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Vegetation cover is a crucial indicator of biodiversity and ecological processes, but
there are still uncertainties about the factors driving changes in vegetation. In this
study, we conducted a comprehensive analysis of vegetation cover changes in
Sichuan Province from 2000 to 2020 using Formation Vegetation Cover (FVC)
derived from MODIS13Q1 data. Our results revealed a consistent increase in
vegetation FVC, rising from 0.506 to 0.624 over the 21-year period, with an
annual growth rate of 0.0028. The turning point in this growth occurred in 2006.
Of significance, the expansion of vegetation covered a substantial portion,
accounting for 84.76%, while the decrease constituted 13%. Elevation proved
to be an effective explanatory factor, with a coefficient of 0.417, indicating its role
in explaining vegetation cover changes. It is important to note that FVC trends and
averages exhibited distinct patterns concerning elevation, land use, population
density, topography, and soil type, while their correlation with meteorological
factors was relatively weak. Concurrently, the increase in construction and urban
development had a negative impact on vegetation cover.
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1 Introduction

Surface vegetation, a cornerstone of Earth’s terrestrial ecosystem, serves as a vital
indicator of ecosystem health and interconnects various natural elements like the
atmosphere and soil (Du et al., 2015; Kong et al., 2018; Zhao et al., 2018). In recent
decades, global changes have led to significant shifts in vegetation cover at regional and
continental scales (Kotharkar et al., 2016; Pang et al., 2017). This has spurred a critical need
to comprehensively study long-term changes in vegetation cover to better understand
spatial and temporal dynamics in terrestrial ecosystems. Such understanding is crucial for
maintaining ecosystem equilibrium in the face of environmental changes over the past
century (Fang et al., 2018). Remote sensing offers a valuable means to monitor vegetation
cover dynamics with high precision and frequency across different spatial and temporal
scales (Piao et al., 2003; Jalonen et al., 2014). Formation Vegetation Cover (FVC) is adept
at tracking changes in ground-level vegetation (Zhang et al., 2003). For instance, Du et al.
(2015) noted a consistent increase in vegetation activity in Xinjiang during spring,
summer, and autumn over the past 3 decades. Zhao et al. (2019) further supported
this observation, documenting a yearly rise in vegetation cover from 2000 to 2014. Notably,
He’s work highlighted the significant impact of farmland-to-forest initiatives on vegetation
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dynamics. Additionally, a strong correlation was found between
cumulative afforestation efforts and vegetation cover in the Yan’an
and Yulin regions from 2000 to 2013. In a separate study, Peng
et al. (2019) conducted a geographic analysis of natural factors
influencing vegetation dynamics in Sichuan from 2000 to 2015.
This research revealed key factors driving vegetation growth,
enriching our understanding of the interaction between natural
factors and the mechanisms behind vegetation change. It is worth
noting that many of these studies relied on the GIMMS dataset,
which, despite its long availability, has limitations due to its coarse
resolution. This limitation may result in the loss of critical spatial
details at the regional level. Furthermore, acquiring detailed
Landsat satellite imagery at a large scale demands substantial
computational resources and time, which led to the selection of
the MODIS dataset with higher resolution. The computation of
vegetation cover was carried out using the Google Earth Engine
(GEE) platform, a powerful cloud-based computational facility
designed for processing and analyzing extensive spatial datasets
(Mutanga, O. and Kumar, 2019). This platform enables efficient
monitoring of vegetation cover changes through high-resolution
imagery, despite its limited temporal scope (Kumar, L. and
Mutanga, O., 2018).

Moreover, it is imperative to acknowledge that the intricate
causative linkages between influential factors and the dynamics of

vegetation cover exhibit a multifaceted and non-linear character
(Zhang et al., 2018). Preceding scholarly inquiries have
conventionally resorted to correlation and residual analyses in their
pursuit of unraveling the driving forces governing vegetation changes
(Zhao et al., 2021; Jiang et al., 2022). However, these conventional
approaches often fall short in elucidating the nuanced, non-linear
interdependencies among multiple impact factors, notably those
entwined with anthropogenic influences and climate fluctuations.
In response to these inherent limitations, non-linear methodologies
have been employed as an indispensable toolset to disentangle the
intricate tapestry of driving mechanisms underlying changes in
vegetation cover (Jiang et al., 2022). Foremost among these
methodologies are Geodetectors, which represent spatially-focused
analytical methods adept at discerning the spatial variances inherent
in these dynamics and unveiling their causative underpinnings (Wang
et al., 2017). Notably, a multitude of studies have effectively applied
Geodetectorsmethodologies across various scales and encompassing a
diverse array of influential factors, yielding comprehensive insights
into the driving forces steering alterations in vegetation cover (Huo
et al., 2021). Hence, predicated on the intrinsic spatial heterogeneity
characterizing geographical phenomena, Geodetectorsmodels emerge
as a compelling and nuanced approach, well-suited to furnishing
cogent explanations for the manifold transformations in vegetation
cover.

