, the project of
“returning arable land to forest and grassland” has also led to the
transformation of many arable lands with low and unstable grain
production into grassland. Meanwhile, some arable land around the
water area that was unsuitable for cultivation has been restored to the
water area due to the policy of “returning farmland to the lake” (Ma
et al., 2021). With the increasing construction land area, much forest
land, some barren grasslands, and tidal flats were reclaimed into arable
land due to the policy of “requisition-compensation balance” of arable
land. Therefore, a large amount of forest land and a small amount of
unused land is converted to arable land.

4.2 Driving factors of spatiotemporal
evolution of arable land

4.2.1 Advantages of geodetector
There are many methods for studying the degree of influence of

independent variables on dependent variables, such as multiple

linear regression, logistic regression, decision trees, and random
forests. These methods can utilize numerical research to determine
the degree of influence of independent variables on dependent
variables, but they all have an obvious flaw: they cannot explore
the relationship between spatial variables. In addition, while the
geographically weighted regression model can explore
interrelationships between various factors on a spatial dimension,
it is sensitive to data deficiencies and outliers, has high data
requirements, and has slower calculation speeds, making it
unsuitable for analyzing large amounts of spatial data.
Geodetector calculates the relationship between factors based on
the similarity of their spatial distribution. If the spatial distribution
of independent variables is similar to that of dependent variables, it
indicates a significant influence of independent variables on
dependent variables. It can also detect the impact of dependent
variables under the interaction of multiple independent variables.
Compared to traditional methods, Geodetector does not rely on
linear assumptions. It can handle both numerical and qualitative
data and is highly inclusive of different types of data. These
properties make Geodetector suitable for many spatial driving
factor studies (Chen et al., 2023; He et al., 2023). Hence, when
investigating the factors influencing the spatiotemporal changes in
arable land, Geodetector proves to be a highly appropriate tool.

4.2.2 Single factor detection
Since the q-value in Geodetector represents the spatial

distribution of independent and dependent variables rather than
the correlation between the individual independent variables, the
sum of the q-values of each driving factor is not equal to 1 (Chen,
2019a).

From the perspective of natural and socio-economic attributes,
HEZ is located in the Huang-Huai-Hai plain with flat terrain, and
most of the arable land is tilled by machinery. In the context of
mechanized agriculture, a significant portion of arable land is
situated in regions characterized by low elevation and gentle
slopes. As a result, elevation and slope are identified as the
primary factors influencing the distribution of arable land. The
Huang-Huai-Hai Plain is an alluvial plain, and its soil fertility
depends on the alluvial material carried by rivers, while the river
runoff mainly depends on precipitation. Besides, it is located near
the north-south boundary of the Qinling Mountains and Huaihe
River. The difference in water and heat conditions between the north
and the south predominantly affects the spatial distribution of arable
land. Thus, air temperature and precipitation are the main factors
affecting the spatial distribution of arable land in HEZ. Good
transportation conditions facilitate all agricultural activities, and
arable land near roads offers greater convenience. Hence,
transportation conditions greatly influence the spatial distribution
of arable land.

Most of the soil types in HEZ are semi-aquatic and suitable for
cultivation (Zhao et al., 2014). Nevertheless, long-term human
socio-economic activities have led to various land types being
planned and arranged based on human needs, resulting in
minimal correlation between the spatial distribution of arable
land and soil types in HEZ. HEZ is China’s primary grain
production area. With arable land protection being a
fundamental national policy, land use planning strictly limits
arable land occupation, leading to various land use types within

FIGURE 9
Heat map of interactive detection of driving factors of
spatiotemporal evolution of cultivated land.
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fixed areas. Consequently, land use type has a minimal impact on the
spatial distribution of arable land.

