AUTHOR=Wang Wei , Gao Jie , Liu Zheng , Li Chuanqi TITLE=A hybrid rainfall-runoff model: integrating initial loss and LSTM for improved forecasting JOURNAL=Frontiers in Environmental Science VOLUME=11 YEAR=2023 URL=https://www.frontiersin.org/journals/environmental-science/articles/10.3389/fenvs.2023.1261239 DOI=10.3389/fenvs.2023.1261239 ISSN=2296-665X ABSTRACT=
Accurate rainfall-runoff modeling is crucial for disaster prevention, mitigation, and water resource management. This study aims to enhance precision and reliability in predicting runoff patterns by integrating physical-based models like HEC-HMS with data-driven models, such as LSTM. We present a novel hybrid model, Ia-LSTM, which combines the strengths of HEC-HMS and LSTM to improve hydrological modeling. By optimizing the “initial loss” (Ia) with HEC-HMS and utilizing LSTM to capture the effective rainfall-runoff relationship, the model achieves a substantial improvement in precision. Tested in the Yufuhe basin in Jinan City, Shandong province, the Ia-LSTM consistently outperforms individual HEC-HMS and LSTM models, achieving notable average Nash-Sutcliffe Efficiency (