FIGURE 1
Elevation map of study area.
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Sichuan Province, situated in the upper reaches of the Yangtze
River, holds strategic significance as a vital water source and ecological
protector within the Yangtze River Basin. Given its climatic diversity
and substantial variations in topography across different regions,
Sichuan Province exhibits notable disparities in surface vegetation
cover and ecological conditions. This study utilizes remote sensing
data from MODIS, processed through the Google Earth Engine (GEE)
platform. Employing various analytical methods, including the image
element dichotomous model, coefficient of variation analysis, and
Geodetectors, it aims to identify complex patterns and temporal
changes in vegetation cover across Sichuan Province. The study also
explores the primary factors driving these changes. The results are
significant for advancing ecological restoration efforts in the region and
providing guidance for the preservation of the local environment.

2 Study area

Located in the southwest region of inland China, Sichuan Province
spans a vast area of 485,000 square kilometers and is situated between
26°03′-34°19′N latitude and 97°21′-108°12′E longitude, predominantly
covering the upper reaches of the Yangtze River (Figure 1). The
province’s landscape exhibits significant variations from east to west,
characterized by a complex and diverse topography. Residing in the
transitional zone between theQinghai-Tibetan Plateau, representing the
initial terrain step of the Chinese mainland, and the middle and lower
reaches of the Yangtze River Plain, constituting the third step, Sichuan
Province boasts an extensive range of elevations, featuring a prominent
west-to-east elevation gradient. Its terrain comprises mountains, hills,

plains, basins, and plateaus. Notably, Sichuan Province experiences
three major climatic zones. In central Sichuan, the Sichuan Basin is
characterized by a humid central subtropical climate. Meanwhile, the
mountains in southwest Sichuan exhibit a semi-humid subtropical
climate, while northwest Sichuan is characterized by an alpine
plateau climate (Wang, H, X and Liu, C, M.; 2000). Furthermore,
the province is home to numerous rivers that primarily form part of the
extensive Yangtze River system, with major tributaries including the
Yalong, Min, and Dadu Rivers. Lastly, the natural vegetation of Sichuan
Province encompasses eight vegetation types, 18 phyla groups, and
48 group groups, contributing to its relatively rich biological resources
and unique ecological value.

3 Materials and methods

3.1 Data

The data sources and processing of the article are shown in
Table 1.

3.2 Image element dichotomous model

This model operates on the idea that an image’s surface can be
divided into two parts–one with vegetation and one without (Figure 2)
(He et al., 2023; Xu et al., 2023). It suggests that the spectral information
captured by remote sensors is a blend of these two parts, with their
importance determined by their relative surface areas within the image.

TABLE 1 Data source and preprocessing.

Data sources Source Spatial
resolution

Preprocessing

MOD13A1 USGS (United States Geological Survey) https://
earthexplorer.usgs.gov/

250 m Maximum value synthesis method to obtain
2000–2020 average data

Vector extent of the study area National Centre for Basic Geographic
Information (https://www.ngcc.cn/)

- -

DEM USGS (United States Geological Survey) https://
earthexplorer.usgs.gov/

90 m Projection, resampling

Slope, aspect, elevation DEM - -

Temperature, precipitation Data Centre for Resource and Environmental
Sciences, Chinese Academy of Sciences (https://

www.resdc.cn/)

1 km Kriging interpolation

Soil Map of the People’s Republic of China 1:
1 Million

Data Centre for Resource and Environmental
Sciences, Chinese Academy of Sciences (https://

www.resdc.cn/)

1 km -

Geomorphological Atlas of the People’s Republic
of China (1:1 million)

Data Centre for Resource and Environmental
Sciences, Chinese Academy of Sciences (https://

www.resdc.cn/)

1 km -

Vegetation Atlas of China 1:1,000,000 Data Centre for Resource and Environmental
Sciences, Chinese Academy of Sciences (https://

www.resdc.cn/)

1 km -

Remote sensing monitoring data on the status of
land use in China

Data Centre for Resource and Environmental
Sciences, Chinese Academy of Sciences (https://

www.resdc.cn/)

1 km reclassify

Population density, GDP data Sichuan Statistical Yearbook - -
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For example, vegetation cover can be seen as the weight assigned to the
vegetation component based on its area relative to the total image area.
(Kalisa et al., 2019; Li et al., 2023). Its calculation formula is

FVC � EVI − EVIsoil( )/ EVIveg − EVIsoil( ) (1)

The Enhanced Vegetation Index (EVI), which adjusts for the
absorption of red light by residual aerosols by comparing red and
blue light transmission through the aerosol, offers a more accurate
representation of vegetation changes (Wu et al., 2020).

3.3 Coefficient of variation

The coefficient of variation CV, also known as the coefficient of
dispersion, is a normalised measure of the degree of dispersion of a
probability distribution (Deng et al., 2017; Kinjal C and Ankit T,
2023). The coefficient is a dimensionless quantity that does not need
to be referenced to the mean of the data, so when comparing the
stability of vegetation cover, the ratio of the standard deviation to the
mean (relative value) can be used for comparison (He et al., 2023). It
is calculated as:

Cv � σ/μ (2)
where s is the standard deviation and μ is the mean.