From 2010 to 2020, traffic accessibility, precipitation, air
temperature, elevation, and slope were the main factors affecting
the spatial distribution of arable land, while land use types and soil
types had little influence on the spatial distribution of arable land.
However, the influence of air temperature and precipitation on the
spatial distribution of arable land initially increased and then
decreased. HEZ prioritized agricultural development before 2010,
and arable land was widespread, even in regions with unfavorable
water and heat conditions. Thus, air temperature and precipitation
had little impact on the distribution of arable land in this period.
With industry development and urbanization in HEZ, the
construction land first occupied the arable land with poor
hydrothermal conditions while retaining the arable land with
better hydrothermal conditions to the maximum extent.
Therefore, air temperature and precipitation became the main
factors after 2010. With the continuous deepening of
urbanization and the rapid growth of the social economy, to
meet the demand of population growth for construction land
from 2015 to 2020, many arable lands with better water and heat
conditions have also been transformed into construction land.
Consequently, the impact of air temperature and precipitation on
the spatial distribution of arable land showed a downward trend.

From 2010 to 2020, the impact of population and GDP on the
spatial distribution of arable land in HEZ changed from secondary to
significant factors, showing a trend of first increasing and then
decreasing. Before 2010, HEZ, dominated by agriculture, was in an
economic depression, resulting in low GDP and severe population
outflow. As a result, there was a minimal correlation between GDP,
population, and the spatial distribution of arable land. By 2015,
industrial development had driven economic growth and occupied a
significant portion of arable land. Enhancements in farming equipment
and technology have facilitated greater mechanization in agriculture,
leading to the return of some of the population. Therefore, population
andGDPhad amore intense impact on the spatial distribution of arable
land in this period. From 2015 to 2020, China’s economy transitioned
from high-speed development to a high-quality stage, leading to more
diversified economic development modes and broader industry
distribution. Simultaneously, the rural revitalization strategy has
lured some populations back to the countryside, but it has resulted
in a corresponding reduction in the spatial distribution of arable land.
While the population and GDP have undergone changes, they have not
significantly altered the spatial distribution of arable land. Therefore,
their influence on the spatial distribution of arable land in 2020 has
diminished compared to 2015, but they remain important factors.

4.2.3 Interaction factor detection
The interaction of factors with elevation, slope, and precipitation

has a strong influence on the spatiotemporal distribution of arable
land, but these factors are all-natural factors and are not
controllable. Therefore, the anthropogenic factors of traffic
accessibility, population and GDP, which have a high interaction
influence, can be intervened to guide the spatiotemporal distribution
of arable land in the HEZ to evolve in a more favorable direction.
Although arable land is a product of socio-economic activities, it is
mainly distributed in regions with superior geographical and
climatic conditions due to considerations of cultivation

conditions and grain output, and is thus mainly influenced by
natural factors such as slope, elevation, temperature, and
precipitation. Specifically, if a region has both flat terrain and
sufficient water and heat conditions, it is more likely to become
an arable land, and thus the interaction of natural factors can greatly
enhance the driving force of the spatiotemporal evolution of arable
land. At the same time, transportation, as a channel for managing
arable land and grain output, also has an important impact on the
distribution of arable land. If a region has convenient transportation
and superior geographical and climatic conditions and is located in a
major grain-producing area, it is highly likely to become an arable
land. In summary, the interaction between natural factors and
between natural factors and transportation has a stronger driving
force on the spatiotemporal evolution of arable land in the Huaihai
Economic Zone.

4.3 Suggestions on arable land protection
policies

Arable land is a fundamental resource to ensure national grain
security. The area of arable land in HEZ was getting less and less, and
the distribution was more and more discrete. The authors put
forward some targeted suggestions for protecting arable land
based on the results.

First, all cities in HEZ should strictly control the newly added
occupation of arable land. Based on land spatial planning, gradually
reduce the scale of incremental space utilization within the urban
development boundary, strictly control the use of arable land and
permanent basic farmland, and strictly control various situations of land
occupation. If it is necessary to occupy arable land, it is required to
supplement the arable land according to the principle of equal quantity
and equivalent quality. Strengthen land use planning and control,
reasonably determine the annual total land use plan, and effectively
regulate the timing and pace of new construction land. Optimize the
selection of construction project sites, strictly implement land use
standards, and ensure no or minimal occupation of arable land.

Second, all cities in HEZ should focus on revitalizing existing
construction land. In accordance with the requirements of high-
quality development and comprehensive conservation strategy,
promote the transformation of land use from relying on new
additions to tapping the potential of existing stock, vigorously
promote “using existing stock to replace new additions,” “using
underground space to replace above-ground space,” and “using
funds and technology to replace space,” and promote the
redevelopment of low-efficiency land to reduce the occupation of
arable land from the source.