3.4 Trend analysis

The Theil-Sen Median and Mann-Kendall tests are non-
parametric statistical methods introduced (Hirsch and Slack.,
1984). The Theil-Sen Median is adept at identifying trends and
quantifying changes in a time series but does not independently
determine the statistical significance of these trends. In contrast,

the Mann-Kendall test is employed to assess the statistical
significance of temporal trends in a time series, and the Kendall
test specifically evaluates the significance of these trends. The
combination of these two non-parametric methods has become
a common approach in remote sensing for analyzing trends in time
series data (De Jong et al., 2011; Gocic and Trajkovic, 2013).

3.4.1 The Theil-Sen median
The Theil-Sen median method, also known as Sen slope

estimation, is a robust, non-parametric statistical approach to
trend analysis (Xie et al., 2022; Tabari et al., 2011; Xiang et al.,
2023). The method is computationally efficient, insensitive to
measurement error and niche data, and suitable for trend
analysis of long time series data (Yue et al., 2002; Li et al., 2020).
Its calculation formula is:

β � Median
FVCj − FVCi

j − i
( )∀j> i (3)

If β is greater than zero, it indicates an increasing trend in
vegetation cover, and vice versa for a decreasing trend.

3.4.2 Mann-Kendall (MK)
The Mann-Kendall (MK) test is a non-parametric time series

trend test (Wang et al., 2019; He et al., 2022) that does not require
measurements to follow a normal distribution, is unaffected by
missing values and outliers, and is suitable for testing whether long
time series data are indeed significant (Wang et al., 2010; Li et al.,
2020; Guo and Bryan, 2022). However, it is not applicable to detect
sequences with multiple mutation sites. The procedure is as follows:
for a sequence xt � x1, x2, . . . , xn., first determine the relationship
between the magnitude of xi and xj (set to S) for all pairs of values
(xi,xj,j > i). Make the following assumptions: the data in the HO
series are random, i.e., there is no significant trend; there is an
upward or downward trend in the H1 series (Li and Song, 2022). The
test statistic S is calculated as:

S � ∑n−1
i�1

∑n
j�i+1

sgn xj − xi( ) (4)

where sgn () is the sign function, calculated as:

sgn xj − xi( ) +1 xj − xi > 0
0 xj − xi � 0
−1 xj − xi < 0

⎧⎪⎨⎪⎩ (5)

The trend test is performed with the test statistic Z. The
calculation of the Z-value is as follows:

Z �

S
Var S( )√ S> 0( )

0 S � 0( )
S + 1
Var S( )√ S< 0( )

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(6)

where var is computed by the formula

Var S( ) � n n − 1( ) 2n + 5( )
18

(7)

where n is the number of data in the sequence; m is the number of
nodes (repeating data groups) in the sequence.

FIGURE 2
Flowchart of the image element dichotomous model.
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Again, a bilateral trend test was used to find the critical value
Z1-α/2 in the normal distribution table at the given significance
level. if |Z| = Z1-α/2, the original hypothesis was accepted,
i.e., the trend was not significant, and if |Z|>Z1-α/2, the original
hypothesis was rejected, i.e., the trend was considered
significant. This paper refers to the trend classification of
Yuan et al. (2013), where if the significance level is α = 0.05,
the critical value is Z1-α/2 = ±1.96, then the absolute
value of Z is greater than 1.96, indicating that the trend has
passed the significance test at the 95% confidence level. The
method of distinguishing the significance of the trends is shown
in Table 2.

3.4.3 Pettitt
The Pettitt test, a statistical technique employed for

identifying the inflection point within a time series, discerns
pronounced shifts in the trend exhibited by the sequence over an
extended temporal span (Radu et al., 2022; Zhao et al., 2023). A
notable advantage intrinsic to this method lies in its
independence from the constraint of adhering to specific
probability distributions within the sample sequence (Carla
et al., 2023). A Pettitt mutation test yielding a statistic K value
below the 0.05 significance threshold serves as compelling
evidence of a substantively significant mutation point within
the sequence under consideration (Karen et al., 2019).

S � ∑k
i�1ri k � 1, 2, 3, . . . , n

if xi − xj( )> 0; sgn xi − xj � 1( )
if xi − xj( ) � 0; sgn xi − xj � 0( )
if xi − xj( )< 0; sgn xi − xj � −1( )

(8)

If moment t0 satisfies kt0 � max sk, then t0 is a mutation point.

P � 2 exp −6kt20 n3 + n2( )[ ] (9)
If the statistic P< 0.05, it means that the mutation point at the

moment of t0 is a significant mutation.

3.5 Geographical

Geographical detectors can either test for spatial heterogeneity
of a single variable or detect possible causal relationships between
two variables by testing them (Song et al., 2020; Zhang et al., 2020). It
consists of four main components: factor detection, interaction
detection, risk zone detection and ecological detection (Wang
et al., 2016; Wang et al., 2017; Huang et al., 2023). In this paper,

the interaction detection tool and the Geodetector interaction
detection tool were selected to analyse the influence of vegetation
cover drivers in Sichuan Province.

Factor detection: detection of the spatial heterogeneity of Y
(FVC); and detection of how much of the spatial heterogeneity of
attribute Y is explained by a given factor X (each detection
factor) (Lei et al., 2023). Using the q-value metric, the
expressions are:

q � 1 − ∑L
h�1Nhσ2h
Nσ2

� 1 − SSW
SST

(10)

SSW � ∑L

h�1Nhσ2h (11)
SST � Nσ2 (12)

where: h � 1, . . . , L is the classification or partition of the variable Y
or the factor X, Nh and N are the number of cells in layer h and the
total area respectively, and σ2h and σ2 are the variance of the Y values
in layer h and the total area respectively. SSW and SST are the sum of
the within-stratum variance and the total area-wide variance,
respectively. q has a value range [0,1], with larger values
indicating a greater spatial differentiation of Y. If the
stratification is generated by the independent variable X, a larger
value of q indicates a stronger explanatory power of the independent
variable X for the attribute Y, and vice versa.

Interaction detection: different detection factors were used for
two-by-two interactions on FVC. The type of interaction between
factors was determined by comparing the interaction q-values with
the single factor q-values, and the interaction was judged as shown
in Table 3.

3.6 Correlation analysis

Correlation analysis refers to the analysis of the variable
elements relevant to each influence factor, and calculates the
correlation coefficient between each influence factor and FVC on
a frame-by-frame basis to measure the closeness of the correlation of
each factor (Liu et al., 2020). Its calculation formula is:

Rxy � ∑n
i�1 xi − �y( ) yi − �y( )∑n

i�1 xi − �x( )∑n
i�1 yi − �y( )√ (13)

Where: R_XY is the correlation coefficient between the two
variables, between 1 and -1, where 1 indicates a perfectly positive
correlation between the variables, 0 indicates no correlation,
and −1 indicates a perfectly negative correlation; xi is the
meteorological factor in year i; �x is the mean of the vegetation
cover over the years; �y is the mean of the correlation factors over the
years; and i is the number of samples.

4 Results and discussion

4.1 Spatial and temporal variation of
vegetation cover

This study aimed to examine the inter-annual variation trend of
vegetation fractional cover (FVC) across Sichuan Province spanning

TABLE 2 Mann-kendall test trend categories.

β Z Trend type Trend features

β≥ 0.0005 |Z|≥ 1.96 5 Significant improvement

β≥ 0.0005 |Z|< 1.96 4 Slight improvement

|β|< 0.0005 |Z|< 1.96 3 Stable and unchanged

β< − 0.0005 |Z|< 1.96 2 Slight degradation

β< − 0.0005 |Z|≥ 1.96 1 Severe degradation
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from 2000 to 2020. The investigation revealed a consistent upward
trend in FVC, as evidenced by an average growth rate of 0.0028/a
over the past 21 years. Strikingly, the mean value of FVC reached its
nadir at 0.5061 in 2001, subsequently exhibiting a gradual increase
over time and reaching its highest point of 0.6244 in 2020,
representing an overall growth of 81.05% during the 21-year
period under investigation.

Figure 3 effectively depicts the trends of vegetation cover
changes observed within the study area. The graphic indicates
that 84.76% of the region exhibited significant or slight
improvement in vegetation cover from 2000 to 2020, while
13.23% of the total area experienced various degrees of
degradation. Notably, these degraded areas were primarily
concentrated in Chengdu City, Yibin City, and other scattered
regions, which can be attributed to the rapid urban expansion
that has occurred within these regions. As a result, there has
been a conversion of land for construction purposes, leading to a
corresponding reduction in vegetated areas. However, it is
important to acknowledge the significant strides that have been
made towards improving vegetation cover within Sichuan Province,
which can be attributed to various efforts such as land restoration,
afforestation, and the implementation of ecological construction
projects. These positive trends are also attributable to relevant
policies aimed at promoting ecological conservation and
restoration, including the conversion of cultivated land back to
forest and grassland.

The average value of vegetation FVC in Sichuan Province during
2000–2020 is 0.60. The spatial distribution of vegetation cover in
Sichuan Province shows the characteristics of high in the east and
low in the west, high in the south and low in the north, with the

eastern region dominated by the Sichuan Basin, with low elevation
and extensive deciduous forests; the southern region dominated by
the Mountainous areas, with low elevation and extensive deciduous
forests.