Third, the government administrative departments should strictly
adhere to the principle of determining the scale of allowable arable land
occupation based on the supplement of newly added arable land
quantity. Reform the balance management mode of land occupation
and compensation. Adjust and improve the compensation system for
land occupation, expand the implementation of balance between non-
agricultural construction land occupation and compensation to all types
of land occupation, and adhere to the principle of “compensation
determines occupation.” Under the premise of achieving a dynamic
balance of total arable land, the stable increase of arable land utilization
in the province is used as the indicator for supplementing arable land
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and the upper limit for the scale of allowable arable land occupation in
the next year. Strengthen compensation incentives for supplementing
arable land. The cost of supplementing arable land is mainly used for
arable land protection and quality construction, and it mobilizes the
enthusiasm of relevant entities to protect arable land. Improve the
quality acceptance system for supplementing arable land. Strengthen
the management of the quality of supplementing arable land, enhance
the construction of supporting infrastructure for supplementing arable
land, continue to improve soil fertility, enhance the quality of arable
land, stabilize the utilization of arable land, and prevent degradation and
abandonment.

Fourth, the government administrative departments should
optimize the layout of arable land and steadily promote the
gradual adjustment of arable land from the mountains to the
foothills, promote the planting of fruit trees and seedlings on the
mountains and slopes as much as possible, promote a more natural
and agricultural production layout that conforms to the
geographical pattern and agricultural production laws, and better
prevent the non-grain production and abandonment of arable land.

Finally, the government administrative departments should use the
effect of dual factor enhancement to guide the spatial evolution of arable
land in HEZ. For example, all cities in HEZ should invest more funds to
build and improve road facilities in farming areas, improve the
utilization rate of arable land, and reduce the realization cost of
agricultural products and the possibility of occupying arable land.
All cities in HEZ should develop local adaptive agriculture and
attract the population to engage in agricultural activities to improve
the economic output of arable land and reduce the possibility of
abandoning arable land.

5 Conclusion

This paper identified the spatiotemporal evolution patterns of
arable land in HEZ from 2005 to 2020 and detected the driving
factors. The conclusions are as the following.

(1) The arable land with high kernel density was distributed all over
the cities and had a large area. Inversely, the arable land with low
kernel density was mainly distributed in the north of Linyi, the
junction of Linyi, Zaozhuang, and Jining, and the urban areas of
each city. The distribution of arable land was less in the
Northeast and more in the Southwest. There was significant
agglomeration distribution of arable land. The main clustering
types are the “high-high” and “low-low” clusters, and the spatial
distribution overlapped with the kernel density of arable land.

(2) The distribution pattern of the kernel density of arable land
from 2005 to 2020 was almost the same, and its maximum
values generally decreased. The “high-high” type regions
remained stable from 2005 to 2015 but decreased
significantly in 2020 and tended to shrink toward the central
part of HEZ, while the “low-low” type regions decreased
significantly from 2005 to 2010 and mainly transformed into
insignificant areas. Taking 2010 as the inflection point, the area
of arable land of HEZ first increased and then decreased.

(3) The primary output type of arable land from 2005 to 2020 was
grassland and construction land, while the primary input type
was forest land.

(4) The main factors affecting the spatial distribution of arable land
in HEZ from 2010 to 2020 were elevation, slope, and traffic
accessibility. Air temperature and precipitation greatly
influenced the spatial distribution of arable land in HEZ and
showed a trend of increasing at first and then decreasing.
Population and GDP had little influence before 2010.
However, they had a more and more impact with time. The
interaction of each factor showed the effect of dual factor
enhancement.

(5) All cities in HEZ should strictly control the newly added
occupation of arable land, focus on revitalizing existing
construction land, strictly adhere to the principle of
“compensation determines occupation,” optimize the
layout of arable land, and pay more attention to the
interactions of traffic accessibility, population, and GDP
on the distribution of arable land, to protect arable land in
a more targeted manner.
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