The coefficient of variation, a measure of spatial variability,
ranged from 0 to 0.93 across Sichuan Province’s study area. Based
on the prevailing situation of vegetation cover fluctuations, the
coefficient of variation was categorized into five distinct classes
(refer to Figure 4; Table 4): low fluctuation (<0.05), relatively low
variability (0.05≤CV < 0.10), medium variability (0.10≤CV <
0.15), relatively high variability (0.15≤CV < 0.2), and high
variability (≥0.2). The mean coefficient of variation determined
for the province was 0.1167 (<0.15), indicating a relatively steady
rate of variation. However, considerable spatial differences were
noted in the degree of variation. High and relatively high
variability accounted for 10% of the region and were
predominantly evident in districts and counties around Shiqu
County and Chengdu City. The low vegetation cover and high
variability observed in these regions may be attributed to rapid
socio-economic development in the past 2 decades, leading to
extensive land use changes and recurrent human activities.
Conversely, areas with lower variation accounted for 10% of the
total area and were mainly concentrated in Batang County, Derong
County, Ganzi County, and Shiqu County. These regions are
characterized by high mountain plateaus with moderately low
vegetation cover, high altitudes, and colder climatic conditions.
Overall, the spatial variability of vegetation cover in Sichuan
Province exhibits a complex pattern that reflects the combined
influence of geographical and anthropogenic factors on vegetation
dynamics across various regions within the province.

TABLE 3 Types of interaction between two independent variables on the dependent variable.

Judgments based Interaction Judgments based Interaction

q(X1 ∩ X2)<Min(q(X1)), q(X1) Non-linear weakening q(X1 ∩ X2) � q(X1) + q(X2) Independent

Min(q(X1), q(X2))< q(X1 ∩ X2)<Max(q(X1), q(X2)) Single factor non-linear attenuation q(X1 ∩ X2)> q(X1) + q(X2) Non-linear independence

q(X1 ∩ X2)>Max(q(X1), q(X2)) Two-factor enhancement

FIGURE 3
Interannual variation and trend of vegetation FVC in Sichuan Province from 2000 to 2020.
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Figure 5 provides additional insights by indicating that the
inception of vegetation cover mutation was observed as early as
2006. The findings suggest a bifurcation in the temporal evolution of
vegetation mutation, broadly categorized into two distinct phases.
The initial phase spans from 2000 to 2010, predominantly
manifesting in the southeastern sector of the nation and the
western expanse of the Sichuan Plateau. Subsequently, the second
phase, commencing from 2010 onward, is characterized by its
prevalence in the northern and southwestern regions of the
country, as well as within the transitional zone bridging the
Sichuan Basin and the Yunnan-Guizhou Plateau.

4.2 Drivers of vegetation cover change

In order to probe the impact of various geographical factors on
vegetation coverage dynamics in Sichuan Province, a total of
11 pertinent variables were selected for investigation across

4,862 sampling points in the province through Geodetector
detection.

Geodetector analysis were employed to calculate and scrutinize
the q-values of each geographic factor (Figure 6), subsequently
appraising the impact of these factors on vegetation FVC in
Sichuan Province. It has been observed that elevation, soil type,
and landform type exhibit q-values exceeding 0.3, consequently
indicating their remarkable contribution towards the elucidation of
changes in vegetation cover and their identification as chief driving
forces. Notably, elevation boasts the highest q-value of 0.417,
signifying its unparalleled influence over vegetation cover
variations. Coupled with this, other geographic factors, including
vegetation type, temperature, population density, GDP,
precipitation, and land use type, have demonstrated significant
explanatory power with q-values greater than 0.05, although they
are considered secondary drivers. Conversely, slope and slope
direction manifest weaker explanatory capabilities, indicative of
their minimal impact on the study area’s vegetation cover

FIGURE 4
Spatial distribution of vegetation cover and stability in Sichuan Province from 2000 to 2020.

TABLE 4 Classification table of coefficient of variation of vegetation cover in Sichuan Province.

Fluctuation level CV value Number of pixels Area percentage (%)

Minimum fluctuation < 0.05 57,083 10

Low volatility 0.05≤CV < 0.10 202,376 35

Moderate fluctuation 0.10≤CV < 0.15 196,972 35

high volatility 0.15≤CV< 0.2 58,512 10

Maximum fluctuation ≥ 0.2 52,081 10
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changes. In general, geological landforms, comprising of elevation,
soil type, and landform type, have exerted the most substantial
impact on the integration of vegetation cover changes. Moreover, a
thorough investigation of vegetation cover dynamics based on
plateau and plain areas reveals the provision of additional
insights into vegetation cover dynamics from an elevation
perspective through slope, slope orientation, precipitation, and
temperature. The relatively low explanatory power of population
density, GDP, and land use type may be attributed to frequent
ecological engineering measures implemented in the study area, the
overall positive trend in vegetation cover growth observed in
Sichuan Province, and significant improvements in vegetation
cover recovery. Ultimately, the study highlights the preeminent
role played by geological landforms, particularly elevation, in
shaping vegetation cover dynamics in Sichuan Province, whilst
other factors such as vegetation type, temperature, precipitation,
and land use contribute collectively to the overall understanding of
vegetation cover changes.

The detection of spatial changes in vegetation cover relating to
diverse drivers imparts insights into whether the explanatory power
of the individual drivers is increasing, decreasing or fluctuating. The
Geodetector tool effectively discloses the interplay of detection
factors responsible for vegetation cover changes. Figure 7
illustrates the results of the factor interaction detection, revealing
a mutually reinforcing and non-linear relationship between the
influence of detection factors on vegetation cover in Sichuan
Province. Specifically, 1) among natural factors, there is a two-
factor amplification of slope with altitude and land use type, and a
non-linear amplification with other interacting factors. Additionally,
there is a non-linear amplification of slope direction with all other
interacting factors. 2) Among human factors, there is a two-factor
enhancement of GDP with vegetation type and population density,

and a non-linear enhancement with other interaction factors.
Moreover, there is a non-linear enhancement of land use type
with slope direction, and a two-factor enhancement with other
interaction factors.

All interactions between factors exhibited q-values
surpassing those of individual factors, indicating that the
super positioning of multiple factors results in an increased
explanatory power of vegetation cover. Notably, crucial drivers
displaying a heightened influence on the spatial distribution of
vegetation cover in Sichuan Province encompass elevation ∩
vegetation type (q = 0.540), elevation ∩ GDP (q = 0.539),
elevation ∩ population density (q = 0.506), and elevation ∩
land use type (q = 0.501). Notably, elevation, as the foremost
driver, possesses the highest explanatory power for vegetation
cover’s spatial distribution in Sichuan Province when interacting
with other detection factors. The human activity factor’s
explanatory power is markedly elevated after interplaying with
geological and geomorphological factors.

4.3 Geomorphological factors

Figure 8 illustrates the discernible trend and mean of FVC for
each landform, indicating the highest growth rate of 0.0187/a in the
Plain category, while Extremely undulating mountainous hills
display the lowest growth rate at 0.0046/a. Hills cover boasts the
highest mean FVC value of 0.6865, whereas Extremely undulating
mountainous hills demonstrate the lowest mean FVC value of
0.1547. Moreover, the FVC trends and means across every soil
type disclose that Man-Made soils exhibit the largest trend with a
growth rate of 0.0165/a, whereas High-Mountain-Soils showcase the
smallest trend at 0.0076/a. The mean FVC value is notably higher for

FIGURE 5
Analysis of FVC mutations, 2000–2020.
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FIGURE 6
Detection factor (q) value from 2000 to 2020.

FIGURE 7
Interactive explanatory power of detection factors in Sichuan Province from 2000 to 2020 (q).
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Iron bauxite soils, registering a value of 0.7642, while High-
Mountain-Soils record the lowest mean FVC value of 0.3686.

4.4 Climatic factors

The majority of areas revealed non-significant correlation
coefficients between vegetation FVC and both temperature and
air temperature, with an increased proportion of areas displaying
negative correlation between vegetation FVC and air temperature
and precipitation compared to those exhibiting positive correlation
(as portrayed in Figure 9; Table 5). Additionally, the relevance of this
article is classified by reference to Xie [0]. Notably, the spatial range of
the temperature correlation coefficient spans from −0.948 to 0.940,
wherein 40.20% and 59.80% of the area correspondingly displays
positive and negative correlation with vegetation FVC. Furthermore,
1.52% and 2.55% of the area exhibit significant positive and negative
correlation, respectively, and are more widely dispersed across the
study area than those for precipitation. In contrast, the spatial extent
of the precipitation correlation coefficient ranges from −0.926 to 1,
with 41.06% and 58.94% of the area reflecting positive and negative
correlation, respectively, and only 0.79% and 1.30% of the area
exhibiting significant positive and negative correlation, respectively.

4.5 Topographical factors

The analysis involved computing the mean vegetation cover and
its changing trend within elevation zones at 100-m intervals
(Figure 10). The results reveal a bifurcated trend in the evolution
of Formation Vegetation Cover (FVC). In the initial stage, spanning
from 0 to 3,300 m, the trend exhibits fluctuations followed by an
increase with rising altitude. Subsequently, in the second stage,
commencing above 3,300 m, the FVC change trend reaches its

zenith growth rate at 3,300 m, registering a rate of 0.0138/a. Beyond
this altitude, the trend experiences a substantial deceleration,
gradually approaching stability. The average FVC value
demonstrates an ascent followed by a descent, with its peak at
0.8165 occurring at an elevation close to 1,000 m above sea level. As
elevation increases, the average FVC steadily diminishes, ultimately
converging toward zero.

4.6 Human activity factor

Examining the FVC trends and means at all population density
levels depicted in Figure 10, it is discernible that the most significant
trend appears within densely populated areas, exhibiting a growth
rate of 0.0142/a. Conversely, sparsely populated areas display the
lowest growth rate of 0.094/a. Moreover, the mean FVC value is
notably higher for moderately populated areas, registering a value of
0.7527, whilst extremely sparse regions reflect the lowest mean FVC
value of 0.4396.

Upon scrutinizing the alterations in land use types that have
transpired in Sichuan Province, as illustrated in Table 6, a clear
preponderance of forest and construction lands is discernible.
Between 2000 and 2020, the areas for forest land, water sources,
construction land, and idle land have substantially augmented, while
cultivated land and grassland exhibit noteworthy decline. Notably,
arable land and grassland are the primary land conversion categories
for forest land, accounting for a transferred area of 21,357.74 km2

and 36,173.38 km2, respectively. Furthermore, the chief conversion
category for construction land is arable land, with an area of
transferred land amounting to 3,731.06 km2.

The influence of land cover on vegetation FVC is perceptible in
the composite trend of FVC variation resulting from land use
conversion, as presented in Table 7. The conducted investigation
unveils that the overall growth rate of vegetation cover for

FIGURE 8
Relationship between vegetation FVC trend, mean value, landform type and soil type in Sichuan Province.
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watersheds, unused, and construction lands in 2020 is considerably
inferior in comparison to the growth rate of grassland, forest land,
and cropland. Remarkably, the area that has reverted back to forest
and grassland in Sichuan Province over the course of 21 years attains
28,359.30 km2, correlating with a total growth rate of 317.62/a.
Furthermore, the vegetation cover of unused land has rapidly
expanded to 16,375.22 km2, corresponding to a total growth rate
of 183.40/a, whilst urban expansion encompasses an area of
5,664.73 km2 with a total growth rate of 63.45/a.

Between 2000 and 2020, a marked increase in vegetation cover
throughout Sichuan Province has been observed, consistently
supported by the recent findings of Xu et al. (2022) and Zhu
et al. (2022). The spatial distribution of vegetation exhibits an
uneven pattern, with higher values concentrated in the eastern
and southern regions, while lower values are found
predominantly in the western and northern provinces.
Nevertheless, overall vegetation cover has shown a relatively

stable trend, with more pronounced fluctuations detected in the
western Sichuan Plateau and Chengdu City. Areas experiencing
degradation are concentrated primarily in Chengdu, Yibin, and
scattered locations in their adjacent regions. Notably, Chengdu,
as a provincial capital and an economic center, is densely populated,
with a significant proportion of available land (94.2%) converted
into urban areas. The dominant vegetation type in Chengdu consists
of cultivated vegetation, including food crops, fruit forests, and other
economically-driven artificial forests. However, human activities
significantly influence vegetation cover in this region (Li et al.,
2019). The rapid growth of urban areas and population has led
to the conversion of a significant portion of land into urban
development, consequently reducing vegetation coverage (Ma
et al., 2023). This aligns with findings from previous research.

The trends and mean values of FVC change exhibit distinct
patterns in relation to elevation, land use, population density,
geomorphological type, and soil type (Jiang et al., 2021). Notably,

FIGURE 9
Classification of vegetation FVC and climatic factors correlation coefficient in Sichuan Province from 2000 to 2020.

TABLE 5 Distribution of area associated with FVC interannual variation of vegetation and climatic factors in Sichuan Province/%.

Level of correlation Correlation coefficient Temperature Precipitation

Significant negative correlation** <-0.606 2.55 1.30

Significant negative correlation* −0.606— − 0.482 5.19 4.29

No significant negative correlation −0.482—0 52.06 53.35

No significantly positively correlated 0—0.482 35.59 37.58

significantly positively correlated* 0.482—0.606 3.09 2.69

significantly positively correlated** >0.606 1.52 0.79

*Denotes p < 0.05.

** denotes p < 0.01.
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FIGURE 10
Relationship between vegetation FVC trend, mean value, elevation and population density in Sichuan Province.

TABLE 6 Transfer matrix of land use type change in Sichuan Province, 2000–2020/km2.

2020

Cultivated land Woodland Grassland Waters Construction land Unused land Total

2000 Cultivated land 87,940.21 21,357.74 7,001.56 1,645.93 3,731.06 59.73 121,736.23

Woodland 19,745.76 109,541.52 32,268.28 592.83 421.03 1,344.56 163,913.98

Grassland 7,660.86 36,173.38 121,092.45 720.24 385.24 7,513.04 173,545.21

Waters 1,307.77 279.78 512.95 853.83 207.34 138.65 3,300.31

Construction land 1,147.19 186.47 79.87 90.41 918.18 - 2,422.11

Unused land 72.03 1,113.10 7,389.05 208.11 1.90 7,873.07 16,657.26

Total 117,873.82 168,651.99 168,344.16 4,111.34 5,664.73 16,929.05 481,575.09

“-” indicates no value.

TABLE 7 Proportion of vegetation cover change area of land use type in Sichuan Province from 2000 to 2020.

2020

Cultivated land Woodland Grassland Waters Construction land Unused land Total

2000 Cultivated land 984.93 239.21 78.42 18.43 41.79 0.67 1,363.45

Woodland 221.15 1,226.87 361.40 6.64 4.72 15.06 1835.84

Grassland 85.80 405.14 1,356.24 8.07 4.31 84.15 1943.71

Waters 14.65 3.13 5.75 9.56 2.32 1.55 36.96

Construction land 12.85 2.09 0.89 1.01 10.28 - 27.13

Unused land 0.81 12.47 82.76 2.33 0.02 88.18 186.56

Total 1,320.19 1888.90 1885.45 46.05 63.45 189.61 5,393.64

“-” indicates no value.
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there is a negative correlation between vegetation FVC and both
temperature and air temperature, with a relatively weak direct
correlation (Li et al., 2012; Xu et al., 2018; Du et al., 2019). It is
worth mentioning that as afforestation policies have evolved, the
correlation between vegetation growth and climate has diminished
(Huang et al., 2020). Wu et al. (2020) have observed that changes in
the Enhanced Vegetation Index are minimally correlated with
meteorological factors but strongly associated with artificial
ecological engineering, signifying that ecological engineering
initiatives are the predominant drivers of such variations. The
year 2006 marks a pivotal juncture when sudden shifts in
vegetation cover occurred. Prior to this year, thermal factors
played a substantial role, but post-2006, active interventions like
afforestation and terrain modification diminished the influence of
vegetation. In studies of vegetation change, it is crucial to monitor
human activities that impact vegetation growth to varying degrees
(Zhang et al., 2017; Al-bukhari et al., 2018). Additionally, alterations
in land use patterns serve as a tangible reflection of human activity.
Over the course of 21 years, the area dedicated to returning farmland
to forests and grasslands in Sichuan Province expanded to
28,359.30 km2 translating to a notable annual growth rate of
317.62/a. This trend underscores the effectiveness of policies
promoting land conversion to forests and grasslands,
afforestation endeavors, and desert management in fostering
increased vegetation cover within Sichuan Province.

To summarize, the vegetation fractional cover (FVC) in
Sichuan Province is influenced by a complex interplay of
multiple factors. This study employed geographic probes and
correlation analysis to reveal an overall increasing trend in
vegetation cover within the province. Notably, elevation,
landform type, and soil type were identified as dominant factors
that promoted vegetation growth and exerted significant effects on
vegetation FVC. The study also introduced a dichotomous image
model based on MOD13Q1 data, which proved to be a relatively
simple, intuitive, and efficient approach for analyzing vegetation
patterns.

This study employed the higher-resolution MODIS dataset,
which spans from 2000 onwards. While the GIMMS dataset
offers long-term data, it has limitations due to its coarser analysis
rate. Alternatively, Landsat satellite imagery, which provides more
detailed information on a larger scale, demands substantial
computational resources and time. To attain detailed, long-term
surface data and detect significant vegetation cover changes over the
past decades, we utilized the Google Earth Engine (GEE) platform.
Moreover, the image element dichotomous model is a remote
sensing estimation model. It is not particularly sensitive to the
radiatively corrected images within its remote sensing data.
However, it exhibits some limitations when applied solely to the
distribution of two components: photosynthetic vegetation end-
elements and bare soil, especially in specific regions like desertified
areas. To enhance our understanding of the distinct driving
mechanisms in different regions of Sichuan Province, future
research could consider utilizing the image element trichotomous
model. This advanced approach would allow for a more
comprehensive study of vegetation, addressing uncertainties in
specific regions that may arise from the dichotomous model.
Ultimately, it would enable a more precise analysis of vegetation
cover trends.

5 Conclusion

Utilizing MOD13Q1 data, DEM data, and additional relevant
data sources, this study sought to investigate the spatial and
temporal dynamics of vegetation cover in Sichuan Province from
2000 to 2020. Further, it explored the driving forces behind these
changes by employing the Geodetector model and correlation
analysis. The key findings of this research are as follows:

(1) The vegetation Formation Vegetation Cover (FVC) in Sichuan
Province displayed a clear pattern from 2000 to 2020, with
higher values in the eastern and southern regions and lower
values in the western and northern areas. The overall coefficient
of variation (CV) was 0.1167, indicating relatively stable
changes (CV < 0.15), with the earliest abrupt change
occurring in 2006. Approximately 20% of the region
exhibited significant fluctuations, primarily concentrated in
areas like Shiqu County, Chengdu City, and its neighboring
districts and counties. Conversely, about 10% of the area
experienced minor fluctuations, mainly in places such as
Batang County, Derong County, Ganzi County, and Shiqu
County. Regarding the temporal dimension, 84.76% of the
vegetation area showed improvement, while 13% experienced
degradation. The degradation was primarily observed in
Chengdu City, Yibin City, and sporadically in the
surrounding areas.

(2) Within the study area, the q-values of elevation, landform type,
and soil type were observed to exceed 0.3, suggesting that they
predominantly account for changes in vegetation cover.
Conversely, the explanatory power of slope and slope
direction was insignificant, with q-values less than 0.05,
indicating that their influence on vegetation is minimal.
Notably, the various factors displayed significant interactions,
with q-values indicating interactions surpassing those
associated with individual factors. For instance, the most
influential interaction was noted between altitude ∩
vegetation type, yielding an impressive explanatory power
of 0.540.

(3) The analysis revealed the existence of correlations between each
factor and vegetation fractional cover (FVC) across Sichuan
Province. Notably, distinct characteristics were observed in
relation to the trend and mean of FVC changes and
elevation, land use, population density, landform type, and
soil type. Additionally, the correlation coefficients of both
temperature and air temperature with vegetation FVC
exhibited negative correlations, albeit displaying low spatial
correlation. These factors were observed to significantly
influence the ecological interaction cycle. Intriguingly, shifts
in land use were found to be indicative of human activities, with
rapid urban expansion increasingly encroaching upon areas
previously occupied by vegetation cover, resulting in a
corresponding decrease in FVC.
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